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ABSTRACT:

With COVID-19’s prevalence and government efforts to curb its spread, urban travel behaviour has significantly altered, resulting
in a significant shift in traffic congestion. Rather than predicting traffic congestion based on historical data, we aim to model the
correlation between travel behaviour and external mobility-related urban features and use Dublin in Ireland as a case study. This
study incorporates four categories of urban data, including 1) Mobility-based features, including the government’s interventions and
mobility pattern changes in different locations, 2) Environmental features such as weather and urban street-waste, 3) COVID-19-
related features such as the positivity and vaccination rates, and 4) Time-related features such as public holidays. First, we examine
the impact of COVID-19 on traffic congestion and street-waste to understand the city’s dynamic. Then, multiple machine learning
(ML) models, such as random forests, support vector regression, light gradient boosting machine, and multiple linear regression are
trained, and their performance optimized to predict traffic congestion changes. We compare the outcomes of the models with several
evaluation metrics and interpret the best performing model. The results indicate that mobility changes in grocery and pharmacy,
retail and recreation, workplaces sectors, and the amount of urban street-waste significantly contribute to the model outcomes.
Findings could predict traffic dynamics in times of crisis and allow authorities to comprehend the effects of their intervention
measures on mobility, which would ultimately benefit developing smart cities and intelligent transportation systems.

1. INTRODUCTION

The COVID-19 coronavirus has spread globally with more than
410 million confirmed cases and more than 5.80 million deaths
as of February 12, 2022, according to WHO data1. Human mo-
bility is one of the main reasons for the rapid spread of COVID-
19, which has been dramatically affected by government non-
pharmaceutical interventions (NPIs) aimed at limiting social
and economic activities. At the end of March 2020, around 50%
of global road transport activities were below the 2019 average,
and 75% of commercial flight activity was below the 2019 aver-
age by mid-April 2020 (Sung and Monschauer, 2020). During
COVID-19, many people have started taking their cars, electric
scooters, and bicycles instead of public transportation2, which
all resulted in a reduction in services provided by transportation
systems. On top of this, many companies have resorted to re-
mote working, and many places have shortened their opening
hours, all of which have caused drastic changes in travel beha-
viour. The concept of traffic congestion, defined by a prolonged
travel time compared to free-flowing traffic, is fundamental for
urban planners to ensure a stable transportation system. Urban
planners manage real-time traffic better by reducing conges-
tion, controlling traffic lights, guiding routes to reduce traffic
congestion, and rescheduling public transportation services. At
the same time, taxi drivers and ride-sharing companies can plan
their services more efficiently. Therefore, in this paper, we ex-
amine the problem of unexpected changes in traffic congestion
patterns and propose an approach that incorporates human mo-
bility characteristics into forecasting algorithms. Dublin, in Ire-
land, is used as a case study.
∗ Corresponding author
1 https://covid19.who.int/
2 https://www.tomtom.com/en gb/traffic-index/

TomTom Traffic Index (TomTom, 2021), which measures his-
torical and near-real-time traffic congestion levels, is one way
to measure changes. This is an index that captures the extra
amount of time that drivers are experiencing on the road. Dub-
lin ranks 35th in the list of countries with the most traffic con-
gestion. In Dublin, the congestion level in 2019 was 48%; in
2020 and 2021, it decreased to 38% and 36%, respectively. Ac-
cording to TomTom’s definition, a 36% congestion level means
travelers spent 36% longer travel time compared to an non-
congested period. In January and February of 2019, traffic
congestion in Dublin was around 46%; this figure increased to
50% in respective months in 2020; however, it declined to 38%
in March 2020 following the COVID-19 pandemic. These fig-
ures continued to decline in 2020, with an average decrease of
30% and 27% in April and May, respectively 3. According to
these numbers, COVID-19 became such a significant threat in
the second quarter of 2020 that the world and Dublin city began
to shut down, and the traffic patterns shifted to unanticipated
levels. Fig. 1 depicts the traffic congestion in Dublin on Fridays
before the first confirmed case of COVID-19 in Ireland and after
the government’s first stay-at-home order on March 27, 2020.
It can be seen that March experienced an unprecedented level
of traffic congestion. The unpredictable changes in traffic con-
gestion make traffic forecasting a challenging task, as most of
the current algorithms rely heavily on the previous values and
are incapable of predicting these changes. A Black Swan is a
term used by Taleb (2007) to describe such events that occur
unexpectedly, have significant consequences, and can only be
fully understood after hindsight has been gained. Consequently,
predictions that rely solely on previous values will have a sig-

