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ABSTRACT: 

 

Global climate change makes the maintenance and resilience of cities one of the greatest challenges facing civilization. Constant 

monitoring is essential work to determine if the city and its infrastructure are well preserved. This monitoring has become 

increasingly simple and affordable, thanks to the advancement of technology, so the current trend is to systematically monitor the 

entire city (this concept is the paradigm of the smart city). There are several methods for infrastructure monitoring including GPS, 

mobile-mapping, video-surveillance, etc. However, this type of method has a series of disadvantages, such as the impossibility of 

obtaining large-scale data or the unavailability of information of the previous, current or after state that an event has occurred in the 

study-area. This can be solved with monitoring based on satellite images, since these have historical and constant coverage over 

time, with good resolution to identify urban structures and cover large study areas. The use of satellite radar images through MT-

InSAR is booming because it is a powerful remote sensing technique capable of detecting displacements on the earth's surface. This 

technique can be combined with Machine-Learning to perform predictive analysis in urban environments and detect infrastructure 

failures. This predictive monitoring capable of anticipating risks is one of the objectives of the new urbanism. For this reason, this 

work analyzes the collapse of a pier, which occurred in Vigo, a city in NW Spain, through radar satellite images (Sentinel-1), MT-

InSAR and Machine-Learning. The result is the possibility of anticipating structural failures thanks to the predictive monitoring. 
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1. INTRODUCTION 

1.1 From the city to the predictive infrastructure 

monitoring via remote sensing to achieve the smart city 

Currently, there are great efforts made by researchers, political 

authorities, companies, and urban-planners, to address the 

problems that global climate change can cause in cities, since a 

large part of the world's population is concentrated into them. 

As a solution to this problem, the concept of Smart City 

appears. Smart City considers that a wide range of urban 

challenges can be addressed by the Information and 

Communication Technology, ICT (Anthopoulos, 2015) through 

the constant monitoring of the city. Even though such 

monitoring supports the response to multiple problems in an 

efficient manner, at present a new approach to urbanism is 

beginning to settle, not focused on solving problems but rather 

on anticipating problems (Sharifi & Yamagata, 2014).  

 

This resilient urban planning capable of adapting to adverse 

situations is possible thanks to great technological advances 

through artificial intelligence subject to the availability of data. 

In this sense, the availability of free and systematic satellite data 

is boosting a great revolution in the monitoring of cities and 

their infrastructures. 

 

There are mainly 2 classes of satellite that can fulfil the 

objective of monitoring infrastructures via remote sensing: 

 

 Optical Satellites. 

 Radar Satellites. 

 

Optical satellite images, despite being visually easier to 

interpret, are commonly the least used due to their great 

disadvantages compared to radar images: 

 

 Signals from radar satellites can pass through 

clouds and therefore can obtain images of the earth's 

surface covered by clouds and the optical cannot. 

 Radar satellites obtain data also in the dark of 

night and the optical cannot. 

 

Also, based on satellite radar images, various techniques have 

been developed to be able to extract displacement information 

(Crosetto et al., 2016; González, 2010; Xue et al., 2020). One of 

the most used techniques is Multi-temporal Interferometric 

Synthetic Aperture Radar (MT-InSAR). 

 

MT-InSAR consists of several radar satellites images (Slaves) 

of different dates compared against a chosen reference image 

(Master). This comparison produces interferograms, which can 

be treated later by different programs to obtain displacements 
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maps (Xue et al., 2020) (in this study, the StaMPS program is 

chosen, as it is open).  

 

The displacements maps consist of data points with the 

displacements that have been captured on each of the dates of 

the comparison images, in addition to including their 

coordinates. 

 

In this work, since the analysis is in an urban environment and 

the StaMPS program is the chosen, the method used in the MT-

InSAR technique must be PSI (Persistent Scatterer 

Interferometry). This method consists of identifying pixels 

through the spatial correlation of the phase (it only uses those 

with stable phase through the time series). To do this, the 

method requires the spacing between the spatial and temporal 

baselines to be reduced for this analysis to be effective. This 

allows the method to perform an evaluation of the differences in 

the interferometric phase time in order to obtain the information 

points with potential to be selected and that must be consistent 

over time; these selected information points are called 

Permanent Scatterer (PS) (A. J. Hooper, 2008; Juan Gabriel 

Arroyo Parras & Antonio Miguel Ruiz Armenteros, 2017). 

