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ABSTRACT: 

Detailed demographics play an important role in the development of smart cities. However, especially in developing countries, the 
maintenance and management of this data is incomplete, which hinders the promotion of smart cities. The objective of this study is 
to develop a method to create detailed building distribution maps from satellite images, which will serve as a basis for developing 
detailed demographic data to support the promotion of smart cities around the world. The target area is several areas of Tokyo where 
validation data is available. We first developed a method for extracting buildings from satellite images and then estimating the 
building use to determine the buildings where residents are distributed. Both methods use deep learning. As a result, it was possible 
to extract buildings with an extraction rate (the number of buildings in the automatically extracted building data divided by the 
number of buildings in the data for verification) of up to 60.3% for the entire target area. In addition, in the estimation of building 
use, our method was able to classify detached and non-detached buildings with an average accuracy of 78.7% for the entire target 
area. 

1. INTRODUCTION

In almost all developed countries, it is possible to obtain a 
detailed understanding of population distribution by utilizing 
official demographics. By using these statistics, we can conduct 
effective medium- and long-term urban planning in various 
fields, including transportation management (Fuller et al.,  
2013), disaster management (Rumbach, 2016), urban climate 
change mitigation (Dulal et al., 2011), urban resource 
management (Agudelo-Vera et al., 2011), and public health 
(Niemelä et al., 1999). In Japan, for example, the results of the 
population census are used to forecast the future population 
(Kento et al., 2022), conduct transportation management 
(Kawasaki, 2015), and develop disaster prevention plans (Adu-
Gyamfi, Shaw, 2021) and so on. In addition, in recent years, 
cities around the world have been accelerating their efforts to 
create smart cities, and it has been pointed that the development 
of detailed demographics is also important for creating resilient 
smart cities that can continue into the future, and specific 
applications that contribute to the realization of smart cities 
have been proposed (Bação et al., 2018, Akiyama et al., 2019; ). 
Thus, demographic data is expected to play an important role 
not only in current urban planning but also in the realization of 
smart cities. However, many developing countries face 
challenges that existing data cover only some cities or regions, 
or they are updated infrequently or irregularly (Robinson et al., 
2017, Akiyama et al., 2019). This is due not only to the large 
budget and labor required to maintain large-scale demographics, 
but also to the existence of the informal sector, such as street 
dwellers, who are not included in official demographics, and the 
existence of districts that are not adequately covered by 
statistical surveys such as slums (Kumar, 2014). 

1.1 Literature Review 

To address this problem, there are some previous studies which 
have tried to estimate detailed population distribution in 
developing countries using satellite imagery, which is relatively 
readily available and can be accumulated at the same quality as 
in developed countries. To monitor detailed population 
distribution, it is first necessary to detect the distribution of 
buildings where the resident population is distributed. To 
address this problem, some studies have been conducted to 
identify buildings where the population may be distributed 
using satellite images. There are some old examples of satellite-
imagery-based population estimation (Polie, 1984; Taragi et al., 
1994); although these studies provided useful information for 
the scheme of our study, it was difficult to obtain a detailed 
population distribution due to the low resolution of satellite 
images available at the time. In recent years, Doupe et al. (2016) 
proposed a method to estimate population distribution by 
classifying the amount of artifacts in patch images culled from 
U.S. satellite images into 14 classes and multiplying each class 
by a population factor. However, this method estimates the 
population without considering households in condominiums 
and non-residential areas, and thus deviates from the actual 
population distribution. Similarly, the estimated population 
based on a 1 km square grid developed by Balk and Yetman 
(2004), and “Estimated population based on 100m square grid” 
by Atem (2017) are known examples of the population 
distribution being estimated by grid. These data proportionally 
distribute the population by estimating the land use status of 
each grid, especially the build-up status. The actual population 
distribution varies greatly depending on the building use. 
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However, these methods only monitor the distribution of build-
up areas. Furthermore, Iino et al. (2018) extracted build-up 
areas from synthetic aperture radar satellite images for urban 
areas in Jakarta using deep learning to produce high-resolution 
urban distribution maps. In addition, urban distribution maps at 
multiple points in time have been used successfully to 
understand the progression of urbanization. However, this 
method is not applicable to areas where building statistics are 
not maintained because the buildings are extracted based on the 
number of buildings recorded in the statistics published by the 
Indonesian government. In addition, since the purpose of this 
study is to extract build-up areas, the building use is not 
analyzed. 