3 https://www.tomtom.com/en gb/traffic-index/dublin-tra

ffic#statistics
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Figure 1. Traffic congestion in Dublin on Fridays before and 
after the first COVID-19 confirmed case in Ireland and the first 
stay-at-home order issued by the Irish government.

nificant forecasting error, and stationary statistical models are 
not appropriate in the presence of such anomalies. This en-
courages us to incorporate human-mobility-related features to 
capture human behaviour from different perspectives to predict 
future traffic congestion b etter. Understanding and predicting 
traffic c ongestion p atterns i s e ssential t o m anaging a nd con-
trolling non-recurrent traffic conditions during the COVID-19 
pandemic, which can assist urban planners with future emer-
gencies and pandemics.

Artificial Intelligence (AI) and the ability to store big spatiotem-
poral (ST) data are revolutionizing traffic s tudies. These devel-
opments are now being integrated into Intelligent Transporta-
tion Systems (ITS) to predict how people move and how this 
can affect traffic c ongestion. Predictions are often made using 
statistics and ML. Most statistical models are mathematically 
based, yet they struggle when faced with complex or nonlinear 
data (Karlaftis and Vlahogianni, 2011). By contrast, ML can 
handle vast amounts of data, has a flexible modelling capabil-
ity, can generalize and adapt, and are generally good at predic-
tion tasks (Karlaftis and Vlahogianni, 2011). In this study, we 
used four widely used ML models in traffic s tudies ( Qiu and 
Fan, 2021; Zhang et al., 2018; Bratsas et al., 2020): Multiple 
Linear Regression (MLR), Random Forest (RF), Light Gradi-
ent Boosting (LGBM), and Support Vector Machine (SVR) to 
predict traffic congestion in Dublin city during COVID-19.

1.1 Contributions

Our approach incorporates novel features such as COVID-19-
related features, mobility-based features, and urban street-waste 
features along with typical features such as weather and timing 
to improve traffic congestion prediction during this unpreced-
ented situation. We also compared the results of all ML mod-
els using five evaluation metrics. We chose the best performing 
model based on the results of the five-fold cross-validation eval-
uation metrics. Finally, to produce an explainable ML model, 
we choose the best model and analyses the importance of the 
features based on SHapley Additive Explanations (SHAP). This 
work has the following main contributions:

• A detailed analysis of the impact of COVID-19 on Irish
society by analyzing the relationship between human mo-
bility and human travel behaviors.

• Exploring a key issue of urban computing: understand-
ing traffic congestion based on ubiquitous urban data rep-
resenting human movement and daily activities during the
COVID-19 pandemic.

• Considering human mobility changes, NPIs, and street-
waste for the first time as complementary features for
traffic congestion prediction during the COVID-19.

• Developing an explainable ML model that explains the
contribution of the novel features to the ML traffic con-
gestion outcomes.

2. RELATED WORK

In the early stage of traffic studies, statistical methods, includ-
ing time series models such as auto-regressive integrated mov-
ing average (ARIMA)- based models (Yu and Zhang, 2004),
and Kalman filtering theory (Xie et al., 2007), Hidden Markov-
based models (Qiao et al., 2018) were commonly used. Most of
these methods assume linearity and stationary behaviour, which
encourages researchers to use ML models to deal with traffic
data that are nonlinear, dynamic, and contain spatiotemporal
dependencies. Supervised ML approaches such as Support Vec-
tor Machine (SVM) (Zhang et al., 2018; Bratsas et al., 2020),
Random Forest (Qiu and Fan, 2021; Bratsas et al., 2020), and
Gradient Boost algorithms (Toan and Truong, 2021) are repres-
entative models used in urban traffic studies. In the following,
we review state of the art and categorize the literature on traffic
congestion before and after the COVID-19 outbreak.