 

There are numerous and different types of radar images on the 

market, but currently only Sentinel-1 images are free and for 

any type of user, for that reason they are chosen in this work 

(this facilitates the reproduction of the proposed methodology 

for other cases of study). 

 

The European Space Agency (ESA) developed a series of next-

generation Earth observation missions including Sentinel-1 

(https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-

1), which consists of radar images. These images present a 

series of advantages for infrastructure monitoring, such as: 

constant availability every 6 days, the spatial resolution is ~ 20 

m and 250km swath with a stable acquisition geometry (Cian et 

al., 2019). The following table summarizes its main 

characteristics (Table 1): 

 

Launched Unit A: 2013/ unit B: 2016 

Lifespan Operational: 7 years / consumables: 12 years 

Orbit Sun-synchronous, near-polar, circular orbit 

Instrument C-band SAR 

Coverage Global 

Revisit 12 days (6 days for A- and B-units) 

Spatial 

resolution/ 

swath width 

Strip map mode: 5 × 5m/80 km  

Interferometric wide-swath mode: 

 5 × 20m/250 km (standard mode)  

Extra-wide-swath mode: 20 × 40 m/400 km  

Wave mode: 5 × 5m/20 × 20 km 

Centre 

frequency:  
5.405 GHz 

Radiometric 

accuracy 
1 dB (3Σ) 

Polarisation VV+VH, HH+HV, HH, VV 

Incidence 

angle: 
20° - 45° 

Mission 

Objectives 

Land monitoring of forests, water, soil and 

agriculture  

Emergency mapping support in the event of 

natural disasters  

Marine monitoring of the maritime 

environment  

Sea ice observations and iceberg monitoring  

Production of high-resolution ice charts  

Forecasting ice conditions at sea Mapping oil 

spills  

Sea vessel detection Climate change 

monitoring 

Table 1. Sentinel-1 main characteristics. 

 

Sentinel-1 can produce 4 types of products:  

 

 Level-0: is the Synthetic aperture radar (SAR) 

raw data.  

 Level-1: there are two types of products in this 

class: 

o Single Look Complex (SLC): This product 

keeps their phase information, which is 

essential to perform the MT-InSAR 

technique. 

o Ground Range Detected (GRD):  This 

product is processed so it loses their phase 

information. The GRD products can be in: 

Full Resolution (FR), High Resolution (HR) 

and Medium Resolution (MR).  

 Level-2: focuses on the oceanic study of the 

earth's surface and includes the following 

components: Ocean Swell spectra, Ocean Wind Field 

and Surface Radial Velocity. 

 

2. RELATED WORKS 

2.1 Machine Learning predictive algorithms with MT-

InSAR 

The data generated through MT-InSAR can be used to perform 

predictive works through Machine Learning algorithms. 

Machine Learning is the branch of the field of artificial 

intelligence that seeks to provide machines with learning 

capacity, understood as the generalization of knowledge from a 

set of experiences. Based on the type of data output, there are 2 

different types of algorithms in Machine Learning: 

 

 Regression algorithms: used to predict the 

outcome of a trend. 

 Classification algorithms: used to determine if a 

result belongs to one category or another. 

 

There are numerous works that use information from radar 

images and the calculation of displacement on the earth's 

surface through MT-InSAR where different algorithms are used 

to predict the outcome of a trend (Regression algorithms), 

useful for the purpose of this research, some of them are: Linear 

Regression (L. Shi et al., 2020); Polynomial Regression (L. Shi 

et al., 2020); Support Vector Regression (Y. Shi et al., 2020); 

Random Forest Regression (Azarakhsh et al., 2022; Umarhadi 

et al., 2022). However, it is important to clarify that Machine 

Learning models can suffer the following prediction problems: 

 

 Overgeneralization or underfitting occurs when 

a model is too simple and does not even fit the 

training data. 

 Overfitting appears when a model is very 

complex and it fits the training examples well, but the 
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test examples poorly (it is not capable of to 

generalize). 