Similarly, while there have been studies on extracting the 
spatial distribution of buildings from satellite images (Pan et al. 
, 2020), there are only a few methods that can estimate building 
use. 

Previous studies mainly extracted build-up areas on a grid scale 
or relied on existing statistics to extract buildings. As mentioned 
above, to monitor detailed population distribution, it is 
important to not only extract building distribution but also know 
detailed building attributes such as building use and number of 
floors. If the building use is known, it would be possible to 
identify buildings with residential use that serve as residential 
areas. Similarly, if the number of floors of a building is known, 
the population can be proportionally distributed according to the 
volume of each building. Thus, it is expected that this 
information will enable an accurate estimation of the population 
distribution. 

1.2 Objective 

The objective of this study is to develop a method to extract 
buildings from satellite images using deep learning and to 
estimate building use to identify buildings where residents are 
distributed from the extracted buildings, with the aim of 
overcoming the problems of existing research and contributing 
to the promotion of smart cities, especially in developing 
countries. 

2. FLOW OF STUDY

Figure 1 shows the flow of this research. This study consists of 
two phases: Phase 1, Building detection, and Phase 2, 
Estimation of building use. In Phase 1, we develop a method to 
automatically extract buildings from satellite images using a 
convolutional neural network (CNN), a deep learning 
methodology. In Phase 2, we reuse the CNN to estimate the 
building use of the extracted building images. As a result, we 
can develop building maps with the attribute of building use 
from satellite images. Although the processing of Phase 1 and 
Phase 2 should be done in one step, we found that the 
processing of each Phase is different in nature, as described 
below. Therefore, in this paper, Phase 1 was developed 
independently in Section 3 and Phase 2 in Section 4. 

2.1 Target area 

Although this study should be conducted in developing 
countries with incomplete demographics as target areas, 
developing countries often do not have sufficient data to verify 
the reliability of information on extracted buildings. Therefore, 
the target area of this study is Tokyo, where sufficient data for 
verification are available. The specific areas are Shinjuku-ku 
(ward), which has strong urban characteristics with skyscrapers 

districts and a large shopping district; Setagaya-ku, which is 
adjacent to Tokyo's City Center and contains mostly residential 
areas; and Hachioji city, which is a suburb of Tokyo and 
includes rural and mountainous areas. The method proposed in 
this study can be applied to different target regions, and it is 
expected that the usefulness of the method demonstrated in 
Tokyo will make it possible to apply it to cities in developing 
countries. 

3. BUILDING DETECTION USING DEEP LEARNING

3.1 Method of Building Detection 

To detect buildings in satellite images (background satellite 
images from Google Maps) using deep learning, we first created 
training data. First, satellite images of the entire target area were 
divided into a grid of 250 m squares, and building areas were 
extracted from each image by manually tracing the building 
perimeter lines using GIS, resulting in the extraction of 36,073 
building areas from the entire target area. Next, using these data 
as training data, a model was built to automatically extract 
buildings from satellite images using deep learning. The deep 
learning used in this study was Faster-RCNN (Ren et al., 2015), 
an object detection method based on CNN (Krizhevsky et al., 
2012). CNNs have been reported to significantly outperform 
existing methods for tasks such as image classification, object 
extraction, and region segmentation, and are also characterized 
by their ability to extract features directly from data and short 
processing time. Faster-RCNN uses a CNN structure called a 
region proposed network (RPN), which has improved speed and 
accuracy compared to conventional methods. 

