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ABSTRACT: 

 

Present urbanization influences urban morphology by the increasing number of dense buildings and infrastructure, which effects 

climate change. Microclimate simulations including urban vegetation help in mitigating climate change. Most of existing microclimate 

simulations simplify trees and thereby may introduce some erroneous estimates. Tree models of high levels of detail (LOD) can provide 

a more accurate measure. Technology advances make it possible to reconstruct detailed tree models, which can be further used in 

microclimate simulations. However, the few studies presenting detailed tree models focus predominantly on the reconstruction process 

and omit the microclimate simulations. The objective of this study is to investigate high LOD tree models in microclimate simulation 

to estimate the potential gain in accuracy. This study focuses on voxel-based tree models and microclimate simulations using computer 

fluid dynamics software. A series of microclimate simulations are completed in two scenarios, which are single tree and a set of trees 

with buildings. Based on the simulation results, the advantages of detailed voxel tree models are demonstrated. Final discussion 

elaborates on the needed and preferred levels of detail for tree models. 

 

 

1. INTRODUCTION 

With increasing urbanization, densely built-up fabrics and 

infrastructure, artificial surfaces with high surface varieties 

characterize the urban morphology (Chorianopoulos et al., 2010; 

Stewart, Oke, 2012). Such changes of urban morphology 

contribute to the climate change in many ways, for example, 

increasing energy and water use, provide unsatisfactory indoor 

and outdoor thermal comfort, which lead to decreased health 

conditions and wellbeing (Barati, Shen, 2016; Wang et al., 2019). 

Increasing green infrastructures is one of the measures taken for 

counteracting the climate change due to their ability of regulating 

the microclimate (De Carvalho, Szlafsztein, 2019). Urban 

vegetation reduces the sun radiation absorbed by buildings and 

grounds, cools the air and ground temperature through the 

evaporation and considerably modifies the wind field in urban 

areas. 

 

Microclimate simulations are crucial to analysing and predicting 

urban morphology and provide estimates for the level of climate 

change. They offer urban planners a better understanding of local 

climate conditions and predict the possible change brought by the 

planned measures (Yang et al., 2020). The accuracy of the 

simulations affects subsequent decision-making in urban 

planning. Generally, microclimate simulations involve urban 

vegetation for the better prediction and the optimization of 

planting patterns. In most of existing microclimate simulations, 

trees are usually represented by simple shapes (e.g., circular 

shapes) with several approximate parameters (e.g., LAD, height, 

crown radius, view factors, etc.) (Xu et al., 2021a). This kind of 

simplification seeks for a balance between resolution and 

performance. However, more details, such as trees’ geometric 

features, physiological characteristics and the relation to the 

surroundings are needed for a comprehensive analysis of 
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microclimate (Xu et al., 2021a). The used approximations in 

simplified tree models cause inaccuracy of the simulation results.  

 

Recent years have seen the sophistications of information and 

communication technology, ubiquitous technologies, and the 

Internet of Thing (Chourabi et al., 2012; Meng et al., 2021; Pan 

et al., 2021; Shirowzhan et al., 2017; Wang et al., 2021a; Xu et 

al., 2021b). In that case, some advanced concepts such as Digital 

Twin and Smart City emerge. They offer means to create and 

maintain realistic digital city models. Light Detection and 

Ranging (LiDAR) or photogrammetry offers point clouds with 

reliable spatial information for a wide range of built environment 

applications already (Sepasgozar et al., 2016; Wang et al., 2020a; 

Wang et al., 2021b; Xu et al., 2021c). Supported by advanced 

technology, now it is possible to reconstruct 3D realistic tree 

models from point clouds (Barton et al., 2020; Boufidou et al., 

2011; Eusuf et al., 2020; Homainejad et al., 2022; Wang et al., 

2020b). The reconstructed tree models have accurate height and 

width of canopy compared to those represented by simple shapes. 