 

2.2 State of the art in urban infrastructure monitoring 

using MT-InSAR 

There are many cases of success in monitoring infrastructure in 

the city through the MT-InSAR technique and radar satellite 

images: Comparison of results in the detection of movements in 

the monitoring of the city of Urayasu, Japan between different 

satellites (from 1993 to 2006 with the ERS-1/-2 satellite (C 

band), from 2006 to 2010 with ALOS PALSAR (L band) and 

from 2014-2017 with the ALOS-2 PALSAR-2 (L-band)) 

through the SARscape program (Aimaiti et al., 2018); 

monitoring of damaged buildings in the city of Bratislava in 

2014, through the SARPROZ program and the ENVISAT 

satellite (Bakon et al., 2014); monitoring of the urbanized sector 

of the municipalities of Portogruaro and Concordia Sagittaria, 

located in Italy with different satellites (ERS 1/2, ENVISAT, 

COSMO SKYMed and Sentinel-1) over time (1992 to 2017) 

through the SARscape program to define the mechanical 

behaviour of soil helping locate suitable areas for infrastructure 

(Floris et al., 2019). 

 

Until now, there is no evidence of works that use satellite radar 

images and Machine Learning to perform predictive analysis 

specifically in collapsed urban infrastructures. The most similar 

works to this approach focus on a methodology for predicting 

and mapping surface motion beneath road pavement structures 

caused by environmental factors by Regression Tree, Support 

Vector Machine, Boosted Regression Trees and Random Forest 

(Fiorentini et al., 2020); Prediction of time-series deformation 

using deep convolutional neural networks (Ma et al., 2019); 

prediction through Influencing Factors the cumulative ground 

deformation using back-propagation (Wang et al., 2019); land 

deformation prediction by deep-learning (Radman et al., 2021).   

 

In other words, all these approaches focus on predicting the 

displacement of certain study areas, but not on predicting 

collapses or studying cases where they have actually occurred. 

 

Therefore, the present work wants to take the advantage of the 

predict capacity of Machine Learning regression algorithms in 

the anticipation of infrastructure collapses.  

 

For this, the following methodology and case study are 

proposed: Prediction of the collapse of the pier, on August 12, 

2018, during the O Marisquiño Festival in Vigo, using MT-

InSAR and Machine Learning in order to set up a starting point 

in the investigation with the hope of building, together, in the 

future, more resilient cities in the face of the different 

challenges that may occur. 

 

3. MATERIALS AND METHODS 

3.1 Case Study 

The analysis site is located in the city of Vigo (Galicia, Spain), 

with the aim of monitoring the displacements registered in the 

Vigo pier at the O Marisquiño Festival prior to its collapse on 

August 12, 2018.  

 

The collapse was in the surfside of Vigo (Figure 1), therefore, 

in a maritime environment. The infrastructures close to the sea 

are more exposed to deterioration due to environmental causes 

in comparation to other outside the coastal margins. There are 

many environmental causes of infrastructure deterioration like 

the exposure to the sea, the consequences of strong storms, 

salinity of the sea, etc. It is necessary to pay more attention on 

the part of the authorities in the monitoring of structural failures 

in them. 

 

 

Figure 1. Situation of the collapsed pier. 

 

Therefore, it is precise and pertinent, within the Smart City 

paradigm, to introduce MT-InSAR and Machine Learning as an 

additional monitoring technique, with the aim of knowing the 

state of infrastructures, preserving them, and avoiding 

catastrophes through alerts and emergency notification systems. 

This resilient vision is the maximum of the new urbanism, also 

called resilient urbanism (Sharifi & Yamagata, 2014). 

 

3.2 Data Used 

The predictive infrastructure monitoring through radar satellite 

images, MT-InSAR and Machine Learning begins with the 

download of 23 SLC type images (1 Master and 22 Slaves) of 

Sentinel-1 through the Alaska Satellite Facility Vertex 

download portal: https://search.asf.alaska.edu/#/ (Figure 2). 

 

 

Figure 2. Selection for downloading 22 radar images as slaves 

(in blue) and 1 master radar image (in red). 

 

The data was acquired (Table 2) with VV polarization, in 

descending orbit and operating in C-band (wavelength around 

5.5 cm). 
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Master 27/10/2016 

Slaves from 01/12/2014 to 06/08/2018 

Track 125 

Bperp max -74.71 

Modeled 

Coherence 
min 0.36 

Table 2. Overview of the image stack and selection of the 

optimal MT-InSAR master image. 

 

As the images are large, it is necessary to make a subset within 

SNAP program (https://step.esa.int/main/download/snap-

download/) only for the study area (mainly the city of Vigo, and 

more specifically the pier that has suffered the collapse) (Figure 

3). 