3.2 Result of Building Detection and Problems 

Figure 2 shows an example of building detection results in the 
vicinity of Shinjuku Terminal, Shinjuku-ku. The results showed  
that the accuracy of the building data extracted from each 
satellite image differed. Therefore, we used 30 satellite images 
with different characteristics and compared them for each 
region with different building characteristics to verify whether a 
relationship exists between building characteristics and the 
accuracy of automatic building extraction. 

Using the number of buildings in one image, the total area 
occupied by the buildings, the average area per building, and the  
area of the largest building as indicators of regional  
characteristics, we verified which regions have the highest  

Figure 1. Flow of study 
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intersection over Union (IoU) and building extraction rate. IoU 
is the value obtained by dividing the intersection, which is the 
common part of building areas obtained from the map 
information of the automatically extracted building data and the 
verification data, by the sum set of the areas, and is one of the 
evaluation indices for object detection (Cai et al., 2022). The 
building extraction rate is the number of buildings in the 
automatically extracted building data divided by the number of 
buildings in the data for verification. The satellite images used 
were 30 images of Shinjuku Ward, Tokyo, which has diverse 
geographic features such as train stations, railroads, high-rise 
buildings, and residential areas. Building polygon data from a 
2020 digital residential map was used for the validation data 
(correct values).  

First, areas with high IoU were characterized by many buildings, 
a small average area per building, and a large total area 
occupied by buildings. In terms of the building extraction rate, 
it was found that the rate decreased as the number of buildings 
increased (Figure 3). The fact that IoU is particularly high in 
areas where the average area per building is small and the 
number of buildings is large (Figure 4) indicates that our 
method of automatic building extraction is useful in urban areas 
in developing countries, where uncontrolled urbanization and 
population influx have led to high building densities. As shown 
in Figure 5, the IoU was lower in areas with many buildings that 
have the opposite characteristics of those shown in Figure 3. In 
addition, as shown in Figure 6, in areas with a large number of 
buildings, the building extraction rate tends to be low because 
adjacent buildings cannot be distinguished from each other 
properly. This tendency can be regarded as an issue for 
automatic building extraction at the current stage. 

3.3 Examination to improve extraction accuracy 

One way to improve extraction accuracy is to change the 
numerical values of parameters related to deep learning. 
Therefore, this study examines changes in the accuracy index of 
automatic building extraction by varying the maximum number 
of iterations. In addition to IoU and the building extraction rate, 
we used the root mean square error (RMSE) of the average 
distance between the centroid of each building polygon in the 
extracted building data and the residential map as an evaluation 
index. In this study, the maximum number of iterations was 
increased to 900,000. 

Figure 2. Example of building detection results （Vicinity of 

Shinjuku Terminal, Shinjuku-ku） 

（a: Satellite image b: Extracted building data） 

Figure 3. Relationship between indicator of regional characteristics and extraction accuracy 
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Figure 7 and Table 1 show the results. These results indicate 
that there is a positive correlation between the parameter values 
and IoU. While the building extraction rate tends to decrease as 
the parameter value increases, the RMSE also decreases, 
indicating that although the building extraction rate decreases, 
the location accuracy of each extracted building increases. The 
IoU and the building extraction rate decreased with the number 
of iterations being 400,000, and the RMSE of the centroid 
decreased with the number of iterations (600,000), indicating 
that the optimal parameter values for the CNN used in this study 
 

 
 

Figure 4. Example of region where the IoU is high 
 

  
 

Figure 5. Example of region where the IoU is low 
 

are between 400,000 and 600,000. However, considering that 
increasing the parameter value by 200,000 increases the time 
required to create a Geopackage file with automatically 
extracted building data using Colab Pro for deep learning by 48 
hours, it is appropriate to set the parameter value at 400,000. 
 