Furthermore, the reconstructed tree models have the realistic 

canopy morphology which preserves more details of the crown 

(Chakraborty et al., 2019; Janoutová et al., 2019). Adopting 

detailed tree models into microclimate simulations will increase 

the accuracy and will help to specific and definitive decision-

makings on urban management or planning. 

 

However, including realistic tree models in microclimate 

simulations costs significantly more time and computational 

power. Besides, the computational effort and requirement of raw 

point clouds differ in terms of the reconstruction approach and 

the LOD of reconstructed tree models. Extensive literature 

review shows that currently only few studies have applied 

detailed tree models in microclimate simulations. Currently, it is 

unknown by what degree the simulation accuracy has been 

improved by increasing the LOD of tree models. If the tree 
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models are too detailed, it may increase too much the 

computational effort for a neglectable improvement. On the other 

hand, if tree models are overly simplified, the simulation results 

may deviate far away from the reality. Therefore, a balance of 

LOD of tree models and the desired accuracy of simulation 

results needs to be found. 

 

The objective of this study is to adopt detailed tree models for 

microclimate simulations. Specifically, we evaluate the impact of 

high LOD tree models, with a relatively complex canopy 

morphology, on the accuracy of microclimate simulations. The 

paper starts by defining circumstances in which detailed tree 

models are needed. It delineates the trees’ impact is significant 

and sensitive to the LOD of tree models. Then the paper 

compares the simulations using detailed tree models and 

simplified tree models respectively. Finally, this study also 

discusses how to simplify trees.  

 

2. EXPERIMENTAL SETUP AND WORKFLOW 

This study aims to assess the potential need of adopting LOD 3 

trees in microclimate simulations. Hence, the necessity of LOD 

3 trees is evaluated through the comparison between LOD 2 trees, 

which are commonly used in existing simulations. Two 

assumptions are introduced: 1) The LOD 3 trees are 

reconstructed from point clouds of real trees, which are more 

accurate representation of real trees than simplified and 

hypothetic tree models. 2) The LOD3 trees results in equal or 

more accurate simulation results. Therefore, this study focuses on 

examining how much difference LOD3 model will give in 

comparison with the LOD2 model. While this paper does not 

provide validation of the LOD3 model by actual microclimate 

data, it draws conclusions on whether higher LOD level of tree 

models can make significant difference in microclimate 

simulation, especially, for a relatively small precinct area. 

 

Two environmental scenarios are considered: Scenario A and 

Scenario B. Scenario A represents an individual tree without 

other urban objects. It is designed to explore the effect of the 

LOD of individual tree. By contrast, Scenario B is designed to 

evaluate a more realistic situation, i.e., a set of trees with 

buildings.  

 

Figure 1 illustrates the two scenarios. Scenario A (Figure 1 a), 

occupies a 100m×100m×30m space, while Scenario B (Figure 1 

b) covers a 170m×80m×40m space. The ground surface is set to 

asphalt road and the buildings are assumed to be built by cast 

dense concrete. The surface and building materials used are given 

with their default values in the simulation software. Series of 

simulations for both scenarios are performed. 

 

2.1 Experimental Setup 

Nine different trees are created using voxels of 1×1×1 m. This 

size was imposed by the simulation software. The trees have 

different dimension and representation, while the other 

parameters, needed for the simulation, remain constant, as listed 

in Table 1. The tree LOD are based on the refined definition of 

vegetation LOD as given in (Ortega-Córdova, 2018). LOD 2 

trees are pre-made models that have a regular shape and are not 

acquired from the reality. They can reflect the genus or species 

form and are scaled in height and width. By contrast, LOD 3 trees 

are defined to be acquired based on real-world objects, point 

cloud based and have an irregular shape or form.  