 

 

Figure 3. Full coverage of the master image downloaded for 

processing in SNAP. In the red box, the site of the city of Vigo, 

which will only be used as a study area in StaMPS program. 

 

Depending on the path (ascending or descending) a different 

geometry is obtained (Figure 4). In this case, the master image 

is upside down because the image was acquired in descending 

orbit. 

 

 

Figure 4. Difference between the capture geometry in the result 

of a descending orbit versus an ascending orbit. 

 

3.3 Methods 

The processing with the 23 images is based in MT-InSAR 

(Multi-Temporal Interferometry Synthetic Aperture Radar) 

technique by using the StaMPS program that can be 

downloaded from 

http://homepages.see.leeds.ac.uk/~earahoo/stamps/ or 

https://github.com/dbekaert/stamps. The original development 

of StaMPS took place at Stanford University, but further 

evolution of StaMPS to StaMPS/MTI took place at the 

University of Iceland, Delft University of Technology, and the 

University of Leeds. Because it is an open-source program, 

there are also contributions made by the community. 

 

The analysis with StaMPS starts with the selection of the master 

image and the co-registration of the rest of SLC (Level-1 Single 

Look Complex, this is a type of product that offers the Sentinel-

1 satellite of radar images) slave images, so that they have the 

same geometry with the free ESA program SNAP (SNAP – 

STEP, n.d.). Once this is done by using snap2stamps 

(https://github.com/mdelgadoblasco/snap2stamps), which 

allows to automate the processing chain compatible with 

StaMPS (Blasco & Foumelis, 2018), the analysis begins with 

StaMPS, which provides the processing code to be executed 

with MATLAB 

(https://www.mathworks.com/products/matlab.html). This code 

consists of the series of instructions or steps to obtain 

information points with the displacements of the earth's surface 

(A. Hooper et al., 2012). In addition, for this work the following 

parameters (Table 3) related to the study of infrastructures are 

assigned: 

 

Parameter Default Used 

max_topo_err 20 10 

filter_grid_size 50 40 

clap_win 32 16 

scla_deramp 'n' 'y' 

percent_rand 20 1 

unwrap_grid_size 200 50 

unwrap_time_win 730 180 

scn_time_win 365 180 

scn_wavelength 100 50 

unwrap_gold_n_win 32 16 

Table 3. Parameters used for processing adjustment. 

 

With the information points (PS or Permanent Scatterer), the 

displacement map of the study area is obtained. From here, the 

StaMPS-Visualizer program 

(https://github.com/thho/StaMPS_Visualizer) (GitHub - 

Thho/StaMPS_Visualizer: Shiny Application to Visualize 

DInSAR Results Processed by StaMPS/MTI, n.d.) is used for 

visualization.  

 

Therefore, there are 3 stages in the workflow for data collection 

(PS): 

 

 Interferogram processing using SNAP (1st stage). 

(For more details, consult the RUS Webinar at 

https://www.youtube.com/watch?v=Xy7Y4Ea5mOo). 
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 PS generation using StaMPS (2nd stage). (For more 

details, consult the StaMPS user manual at 

https://homepages.see.leeds.ac.uk/~earahoo/stamps/St

aMPS_Manual_v4.1b1.pdf). 

 Analysis of results through StaMPS-Visualizer (3rd 

stage). (For more details, consult the StaMPS-

Visualizer 3.0 Manual at 

https://thho.shinyapps.io/StaMPS_Visualizer/). 

 

Once the PS are obtained, the predictive analysis is done with 

Machine Learning by the Python programming language in the 

Spyder environment. For this, the library that adds support in 

the realm of Machine Learning, Scikit-learn (https://scikit-

learn.org/stable/) is used. It features several classification, 

regression, and clustering algorithms including support vector 

machines, random forests, gradient boosting, k-means, and 

DBSCAN, and is designed to interoperate with the Python 

scientific and numerical libraries NumPy and SciPy. 

 

To do this, the data is restructured in a new file selecting just 

the PS of the collapse of the pier, so that it is easier to 

manipulate in Spyder: the accumulated speeds and their dates 

are selected (UNIX time format in days, this format is the 

StaMPS output format), each parameter in a column, and the 

average speed and the rest of PS are eliminated. Therefore, the 

features used for training are the displacement value registered 

for each of the PS throughout the analysis time. 