4. ESTIMATING BUILDING USE DURING DEEP 
LEARNING 

4.1 Estimation of building use (5 class) 

First, the data of building uses (detached houses, detached  
offices, multi-use buildings (mainly residential use), multi-use 
buildings (mainly business use), and condominiums) from the 
building polygon data of the residential map in 2020 were  
spatially integrated with the satellite image from which the 
areas of buildings were extracted from satellite images of the 
entire area under study (Figure 8). Next, to include the 
environment around the building, we defined the image size by 
the longer length of the vertical and horizontal sides of the  
building and cropped the building from the satellite image with  
 

 
 
Figure 6. Example of region where the number of buildings is 

large 
 

 
Figure 7. Relationship between iteration, centroid distance, IoU, and building extraction rate 
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a 10% margin. We performed deep learning using the spatially 
integrated data of the data as the training data. We used a fine-
tuned ResNet 18 model as the learned model for deep learning. 
Then, 10% of the training data was diverted to test data for 
estimation of building use, and the reliability of the estimation 
was confirmed by comparing the estimation results of the test 
data with the building uses on the residential map. 
 
4.2 Estimated results for building use (5 class) 

Table 2 shows the estimation accuracy for each municipality 
and Table 3 shows the estimation precision per building use. 
Estimation accuracies were low for all municipalities. The 
results for each building use showed that detached houses and 
detached offices were estimated to be present  in  all 
municipalities, but there were some municipalities that 
estimated zero cases for other building use. Table 4 shows the 
breakdown of the training data for each municipality by 
building use. The number of detached houses and detached 
offices was larger than that of other building use, leading to a 
larger amount of training data, which is thought to have resulted 
in higher precision than that for other building uses. In other 
words, the lack of and bias in the training data greatly affected 
the accuracy of the building use estimation in this study.  
 
4.3 Examination to improve accuracy 

A solution to biased training data is the under-sampling and 
over-sampling methods (Ali et al., 2013). Under-sampling is a 
method to reduce the number of data entries in a large number 
of classes to match the number of entries in a smaller number of 
classes, while over-sampling increases the number of data 
entries in a small number of classes by duplicating the data in a 
large number of classes to match the number of entries in a 
large number of classes. Another method is to simplify the task 
of image recognition to improve accuracy (Cai et al., 2019). 
Simplifying the task here means reducing the number of image 
classification classes to be performed at a time. Building use 
estimation in Section 4.1 classified images into five building 
use classes; however, reducing the number of classes to be 
classified is expected to improve accuracy. 

 
4.4 Estimation of building use (2 class) 

When classifying building use, a classification method in which 
the number of residents in each building is expected to differ 
significantly is to divide buildings by whether they are detached  
buildings (detached houses and detached offices) or non-
detached. The former is expected to have fewer residents per  
building, while the latter is expected to have more. It is also 
expected that the appearance of the buildings is different.  
 
Therefore, we first determined whether the buildings were 
detached or non-detached buildings and then undersampled and 
oversampled the training data. As shown in section 4.1, the 
building images are assigned the five types of building use.  

 
Table 1. Relationship between iterations and accuracy 

Therefore, detached houses and detached offices are classified 
as detached buildings, and the rest are classified as non-
detached buildings.  Second, we divided the training data into 
two building uses (detached buildings and non-detached 
buildings) and performed deep learning to estimate the building 
use. To eliminate unequal training data for each class, we set the 
number of training data for each class to 5,000. For classes with 
many training data, the number of entries was reduced to 5,000,  
and for classes with insufficient training data, the number of 
training data was replicated to increase the training data to 
5,000 entries.  
 
4.5 Estimated results for building use (2 class) 

Figure 9 shows an examples of building image estimated as 
detached buildings, and Figure 10 shows an example estimated  
as non-detached buildings. Table 5 shows estimating accuracy 
for each municipality, and Table 6 shows recall for each of the  
five types of building attributes. In this estimation, accuracy 
exceeded 70% in all municipalities. It indicates that the building 

 

 
 

Figure 8. Example of building extraction from satellite image 
 

 
Table 2. Accuracy for each municipality 

 

 
Table 3. Precision per building use 

 

 Iterations [Thousand] 
10 50 200 400 900 

IoU 0.578 0.629 0.635 0.663 0.665 
Building 
extraction 

rate 
0.603 0.578 0.493 0.512 0.547 

RMSE 16.179 15.613 11.923 11.948 12.687 

 
Precision [%] 