Traffic congestion before COVID-19: Data on traffic
sensors (Yang, 2013; Yu et al., 2017), taxis’ GPS (Ma et al.,
2015; Mridha et al., 2017) and social networking platforms are
among the most commonly used variables for traffic studies.
For traffic congestion prediction, Yang (2013) used the feature
selection method was used to reduce the dimensionality of his-
torical traffic sensor data and trained the probability-based scor-
ing. Ma et al. (2015) gathered speed data collected from taxis’
GPS and trained a deep Restricted Boltzmann Machine and
Recurrent Neural Network architecture to reduce the high di-
mensionality. Yu et al. (2017) applied spatiotemporal recurrent
convolutional networks based on sampling network-wide traffic
speeds as a collection of static images, where each pixel repres-
ents a road segment’s traffic condition. The proposed archi-
tecture captures both spatial and temporal dependencies by us-
ing Deep Convolutional Neural Networks (DCNNs) and Long-
Short-Term Memory (LSTM) neural networks, which provide
better accuracy for short-term and long-term predictions over
other deep learning-based methods. As urban computing be-
comes more popular, studies of traffic with heterogeneous data-
sets become more popular. Song et al. (2016) collected big
heterogeneous data, including transportation network and hu-
man mobility data, to develop a deep learning platform named
DeepTransport, to predict human mobility and traffic conges-
tion. Using ubiquitous data sets, Wu et al. (2016) analyzed
traffic dynamics and predicted New York city taxi drop-offs
using factors such as weather, regional functions, disasters,
and vehicle collisions based on the Kernel Ridge Regression
Degree-2 polynomial kernel. Based on tweet reports of road
closures, Mridha et al. (2017) predicted taxi pickup hotspot loc-
ation during various road closure incidents.

Traffic congestion after COVID-19: After the prevalence of
COVID-19, anomalies occur in traffic due to changes in hu-
man travel behaviour as a result of government NPIs, which
encourage researchers to collect more features to describe such
sudden changes in mobility. Also, analysis of ST data has be-
come one of the COVID-19-related topics to analyze the effects
of NPI on human movement and individual travel behaviour
(Kraemer et al., 2020; Li et al., 2021c). Before COVID-19,
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traffic anomalies were usually caused by accidents, traffic con-
trol, holidays, protests, sporting events, celebrations, natural
disasters, (Wolshon and McArdle, 2009; Hara and Kuwahara,
2015) and other factors (Pan et al., 2013). For example, on a
spatial and temporal scale, (Wolshon and McArdle, 2009) ana-
lyzed hurricane evacuation traffic patterns in southeast Louisi-
ana. Hara and Kuwahara (2015) studied the evacuation beha-
viour in Japan and the traffic congestion following the earth-
quake using GPS data from smartphones and probe cars. While
natural disasters tend to have a relatively short impact duration,
the impact duration associated with the COVID-19 pandemic
has been prolonged for more than two years, necessitating new
models and features to explain such changes in travel behaviour.
Using the traffic speed data collected from Baidu Maps, Li et
al. (2021b) analyzed the empirical ST road congestion during
the COVID-19 pandemic and employed the Singular Value De-
composition algorithm to capture the spatial and temporal vari-
ation. Li et al. (2021a), evaluate the impacts of NPIs on the
use of public bicycle sharing in London using a segmented re-
gression model with an interrupted time series approach. The
results showed that the cycle hire in London decreased signi-
ficantly after the first lockdown, whereas subsequent ease re-
strictions had no significant impacts. Additionally, there was a
drastic change in the demand for bicycles near train stations and
parks, which shows changes in human behaviour regarding bi-
cycle usage. Also, ride-sharing services (e.g., Uber) witnessed
tremendous changes in driver behaviour (Wang et al., 2022).