 

In order to choose the most optimal models for the prediction of 

infrastructure collapses, a previous study is carried out based on 

the optimization of the model, comparing all the Regression 

algorithms evaluated in this work (Linear Regression, 

Polynomial Regression, Support Vector Regression and 

Random Forest Regression), the conclusion is the 2 most 

appropriate algorithms are: 

 

 Support Vector Regression because its 

implementation is simple and it is suitable for small 

data sets. 

 Random Forest Regression because it is very useful 

for applications where precision is very important. 

 

The use of these 2 types of algorithms in this work enable to 

compare and better understand the results of the prediction. 

 

In addition, for the 2 algorithms to be comparable, the 

automatically generated model must have an R2 above 0.80, and 

increase it as this value is reached, in order to be able to 

accurately predict the displacement the day of the collapse. 

 

Finally, just with Support Vector Regression, a rescaling of the 

data must be done (so it is more difficult to interpret the data 

graphically, since the units are not the same as in the source). 

 

4. RESULTS AND VALIDATION 

A mean displacement map is generated along the satellite's line 

of sight (LOS) through the velocity value of each of the 

Permanent Scatterers, the range of the displacement velocity 

values are –6 mm/year to +6 mm/year in the entire city of Vigo, 

the mean displacement map has the sufficient resolution to 

detect deformations in infrastructures. The data set generates 

80459 PS, so it is necessary to reduce the amount of 

information points, focusing only on the pier. The information 

points pier filtered are the PS 23, 24, 25, 26, 27, 28 and 29.  

 

4.1 Urban monitoring 

The values of the mean displacement map (Figure 5) show that 

Vigo remains stable since in almost the entire city it does not 

present extreme values; In this sense, the stability of the Vigo 

area exposes the fact that most of the points are within ± 2 

mm/year of displacement. However, a higher deformation rate is 

identified around the port and the pier with values that reach 

subsidence values of –3.5 mm/year; This may be due to the 

influence exerted by the sea on the coast, so these 

infrastructures may be affected to a greater extent by global 

climate change. 

 

 

Figure 5. Displacement recorded in the study area with StaMPS 

and the location of the pier in red circle. 

 

4.2 Infrastructure monitoring 

The PS 23, 24, 25, 26, 27, 28 and 29 show a clear trend of 

subsidence of the pier prior to the collapse (Figure 6). 

 

 

Figure 6. Details of the PS and their location in the Vigo Pier 

area. 

 

A trend comparison graph is generated with the PS inside the 

pier (23, 24, 25, 26, 27, 28 and 29) (Figure 7). 
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Figure 7. Relation between the PS obtained in the Pier and 

comparison over time before its collapse. 

 

Before the pier collapse in the festival of O Marisquiño (August 

12, 2018), the trend graph shows through the information points 

pier filtered (23, 24, 25, 26, 27, 28 and 29) a certain 

homogeneous subsidence trend, because on the dates of the 

analysis the evolution of the displacement passes approximately 

from +12 mm in the first shot (01/12/2014) to –5 mm in the last 

shot (06/08/2018) before the collapse.  

 

4.3 Predicting infrastructure displacement 

Although 23 images are enough to obtain results with the MT-

InSAR technique, it seem insufficient to be able to obtain 

consistent results for long future prediction projections, 

however for technical storage problems (it must be remembered 

that the MT-Insar process is computationally excessively 

expensive due to the weight of the images), it is decided to carry 

out an analysis capable of containing a long analysis period but 

reducing the number of satellite images to optimize the best 

possible computational resources available. The lack of a huge 

set of data makes the use of deep learning unfeasible, so classic 

machine learning techniques are chosen that are capable of 

giving predictions with less data. 

 

To carry out the predictive analysis, 60% of the PS of the pier 

are selected, prior to the collapse, and the remaining 40% of the 

PS is used as validation. 

 

For training with Support Vector Regression of 60% of the data 

(Figure 8), the value obtained as a prediction for the day of the 

collapse (August 12, 2018) is -10.02745702 mm/year, with a 

model precision of 0.8664182342003215. 

 

 

Figure 8. Training values and the generated model, Support 

Vector Regression. 

 

For training with Random Forest Regression of 60% of the data 

(Figure 9), the value obtained as a prediction for the day of the 

collapse (August 12, 2018) is -8.87695843 mm/year, with a 

model precision of 0.9019062465302864.  