Shinjuku-
ku 

Setagaya-
ku 

Hachiouji 
city 

Building 
use 

Detached 
house 

10,96 12,41 16,17 

Detached 
office 

19,16 12,23 2,99 

Multi-use 
building 
(mainly 

residential 
use) 

10,01 - 3,15 

Multi-use 
building 
(mainly 
business 

use) 

0,25 0,22 - 

Apartment 
house 

0,86 0,07 - 

Municipality Accuracy [%] 

Shinjuku-ku 6,37 

Setagaya-ku 6,37 

Hachiouji city 1,08 
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 use could be estimated with relatively high accuracy. In all 
municipalities, the accuracy of estimating detached houses as  
detached buildings and that of estimating condominiums as 
non-detached buildings were high. However, the accuracy of 
estimating detached office buildings as detached buildings was 
not as high. This is because many of the buildings included in 
the detached offices have the same appearance as multi-use 
buildings.the detached offices have the same appearance as 
multi-use buildings. 
 
4.6 Building use estimation for detached buildings 

Third, we verified the accuracy of estimating whether a building  
 

 
Table 4. Breakdown of training data by building use for each 

municipality 
 

 
 

Figure 9. Example of building images estimated as detached 
buildings 

 

 
 

Figure 10. Example of building images estimated as non-
detached buildings 

is a detached house or a detached office. The number of training 
data for each building use was set to 5,000 for both. Table 7 
shows estimating accuracy for each municipality, and Table 8 
shows recall for each building use. The result shows that the 
accuracy of estimating a detached building as either a detached 
house or a detached office was higher for detached houses in 
Setagaya-ku and detached offices in Hachioji city. On the other 
hand, accuracies for the building use for other municipalities are 
about 60%. Figure 11 shows an example of an image of a 
building that is a detached house building which was estimated 
as detached offices, and Figure 12 shows an example of an 
image of a building that is a detached office which was 
estimated as a detached house. The results suggest that 
buildings with a small area tend to be estimated as detached  
 

 
Table 5. Accuracy for each municipality 

 

 
Table 6. Recall per building use 

 

 
Table 7. Accuracy for each municipality 

 
Table 8. Recall per building use 

 
Number of training data 

Shinjuku-
ku 

Setagaya-
ku 

Hachiouji 
city 

Building 
use 

Detached 
house 

11,304 78,774 75,460 

Detached 
office 

4,424 13658 10,706 

Multi-use 
building 
(mainly 

residential 
use) 

2,209 2,209 2,209 

Multi-use 
building 
(mainly 
business 

use) 

1,239 1,241 1,241 

Apartment 
house 

7,520 24,469 8,237 

Municipality Accuracy[%] 

Shinjuku-ku 74,83 

Setagaya-ku 75,07 

Hachiouji city 86,05 

 
Recall[%] 

Shinjuku-
ku 

Setagaya
-ku 

Hachiouji 
city 

Building 
use 

Detached 
house 

84,15 80,11 89,55 

Detached 
office 

50,00 51,93 66,17 

Multi-use 
building 
(mainly 

residential 
use) 

84,84 84,84 93,14 

Multi-use 
building 
(mainly 
business 

use) 

94,87 95,51 98,72 

Apartment 
house 

69,26 69,84 76,04 

Municipality Accuracy[%] 

Shinjuku-ku 68.68 

Setagaya-ku 77.27 

Hachiouji city 60.05 

 
Recall[%] 

Shinjuku-
ku 

Setagaya-
ku 

Hachiouji-
city 

Building 
use 

Detached 
house 

69,36 83.10 58.39 

Detached 
office 

66.98 56.38 75.35 
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Figure 11. Example of detached house images estimated as 
detached houses 

 

 
 

Figure 12. Example of detached office images estimated as 
detached offices 

 

 
Table 9 Accuracy for each municipality 

 
houses, while buildings with a large area tend to be estimated as 
detached offices. Therefore, the inclusion of detached houses  
with relatively large building areas and detached offices with  
relatively small building areas is considered to have affected the 
accuracy. 
 