 

Five trees are manually created, as shown in Figure 2. They all 

model a Eucalyptus, one of the common street tree species in 

Australia, with different canopy geometries. For convenience, 

these canopy geometry types are labelled as Types 1 – 5. Type 1 

tree is assumed as a realistic voxel-based LOD 3 model acquired 

from point clouds. It has irregular canopy morphology with gaps 

in the crown. While Types 2 – 5 trees are the LOD 2 models 

represented by regular shapes (cylinder, sphere, cone and 

inverted cone) and describe in-crown structure little.  

 

Settings Value 

CO2 fixation C3 

Leaf type Deciduous leaf 

Leaf area density in each 3D grid 1m2/m3 

Foliage shortwave albedo 0.18 

Foliage shortwave transmittance 0.30 

Leaf weight 100g/m2 

Isoprene Capacity 12 

 

Table 1. Generic and constant tree settings. 

 

 
 

Figure 1. Layouts of Scenario a) A and b) B. 

 

 
 

Figure 2. Five trees used in the microclimate simulations. 

 

Table 2 lists the 12 cases and tree parameters used. In some cases, 

LOD 2 and LOD 3 trees have same dimension. This might be no 

always the case, because both LOD 2 and LOD 3 are 

approximations. Consequently, errors in trees’ dimensions are 

unavoidable. However, we assume that trees of different LOD 

can have the same size and height. This makes the conclusions 
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conservative because greater differences between trees of 

different LODs cause larger error in simulations. Grouping of 

cases and their corresponding objectives are listed in Table 3. The 

10 cases are organised into 3 groups for comparison in Scenario 

A. The case comparisons in each Group are explained below and 

visually illustrated in Figure 3: 

 

(1) In Group 1, Cases A1 – A4 are compared to Case A0 to show 

the difference in microclimate before and after planting a tree. 

Case A0 has no trees while Cases A1 – A4 have a single cylinder-

represented tree. 

 

(2) Cases A4 and A6 are compared in terms of the disparity with 

Case A5 in Group 2. Cases A4 and A6 both have simplified 

cylinder-represented tree. What makes a difference is that the tree 

in Case A4 has the same diameter as Case A5, while the tree in 

Case A6 has the same volume as Case A5.  

 

(3) Cases A4, A5 and A7 – A9 are included in Group 3. They all 

use the trees of the same dimension. Case A5 adopts the LOD 3 

tree, while Cases A4 and A7 – A9 adopt the LOD 2 trees 

represented by different shapes (see Type 2 – Type 5 listed in 

Figure 2). Cases A4 and A7 – A9 are compared to Case A5 to 

assess the performance of LOD 3 tree. They are also compared 

to themselves to assess the performance of different 

simplification shapes.  

 

 
 

Figure 3. Visual illustration of tree models in each group. 

 

There are two cases, Cases B1 and B2 that are used for Scenario 

B. Instead of adopting 4 LOD 2 trees in Scenario B, Case B1 uses 

cylinder-represented trees as a proxy. By contrast, Case B2 

adopts LOD 3 trees of the same dimension. 

 

2.2 Assessment Criteria 

Microclimate is complex to assess and many factors should be 

considered such as air temperature, mean radiation temperature, 

wind speed, relatively humidity, etc. In this study, Physiological 

equivalent temperature (PET) is used to assess the microclimate 

synthetically. PET is a single index that quantifying the thermal 

effect of a given microclimate (Deb, Ramachandraiah, 2011). It 

expresses the environment in terms of indoor temperature 

without wind and solar radiation, which gives a more intuitive 

and easy impression of microclimate for people to imagine with 

their common experience. The PET is calculated with respect to 

a male who stands 1.75 m tall and the PET at 1.5m above the 

ground, where the PET change can be felt, is recorded as a 

comparison indicator. 

 

Case 

Trees parameters 

Canopy 

geometry 

type 

LOD 

Canopy 

top height 

(m) 

Canopy 

base height 

(m) 

Canopy 

diameter 

(m) 

A0 No trees / / / / 

A5, B2 1 3 20 5 21 

A1 2 2 5 1 5 

A2 2 2 10 3 11 

A3 2 2 15 4 15 

A6 2 2 20 5 13 

A4, B1 2 2 20 5 21 

A7 3 2 20 5 21 

A8 4 2 20 5 21 

A9 5 2 20 5 21 

 

Table 2. Trees parameters in each case. 