Literature shows that human behaviour and travel patterns have
shifted significantly where traffic data is no longer stationary,
and relying purely on historical data is not sufficient anymore.
The long-term effects of the current pandemic necessitate the
inclusion of novel features that quantify human activities into
the traffic congestion forecasting pipeline to reduce the uncer-
tainty in forecasting. Consequently, we introduce novel features
such as mobility-based and urban street-waste features, which
represent the level of congestion on streets, and typical traffic
features to improve the forecasting accuracy during COVID-19
and similar crises that may occur in the future.

3. MATERIALS

In this section, our goal is to determine if mobility-based fea-
tures can be used to predict tomorrow’s traffic congestion by us-
ing an interpretable supervised ML model. We begin by review-
ing the data, then the models, and finally the SHAP method.

3.1 Data Sources

COVID-19 Features: Data for COVID-19 positivity rate and
daily number of vaccines are obtained from Ireland’s COVID-
19 Data Hub 4. The Irish government’s precaution measures
are collected from Oxford COVID-19 Government Response
Tracker (Hale et al., 2021). It contains restrictions including
the closure of schools, and workplaces, cancellation of public
events, limiting the public transport services, stay-at-home, re-
stricting internal movements, and international travel controls.

Environment Features: Many studies have focused on the
impacts of weather and, specifically, rain on traffic flow (Chen
et al., 2019). To capture the impact of weather, we use the pre-
cipitation and minimum and maximum temperature data 5.
4 https://covid19ireland-geohive.hub.arcgis.com/
5 https://www.met.ie/climate/available-data/historical

-data

Another environmental feature used in this study is a street
cleaning data gathered by Thorntons on behalf of Dublin City
Council 6 used as an indicator of human movements in cities.
We also gathered biodegradable waste net weight (Ton) 7 to ana-
lyze the amount of waste in parks and compared it with mobility
changes in parks.

Human Mobility Patterns: Daily country-level mobility
changes were obtained from the COVID-19 Community Mo-
bility site 8. It provides data regarding the patterns of visit
changes to places such as retail & recreation, grocery & phar-
macy, parks, transit stations, workplaces, and residential areas
compared to baseline days which is the median value for the
five weeks, from January 3 to February 6, 2020.

Time Features: Traffic congestion patterns normally affect
public holidays (Bao et al., 2017), and we included all public
holidays in Ireland.

Traffic Congestion: TomTom is an online traffic index plat-
form that collects GPS data about vehicle locations to determ-
ine traffic congestion 9. It compares non-congested times with
congested times, and the difference is quantified as a percentage
expressing an increase in travel time. For example, a conges-
tion level of 36% in Dublin means that a 30-minute trip will
take 36% longer than the baseline.

3.2 Machine Learning Models

Predictions are often made using statistics and ML, one of the
most popular types of computational intelligence (CI). Most
statistical models are mathematically based, yet they struggle
when faced with complex or nonlinear data. By contrast, ML
can handle vast amounts of data, has a flexible modelling capab-
ility, can generalize and adapt, and are generally good at predic-
tion tasks (Karlaftis and Vlahogianni, 2011). In the following,
we review the ML models used in this study.

Multiple Linear Regression: The relationship between several
independent variables and one dependent variable is explored
with multiple linear regression, which is a variation of the or-
dinary least-squares regression model aiming to fit the linear
relationship between explanatory variables.

Random Forest: Ensemble learning is an approach used to
create a meta-model by combining a large number of weak
models. The weak models are algorithms that are not suitable
for learning complex models but are fast to learn and predict.
RF (Breiman, 2001) is a bagging-based ensemble model that
turns weak models (decision trees) into meta-models by making
several copies of the training data and building decision trees
based on the random subsets of features at each step. It is a
model that could be used for linear and nonlinear relationships,
and as it fits several decision trees to different sub-samples of
the dataset and uses the average value, it allows accuracy to be
improved and control over-fitting.

Light Gradient Boosting: Gradient Boosting (GB) is a
boosting-based ensemble model that uses the original training
data. To solve regression problems, GB first creates a single leaf

6 https://data.smartdublin.ie/dataset/waste-data-thorn

tons-recycling
7 https://data.smartdublin.ie/dataset/waste-data-aes-b

ord-na-mona
8 https://www.google.com/covid19/mobility/
9 https://github.com/ActiveConclusion/COVID19 mobility

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022 
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-301-2022 | © Author(s) 2022. CC BY 4.0 License.