 

 

Figure 9. Training values and the generated model, Random 

Forest Regression. 

 

Both generated models show a displacement value greater than 

8.8 mm/year (considered an extreme value) obtained for the day 

the pier collapsed. Likewise, since May 28, 2018, the registered 

displacements are above -5mm/year, which is already 

considered an extreme displacement. So, it is shown that the 

high rate of displacement speed for that day was predictable. 

 

4.4 Validation 

To check the accuracy of the results obtained by MT-InSAR, a 

comparison is made with the LIDAR (Laser Imaging Detection 

and Ranging) information available in the CNIG Download 

Web: 

http://centrodedescargas.cnig.es/CentroDescargas/buscadorCata

logo.do?codFamilia=LIDAR. The choice of LIDAR data 

responds to its free availability and its great spatial coverage, it 

also offers a high density of points, so it can reconstruct the 

surfaces and infrastructures of study, this makes it possible to 

measure the height of objects and as it varies over the years.  

 

For this purpose, the only existing data to date are used: LIDAR 

PNOA from 2011 (1st coverage) and 2015 (2nd coverage). In 

this situation, only LIDAR data from 2015 can be compared 

with Sentinel-1 data, since Sentinel-1 only begins to have data 

from 2014 and the analysis begins by the end of 2014. 

 

The error analysis is only carried out for the data that coincide 

in dates and location, for which a projection is made, in both 

data sets, to obtain the "theoretical" rates of deformation in the 

same period (2014-2015). 

Most of the coincident pixels between the two data sources 

show an error close to zero (Figure 10), so the MT-InSAR 

technique is validated as a useful and reliable tool for 

infrastructure monitoring. 
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Figure 10. Error value of the coincident pixels between the two 

data sources, with their UTM coordinates (WGS84 / UTM zone 

28N). 

 

The final result of the analysis shows that this type of 

monitoring is appropriate for infrastructure control since it 

produces a series of points with millimetre resolution. If there is 

subsidence, the recorded values will be negative, and positive if 

there is uplift. In addition, if it presents non-stable values 

(above +2 mm/year and below -2 mm/year), it is necessary to 

carry out a timely monitoring of the infrastructure affected by 

these values. It must be remembered that these values are 

always referred to the line of sight of the satellite (LOS) to the 

ground and not to the vertical or horizontal displacement (ΔΖ) 

(Figure 11). 

 

 
Figure 11. Relation between LOS and vertical displacement 

(ΔΖ). 

 

5. CONCLUSIONS 

The present work exhibits monitoring urban infrastructures, 

without large material costs, effectively and with consistent 

results by radar satellite images (Sentinel-1). In this sense, the 

use of Machine Learning represents a true revolution for 

disaster prediction and its use as a predictor of future 

infrastructure locations, being an ideal complement for 

decision-making for urban authorities. This predictive 

monitoring capable of anticipating risks is one of the objectives 

of the new urbanism focus on the resilience.  

 

It should be noted that, with the use of MT-InSAR millimetric 

displacements can be detected, but this does not mean that the 

results are the same as those obtained with other techniques 

such as the use of GPS, mobile mapping, etc. Because all the 

movements detected with MT-InSAR are relative, that is, the 

movement detected is referred to the satellite, so it is hard to 

make a comparison in terms of recording the same values, with 

other monitoring techniques. The comparison between 

techniques, therefore, allows to validate whether or not there is 

movement in the area, but does not allow the verification of 

whether the value of the displacement coincides. 

 

Therefore, this work achieved the detection of where the 

movements are located and if they are candidates for a more 

detailed study. Finally, this work supposes the confirmation of 

the use of radar satellite images, MT-InSAR and Machine 

Learning as a monitoring complement on infrastructures in the 

city as a model of good practices and to achieve a Smart City. 

This work shows the workflow for the prediction and location 

of extreme events.  

 

However, to obtain a much more robust analysis, it is important 

to carry out an analysis with a greater number of images that 

allow reducing the uncertainties in the results through Machine 

Learning. In this sense, the comparison with other works that 

use deep learning techniques is less computationally expensive 

but contains more uncertainties in its results, if it is compared 

with works where classic machine learning techniques are used, 

this work has the advantage of only using displacement 

information, without the need to create new layers of 

information that it is not possible to obtain in all geographical 

areas. 
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