 

Scenario Group Cases Objective 

A 1 A0 – A4 Identify the general range of 

individual tree’s impact. 

 2 A4 – A6 Retain diameter or volume in LOD 

2 trees. 

 3 A4, A5 

& 

A7 – A9 

Compare LOD 2 trees represented 

by different regular shapes. 

Compare LOD 2 and LOD 3 

individual tree. 

B / B1 & B2 Identify the general range of 

clustered trees’ impact. 

Compare a set of LOD 2 and LOD 3 

trees. 

 

Table 3. Case comparison in each Group and corresponding 

objectives. 

 

The term thermal sensitivity is used to assess the PET change. It 

is defined as the occupant’s sensitivity to changes in indoor 

temperature (Rupp et al., 2022). It quantifies the change in the 

thermal sensation of occupants in response to per unit of room 

temperature change (℃-1). Thermal sensitivity is related to many 

factors (e.g., building occupancy type and location, etc.) and 

therefore hard to determine. As a compromise, it is taken as a 

constant value of 0.5°C-1, called Griffiths Constant. Griffiths 

Constant is based on both the SCATS and ASHRAE RP-884 

databases (Humphreys et al., 2013) and has been widely used in 

thermal comfort studies. It means 2°C change in indoor 

temperature changes 1 unit in the thermal sensation scale. The 

common thermal sensation scales are listed in Table 4. Based on 
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the Griffiths Constant, an assessment criterion is customized to 

assess the PET change as listed in Table 5. 

Thermal 

sensation scale 

ASHRAE scale Bedford scale 

3 Hot Much too warm 

2 Warm Too warm 

1 Slightly warm Comfortably warm 

0 Neutral Comfortable 

-1 Slightly cool Comfortably cool 

-2 Cool Too cool 

-3 Cold Much too cold 

 

Table 4. Common thermal sensation scales used in comfort 

research. 

 

PET change (℃) Assessment 

−1 < ∆PET < 1 Slight 

−2 ≤ ∆PET < −1 or 1 < ∆PET < 2 Intermediate 

∆PET ≥ 2 or ∆PET ≤ −2 Significant 

 

Table 5. Assessment criterion for PET change. 

 

2.3 Simulation Software  

All microclimate simulations are conducted on a computer with 

32 GB of RAM and an Intel (R) Core (TM) i9 – 10850K CPU. A 

commercial software ENVI-met 4.4.6 is used to complete the 

simulations. The software uses Computational Fluid Dynamic 

(CFD) model to simulate urban thermal environment 

characteristics (Bruse, Fleer, 1998). It simulates the surface-

vegetation-atmosphere interactions and has relative well-

conceived vegetation sub-models. It is considered as a helpful 

tool for urban climate analysis which is receiving increasing 

popularity in urban mid-scale microclimate simulation (Tsoka et 

al., 2018). 

 

The simulations are done for a summer day in Sydney, 14th Jan. 

The meteorological data refers to climate data developed for the 

Australia Greenhouse Office for use in complying with Building 

Code of Australia (U.S. Department of Energy, 2022). The 

simulation period is set from 8:00 to 16:00, where the max sun 

radiation and wind speed are included. The time zone is set in the 

UTC/GMT+10 and the corresponding sunrise and sunset times 

automatically generated are 5:00 and 17:00 respectively. The sun 

radiation, wind speed and wind direction at 8:00, 12:00 and 16:00 

are listed in Table 6.  

 

Time 8:00 12:00 16:00 

Direct sun radiation (W/m2) 967.92 735.09 565.55 

Diffuse sun radiation (W/m2) 124.00 220.50 119.00 

Wind speed (m/s) 0 3.9 4.7 

Wind direction (°) 0 45 45 

 

Table 6. Meteorological data at specific times. 