 
303

https://covid19ireland-geohive.hub.arcgis.com/
https://www.met.ie/climate/available-data/historical-data
https://www.met.ie/climate/available-data/historical-data
https://data.smartdublin.ie/dataset/waste-data-thorntons-recycling
https://data.smartdublin.ie/dataset/waste-data-thorntons-recycling
https://data.smartdublin.ie/dataset/waste-data-aes-bord-na-mona
https://data.smartdublin.ie/dataset/waste-data-aes-bord-na-mona
https://www.google.com/covid19/mobility/
https://github.com/ActiveConclusion/COVID19_mobility


Mean squared error MSE =
1

n

n∑
t=1

e2t

Root mean squared error RMSE =

√
1

n

n∑
t=1

e2t

Mean absolute error MAE =
1

n

n∑
t=1

|et|

Mean absolute percentage error MAPE =
100%

n

n∑
t=1

∣∣∣ etyt ∣∣∣
R-Squared R2 = 1 -

SSres

SStot

Table 1. Evaluation metrics along with the formula.

representing the average of the target value for all samples and 
then adds it to a tree-based model that calculates residuals and 
then scales the tree’s contribution to the final prediction by us-
ing the learning rate. This process continues depending on the 
number of trees and whether they improve the fit. GB models 
require tuning the tree depth, number of trees, and learning rate. 
One of the main issues of these GB algorithms is a high time-
consuming computational cost for splitting the training data-
sets. In 2017, LGBM (Ke et al., 2017) solved this issue by in-
troducing Gradient-Based One-Side Sampling (GOSS), which 
focuses on training data instances with more significant gradi-
ents, thereby contributing to the computation of information 
gain, also the Exclusive Feature Bundling (EFB) method that 
reduces the number of features by combining mutually exclus-
ive features.

Support Vector Regression: SVR is an adaptation to SVM, 
which is used for regression analysis. SVR aims to find an n-
dimensional hyperplane that can distinguishably classify data 
points and maximize the margin. SVR tries to fit the best line 
within a threshold value, the distance between the hyper-plane 
and boundary line, as opposed to other regression models that 
strive to minimize the difference between the actual value and 
the predicted value. SVR accuracy and computation complexity 
are heavily influenced by its h yper-parameters. Using the pen-
alty parameter to punish samples whose errors exceed a specific 
value, the insensitive parameter to control the width of the in-
sensitive zone to fit t he t raining d ata, and t he kernel function 
to handle both linear and nonlinear relationships are the main 
hyper-parameters.

3.3 Performance Evaluation

Table 1 shows the evaluation metrics used in this study. The er-
ror (e) shows the difference between estimated and actual val-
ues. MSE shows the average squared of the errors. RMSE is the 
square root of the MSE. MAE refers to how far the prediction 
differs from the actual value on average. MAPE indicates the 
accuracy of a forecasting method. R 2 is a statistic that shows 
the goodness of fit of a regression model, which is a comparison 
between the residual sum of squares (SSres) and the total sum 
of squares (SStot).

3.4 Shapley Additive Explanations (SHAP)

Explainable AI sees ML as more than black boxes that produce 
interpretable results, which we use to interpret the output of 
ML models. Shapley (Lundberg et al., 2020) developed SHAP 
based on game theory by comparing the model’s prediction with

Datasets Size Features
COVID-19 cases 1 Daily cases

COVID-19 vaccination 2 Daily vaccination
Boosters vaccination

Mobility changes 6

Retail recreation
Grocery pharmacy
Parks
Transit-stations
Workplaces
Residential

COVID-19 restrictions 8

School closing
Work closing
Cancel public events
Restrictions on gatherings
Close public transport
Stay at home requirements
Internal-movement restrictions
International travel controls

Weather 2
Precipitation amount (mm)
Minimum temperature (C)
Maximum temperature (C)