4.7 Building use estimation for non-detached buildings 

Finally, we tested the accuracy of the estimation of whether a 
non-detached building is a multi-use building (mainly 
residential), a multi-use building (mainly business), or a  
condominium. Table 9 shows estimating accuracy for each 
municipality, and Table 10 shows recall for each building use. 
As a result, accuracy for Hachioji City was about 80%. As in 
section 4.6, the accuracy was affected by the fact that many 
buildings in Shinjuku and Setagaya wards have a relatively 
large area in relation to the building use. 
 

5. DISCUSSION TO IMPROVE ACCURACY 

The results of building use estimation showed that the 
accuracyof the estimation for detached offices was low. 
Therefore, we discuss methods to improve the accuracy of 
building use estimation. 
 
First, hyperparameters such as batch size and number of epochs 
need to be set to appropriate values when performing deep 
learning (Feurer et al., 2019). The batch size is the number of 
data contained in each subset when the dataset is divided into  

 
Table 10. Recall per building use 

 
several subsets for learning. The number of epochs is a value 
that determines the number of iterations of training on a single 
set of training data. In this study, the optimal hyperparameters 
for building use classification have not been determined. 
Therefore, it is expected that the accuracy will be improved by 
finding the appropriate hyperparameter values in the future. A 
possible method to find the optimal hyperparameters is to 
perform deep learning while changing the values of 
hyperparameters to find the parameter values with the highest 
accuracy. Another possible method is to use a tool such as 
Optuna (Preferred Networks, Inc., 2022) that can automatically 
tune hyperparameters. 
 
Another possible method of improving accuracy is to increase 
the number of training data (Krizhevsky et al., 2012). In this 
study, only the building data in each municipality were used as 
training data to estimate the building use of each municipality. 
In the future, it is expected to be possible to improve the 
accuracy by learning more features of each building attribute by 
learning the data of all three municipalities as training data. 
In addition, the buildings’ surroundings (e.g., commercial, 
residential) could be used as input for the deep learning model. 
In this deep learning model, buildings visible in satellite images 
are learned by labeling the use of the buildings. Therefore, it 
would be possible to improve the accuracy by adding 
information such as land use type. 
 

6. CONCLUSION 

The method in this study made it possible to detect buildings 
from satellite images with a certain degree of reliability. This 
method is useful in urban areas in developing countries because 
it can detect buildings with high accuracy even in areas where 
the number of buildings is large and the average area per 
building is small. On the other hand, while the method used was 
able to accurately estimate the use of detached houses or 
condominiums, the accuracy was low for some types of 
building use in some municipalities. 
 
Our future endeavors are to improve the accuracy of building 
use estimation by setting optimal parameters and expanding 
training data. In addition, we aim to improve the accuracy of 
building extraction and building attribute estimation by 
expanding the target area. These improvements will make our 
method applicable over a wide area. Moreover, building 
detection (Section 3) and building use estimation (Section 4) 
were developed independently of each other and verified for 
accuracy. Ideally, however, these processes should be 
performed in a single step and the accuracy of the final results 

Municipality Accuracy [%] 

Shinjuku-ku 64,31 

Setagaya-ku 66,19 

Hachiouji city 81,08 

 
Recall[%] 

Shinjuku-
ku 

Setagaya-
ku 

Hachiouji 
city 

Building 
use 

Apartment 
building 
(mainly 

residential) 

32,49 44,40 53,07 

Apartment 
building 
(mainly 
office 

buildings) 

63,46 41,16 66,03 

Apartment 
house 

73,83 67,81 90,88 
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should be verified. To ensure sufficient accuracy in this series 
of processes, it is necessary to further improve the accuracy of 
building detection. Furthermore, in the future, we aim to 
develop detailed demographic data in developing countries by 
realizing a method to detect the distribution of buildings with 
their uses from satellite images and to estimate the number of 
residents living in those buildings. 
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