 

3. SIMULATION RESULTS FROM SCENARIO A 

In this section, Cases A0 – A9 are compared as explained in 

Section 2.1 to estimate the effect of a single tree of different 

parameters. 

 

3.1 Impact of trees 

Table 7 illustrates the PET of Cases A1 – A4 subtracted from 

Case A0. The comparison between Cases A4 and A0 are given in 

the second row as an example. Significant PET changes can be 

observed in the zone near the trees, marked by dark blue and light 

purple. For most of the zone, the PET drops significantly by more 

than 2°C, with a small percentage under the canopy rising by 

more than 2°C. In the rest of the space, the change in PET is only 

slight or intermediate within ±2°C. This zone is, hence, identified 

as the impact zone. The minimum PET change is seen at 8:00, 

when the tree reduces the PET by 21.35°C.  

 

The range of the impact zone is given by two indicators, a and b, 

to describe its length and width respectively. The indicator a is 

the distance from the farthest end of the impact zone to the center 

of the tree along the extension direction of the impact zone. The 

indicator b is the widest distance perpendicular to this direction.  

 

Time Result of Case A4 Case A1 A2 A3 A4 

8:00 

 

a (m) 9 19 29 39 

b (m) 5 11 15 22 

12:00 

 

a (m) 4 8 11 16 

b (m) 5 10 14 21 

16:00 

 

a (m) 5 14 23 32 

b (m) 5 10 16 21 

Legend 

 

 

Table 7. PET of Cases A1 – A4 subtracted from Case A0. 

 

The impact zone depends on the tree dimension. Table 7 shows a 

clear relationship between a and the tree height. At 8:00 and 

16:00, a usually equals twice the tree height while at 12:00, a is 

slightly larger than the tree diameter. During the whole 

simulation period, b always coincides with the diameter of the 

tree approximately. Besides, the impact zone is dynamic with the 

change of environment. Case A4 illustrates that the impact zone 

takes up relatively large chunks of space at 8:00 and 16:00. By 

contrast, it just occupies a circle slightly larger than the canopy 

at 12:00. It can be seen in all Cases A1 – A4 the impact zone 

shifts from west to east, changing its range. 

 

Since PET is a combination of air temperature and wind speed, 

the generation of the impact zone can be explained from these 
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two parts. The impact zone usually reflects the projection of the 

tree in the sunlight, where the air temperature is considerably 

reduced because the canopy blocks the sun radiation. This makes 

it change with the sun height and sun altitude angle. On the other 

hand, the impact zone may be slightly modified due to the change 

of wind speed. However, as shown in Table 7, their generation is 

dominated by sunlight incidence. Particularly at 16:00 when the 

wind blows from the northeast and the sun is in the west, the 

impact zone lies to the east of the tree.  

 

In conclusion, the impact zone can be visually perceived as the 

shadow of the tree. It extends to twice the tree height on both the 

east and the west sides in the morning and afternoon. While at 

noon, it is slighter larger than the canopy at noon.  

 

3.2 Comparison in Group 2  

Figure 4 illustrates the results from cases A4 and A6 to Case A5. 

Due to the space limit, only the result at 8:00 is given to show the 

maximum difference in simulation results. Compared to Case A5, 

the geometry of the tree in Case A4 is a cylinder with the same 

diameter but larger volume. Cases A6 considers a tree which 

retains the volume of the tree but having a smaller diameter. This 

simplification reveals a significant PET change over ±2℃, which 

can be seen in most of the impact zone of both Cases A4 and A6. 

By contrast, out of the impact zone, replacing LOD 2 trees with 

LOD 3 trees only causes a PET difference within ±2°C. The PET 

change, which does not reach a significant level, is seen in each 

group and will not be repeated in the following discussion. 

 

 
 

Figure 4. PET of Cases a) A4 and b) A6 subtracted from Case 

A5. 