Time 2 Holiday 1, Holiday 0
Street-waste 1 Waste quantity (Ton)

Traffic congestion 1 Traffic congestion changes (%)
(Target Feature)

Table 2. Input and output features for ML algorithems.

and without the feature in all ways possible. SHAP values can 
be utilized in a prediction task to analyze features that have the 
largest effect on model outcomes. Several studies (Zarbakhsh 
et al., 2022; Lundberg et al., 2020) applied SHAP techniques 
to further explain their features and contribution to their ML 
models. It is represented as a linear model where each SHAP 
value measures each sample’s positive or negative contribution. 
SHAP has the advantage of being model-agnostic, which means 
that it could be calculated on any model, and each sample has 
its own set of SHAP values

4. EXPERIMENT

Fig. 2 illustrates our research framework for predicting traffic 
congestion in Dublin, which consists of four main steps: fea-
tures construction, ML training, evaluation, and interpretation. 
We use the data sets explained in the section 3.1, which in-
cludes sets of categorical and numerical input features to pre-
dict traffic congestion values (output feature). Table 2 shows the 
data sets along with the size of each feature and their names, 
where all categorical features are converted to numerical val-
ues using one-hot encoding prepossessing. Furthermore, all the 
features are aggregated, and missing values are interpolated to 
make them suitable for building and training ML models. Fol-
lowing the cleansing and preparation of the data sets, we ran-
domly split the data, using 80% for training and the remainder 
for testing. Following that, we trained five M L algorithms: 
MLR, RF, LGBM, and SVR, using the Radial basis function 
(RBF), known as the Gaussian kernel, which is the same as a 
Gaussian distribution function and Linear kernels. Given that 
SVR relies on distances between data points, we standardised 
features by removing the mean and scaling to unit variance to 
ensure that they fit i nto t he same r ange. To improve t he per-
formance of our models, we used GridSearch CV and Random-
Serch CV to tune the hyperparameters. The best-performing 
model was selected by five-fold cross-validation to estimate the 
accuracy of the ML model. Finally, to understand the model, 
the SHAP method was used to explain the contribution of the 
input features on traffic congestion prediction outcomes.
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Figure 2. The research framework of the study.

5. RESULTS

In this section, we start by analyzing the situation of COIVID-
19 and its effect on travel behaviour and traffic congestion. 
Then we fit models and compare their results and interpret the 
best-performing model.

5.1 Travel Behaviour Changes During COVID-19

The COVID-19 pandemic has had a significant i nfluence on 
travel behaviour due to government restrictions on movement 
and the transmission of disease; thus, to better understand these 
changes, we examine the COVID-19 situation and human mo-
bility in Dublin in this section.
As of February 20, 2022, there were around 1.3 million con-
firmed cases of COVID-19 in the Republic of Ireland and more 
than 6000 fatalities. Fig 3 (a) shows the cumulative number of 
confirmed cases from February 29, 2020, along with the seven-
day moving average and the daily number of cases. Two prom-
inent peaks of confirmed cases occurred in I reland during the 
Christmas-New Year period of 2021 and 2021, wherein the first 
spike, the government eased restrictions. In the second spike, 
the Omicron variant spread. Fig. 3 (b) displays the cumulative 
number of COVID-19 confirmed c ases i n a ll c ounties i n Ire-
land. Dublin, Cork, and Galway, the main cities in Ireland, 
experienced the highest number of COVID-19 cases.

In response to such a high number of cases, the Irish govern-
ment rolled out several NPIs to prevent diseases from spread-
ing, Zarbakhsh et al. (2022) examined the impacts of govern-
ment restrictions on human mobility and energy consumption 
patterns in Ireland and explained fluctuations in peak demand 
resulting from these changes in human behaviour. To further ex-
plain these changes in behaviour, Fig. 4 shows NPIs restrictions 
in conjunction with mobility changes in parks and the weight 
of biodegradable wastes collected from gardens and parks. Re-
striction severity is determined as the sum of the weighted av-
erage of eight government response measures in (Hale et al., 
2021) Ireland using the stringency index approach described in, 
with a higher score indicating stricter government responses. 
The first c onfirmed ca se in  Ir eland wa s an nounced on  Febru-
ary 29, 2020, which led to the closure of schools, colleges,
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Figure 3. (a) The cumulative along with the daily number 
and seven-day moving average of COVID-19 cases in Ireland. 
(b) The cumulative number of confirmed cases in 26 counties 
of Ireland from the start of the pandemic till December 22, 
2021.