 

Time 8:00 12:00 16:00 

Case a (m) b (m) a (m) b (m) a (m) b (m) 

A5 38 23 15 21 33 21 

A4 39 22 16 21 32 21 

A6 34 15 11 13 29 13 

 

Table 8. Rang of the impact zone of Cases A4 – A6. 

 

Although both cases introduce noticeable PET difference, Case 

A4 performs better than Case A6. Table 8 lists a and b describing 

the range of the impact zones in Cases A4 – A6. It is seen that the 

impact zones in Cases A4 and A5 have similar range, while the 

one in Case A6 is narrower because of the smaller tree diameter. 

That explains the significant increase in PET on the edge of the 

impact zone in Figure 4 b. Therefore, it can be concluded that 

errors are unavoidable if using LOD 2 trees. But keeping the 

diameter and height of the tree accurate enables the simulation of 

a more accurate impact zone. 

 

3.3 Comparison in Group 3 

Figure 5 demonstrates the comparison of Cases A4, A7 – A9 to 

Case A5 at 8:00, when the PET difference is the most noticeable. 

A considerable PET difference can be seen in all cases. Most of 

the impact zones have a PET difference above 4℃ or below -4℃, 

which is marked by light purple and dark blue respectively. The 

minimum PET difference drops to -20.91℃ and the maximum 

PET difference reaches up to 20.77℃. This is due to the different 

canopy geometry of LOD 2 (i.e., Types 2 – 5 trees) and LOD 3 

trees (i.e., Type 1 tree), resulting in the inconsistency of the 

impact zone range. Consequently, there are locally significant 

PET differences in the impact zone. 

 

 
 

Figure 5. PET of a) Case A4, b) A7, c) A8 and d) A9 subtracted 

from Case A5 at 8:00. 

 

Table 9 lists the PET of Cases A4 and A7 – A9 subtracted from 

Case A5 at 8:00, 12:00 and 16:00. The PET differences are 

significant and similar among cases. As a result, it is hard to 

determine which type of representation of the LOD 2 tree is 

superior. In Table 9, there is a trend that the PET difference 

reaches the minimum at noon from the maximum in the morning. 

However, it increases again in the evening. This means the PET 

difference is influenced by both the sun radiation and the range 

of the impact zone. The reduction in PET difference is because 

of the decrease in sun radiation. 

 

Time 8:00 12:00 16:00 

Case Min △
PET (℃) 

Max △
PET (℃) 

Min △
PET (℃) 

Max △
PET (℃) 

Min △
PET (℃) 

Max △
PET (℃) 

A4 -20.91 15.14 -4.49 3.42 -7.41 5.45 

A7 -20.11 20.77 -3.89 3.62 -7.24 6.55 

A8 -19.54 20.71 -3.56 3.68 -7.41 6.64 

A9 -20.81 20.16 -3.82 3.62 -7.15 6.43 

 

Table 9. Minimum and maximum PET difference of Case A4 

and A7 – A9 compared to Case A5 at 8:00, 12:00 and 16:00. 

 

The sun radiation, as listed in Table 6, keeps decreasing during 

the whole simulation time. Therefore, the PET difference is 
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smaller at 12:00 and 16:00 than at 8:00. On the other hand, the 

increase in PET difference from 12:00 and 16:00 can be 

explained by the increase in the range of the impact zone. As 

shown in Table 8, the impact zone is larger at 16:00 than at 12:00. 

As a result, the range of the impact zone differs greater from case 

to case, which amplifies the PET difference. 

 

To summarize, the adoption of the LOD 2 tree introduces errors. 

These errors cannot be reduced by changing the parameters of the 

tree. By contrast, LOD 3 tree is able to give a more accurate 

simulation result. Its irregular canopy morphology with gaps 

allows to simulate a more exact impact zone with inhomogeneous 

distribution of PET.  

 

4. SIMULATION RESULTS FROM SCENARIO B 

In this section, Cases B1 and B2 are compared. According to the 

basic findings in Section 3, it is important to ensure that the 

diameter and height of LOD 2 trees are accurate. And 4 types of 

LOD 2 trees, i.e., Types 2 – 5 trees, introduce similarly errors. 

Therefore, in this section, Case B1 uses Type 2 tree, i.e., cylinder-

represented, to be the proxy of the simulations using LOD 2 trees. 

Case B2 uses Type 1 tree, i.e., LOD 3, with the tree parameters 

as given in Table 2. The five trees in each case have the same 

properties.  

 

Figure 6 demonstrates the simulation result of Case B2. The 

impact zone generated in Scenario B can be seen as the 

aggregation of multiple trees acting individually. Therefore, the 

impact zone extends to twice the tree height from the center of 

the tree farthest from the sun. Its range still depends on the sun 

height, sun altitude angle and wind direction. As a result, the 

impact zone is large at 8:00 and 16:00, but narrow at 12:00, 

shifting from west to east from morning to evening. Compared to 

the Scenario A, the PET differences are more noticeable at two 

ends and the edge of the impact zone in Scenario B. This is 

because the trees planted together fill the gaps in their neighbours’ 

canopies. 

 

Figure 7 illustrates the PET of Case B2 subtracted from Case B1. 

As we assume that it leads to a more accurate simulation with 

LOD 3 trees, the PET difference between Cases B2 and B1 shows 

the advantages of LOD 3 trees in potential gains in accuracy. 

There are significant PET differences above 4℃ or under -4℃ at 

a large percent of the impact zone, which is marked by blue and 

purple. The minimum and maximum PET differences are -24.42℃ 

and 11.66℃ respectively, which occurs at 8:00 when the sun 

radiation is intense. Although the PET difference is lower at 

12:00 and 16:00, but they are still over 2℃ or below -2℃, which 

are at the significant level that causes a gap in thermal comfort. 

It can be concluded that LOD 3 trees are capable of delineating 

the impact zones and the simulating irregular distributed PET 

within impact zones, thereby improving the accuracy. In 

comparison, the PET difference out of the impact zone is 

intermediate or slight, between -2 – 1°C. This indicates that even 

when trees are planted in a set, replacing LOD 2 trees with LOD 

3 trees still causes limited difference out of the impact zone. 

  

Replacing LOD 2 trees with LOD 3 trees increases the 

complexity of the entire simulation. However, the difference 

between simulation times of the two cases is small, as listed in 

Table 10. This is because every voxel in the space is involved in 

the calculation during simulation in ENVI-met, regardless of how 

complex trees are. Therefore, applying LOD 3 trees does not cost 

too much extra computational effort, at least in ENVI-met. This 

conclusion may be extended to the CFD models represented by 

ENVI-met. In addition, it is reasonable to infer that this 

conclusion applies to simulations on larger areas. The 

simulations for Scenario B cover a relatively small area. They 

focus on the trees’ impact on individual buildings or a particular 

precinct. In this case, small voxel size is commonly used, which 

leads to sufficient voxel numbers filling the space. By contrast, 

the microclimate simulations on large areas focus on getting a 

general picture of the entire areas. Hence, larger voxel sizes are 

usually adopted to control the number of voxels, which results in 

trees being certainly simplified. Eventually, the number of voxels 

in the simulations on larger areas may be similar to the 

simulations for Scenario B. 

 

Case Initialization 

time 

Main program 

run time 

Total simulation 

time 

Case B5 5h 49min 43s 81h 55min 44s 87h 45min 27s 

Case B6 6h 3min 39s 81h 17min 7s 87h 20min 46s 

 

Table 10. Simulation time of Case B5 and Case B6. 

 

5. CONCLUSIONS AND LIMITATIONS 

This study presents a series of microclimate simulations to 

evaluate the performance of various trees. Two scenarios are 

considered: one with a single tree and the other several trees next 

to a building. The results of the simulations allow to conclude on 

the needed tree details. Trees usually have a greater impact on the 

zones close to them. Therefore, these zones are referred as to the 

impact zones. On sunny summer days with intense solar radiation 

and high sun altitude angle, trees’ impact zones can be clearly 

identified as being the tree shadows. Under such meteorological 

conditions, the impact zones reach as far as twice the trees’ height 

from the center of trees at morning and afternoon, while is 

confined to the space a bit larger than canopy coverages at noon.  

 

With LOD 2 and LOD 3 trees, the simulation results have 

negligible differences out of the impact zone. When assessing the 

microclimate global rather than for a local space, adopting LOD 

2 trees can provide a valuable reference. However, whether it is 

reliable needs the validation with real data. When adopting LOD 

2 trees, it is important to ensure the diameter and height of trees 

are consistent with the reality. This guarantees the accurate range 

of the impact zones. Although LOD 2 trees can be represented by 

different shapes, they still cannot describe the irregular canopy 

geometry and complex in-crown structure. Consequently, the 

error resulted is usually unavoidable. 

 

When the microclimate in the impact zones needs to be 

accurately simulated, LOD 2 and LOD 3 trees lead to significant 

different results. Such circumstances may include predicting the 

energy use of buildings near trees and finding out the thermal 

comfort of pedestrians in the tree shade or the building occupants 

(Wang, Zamri, 2013). In these circumstances, more detailed tree 

models are required. Compared to LOD 2 trees, LOD 3 trees have 

accurate canopy morphology with detailed in-crown structure. 

Their detailed mode allows to simulate the inhomogeneous 

distribution of PET in the impact zones. Besides, little additional 

time is required when replacing LOD 2 trees with LOD 3 tree s 

in CFD models. This is because CFD models calculate every 

voxel of trees during simulation, even they are represented by 

regular shapes. On balance, adopting LOD 3 trees improves the 

simulation accuracy significantly and cost little extra time. Hence, 

LOD 3 trees are recommendable as long as it takes acceptable 

time to reconstruct them. 
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Figure 6. PET of Case B2 at a) 8:00, b) 12:00 and c) 16:00. 

 

 
 

Figure 7. PET of Case B2 subtracted from Case B1 at a) 8:00, 

b) 12:00 and c) 16:00. 

 

There are several points for further investigations. First, all 

microclimate simulations are done in a specific software, i.e., 

ENVI-met. The smallest voxel size of trees allowed in the 

software is 1m3. The LOD 3 trees with smaller voxel size may 

have more difference with LOD 2 trees and lead greater gains in 

accuracy. However, even with the current voxel size, the 

simulations of a 170m×80m×40m urban environment are already 

time consuming, requiring more than 87 hours. Using more 

powerful computers may reduce the simulation time. However, 

the simulations with smaller voxel size will require excessive 

computational effort and thus will become less practical. 

 

This study models the daytime during summer, which makes the 

conclusions time- and place-specific. Future research could be on 

extending the climatic conditions to cloudy days or winter days 

and simulating various regions to get more general conclusions. 

 

In addition, this study only considers the visual change of trees. 

It does not take trees’ physiological characteristics (e.g., leaf area 

density, foliage shortwave albedo and foliage shortwave 

transmittance, etc.) into account. For example, if trees’ LAD is 

not 1.0m2/m3, the conclusion may be changed. Besides, LOD 3 

trees are supposed to have more accurate physiological 

characteristics than LOD 2 trees do.  

 

In future work, a sensitivity study of microclimate to trees’ 

physiological characteristics will be conducted to enhance the 

comments on reconstructed trees. Furthermore, LOD 3 trees will 

be reconstructed from LiDAR point clouds. The microclimate 

data will also be collected by on-site installed sensors. The 

microclimate simulation results using reconstructed LOD3 

models based on laser scanning will be compared with real data 

for validation. 
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