and childcare facilities, followed by a stay-at-home order on
March 27, 2020, indicating the highest government restrictions.
The restrictions were eased from mid-May to late August, and
5-level restrictions were introduced in September. Early in
November, the government issued Level 5 lockdown restric-
tions for the entire country, which gradually eased from Decem-
ber 1. In late December 2020, the third wave began, and the
country moved to level-5 restrictions, bringing the line back to
high severity. COVID-19 restrictions began to loosen through-
out summer 2021 regardless of the Delta variant in June in Ire-
land. Due to the Omicron variant of COVID-19, some enter-
tainment venues, bars, restaurants, and other businesses were
urged to close early in December 2021. With these waves of
COVID-19 in Ireland, park visitation patterns have changed.
When severe restrictions like stay-at-home orders and level-
5 restrictions are in place, mobility changes in parks are at
their lowest level, leading to the lowest weight of biodegrad-
able waste collected from gardens and parks. Comparing the
histogram plots for April in 2020 and 2021, it can be seen that
the high level of restrictions in the primary waves of Ireland
has reduced the number of people visiting the parks; this, in
turn, reduced the amount of waste collected from the parks. The
street-waste in Dublin can also evidence such a change in mo-
bility behaviour, which could be a result of less human mobil-
ity in Dublin’s parks/gardens or recycling company employees
working from home.

Dublin’s pattern of traffic congestion variation shows an evident
decline in traffic during public holidays, and there was a max-
imum of 22% traffic congestion in Dublin during the public hol-
idays, meaning that travel times were on average 6.6 minutes
longer than the baseline non-congested conditions. However,
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collected from gardens/parks from March 2020 to December 
2021, along with restrictions and mobility changes in parks.
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Figure 5. A density plot of traffic congestion in Dublin using a 
kernel density estimation of the distribution.

the average extra travel time reached around 20.2 minutes on 
non-holiday days during the COVID-19 pandemic period. To 
better predict traffic congestion during COIVD-19, we consider 
the explained features as explanatory features.

5.2 ML Fitting and Evaluation

Target Feature: Traffic congestion i n t his s tudy i s displayed 
in percentage, which contrasts traffic congestion with baseline 
non-congested conditions using the TomTom traffic index, 
which could also convert to traffic t ime. Traffic congestion in 
Dublin during the COVID-19 ranges from 7% to 65%, with a 
mean value of 31.4%. Fig. 5 displays a density plot that il-
lustrates the distribution of traffic congestion over a continuous 
interval. Dublin traffic congestion has a  standard deviation of 
12.4, with a skew of 0.48 and a Kurtosis of -0.53, showing a 
reasonably symmetrical distribution.

ML Training: After training MLR, RF, LGBM and SVR mod-
els on training data, we tested the model on test sets. Unlike 
linear regression, which minimizes the difference between ac-
tual and predicted values through the best-fit l ine, S VR finds 
the best line by fitting it within an epsilon threshold and can es-
timate the nonlinear function. Hyperparameter tuning is essen-
tial for SVR algorithms, and we improved the model prediction 
significantly by estimating the best hyperparameter using Grid-
SearchCV. Gamma is defined a s t he d egree o f non-linearity; 
epsilon supports finding a  margin of t olerance t ube, i n which 
only objects lying outside the tube around the estimated hyper-
plane are penalized (Carrasco et al., 2019), and C is defined
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Figure 6. The comparison between model prediction and actual 
value. The five plots show the actual value of traffic congestion 
versus the predicted value over time by reporting the R2.

as a regularization parameter. with hyper-parameter of kernel= 
RBF, gamma = 0.01, epsilon = 0.5 and C = 1000 SVR model 
retrained and the results are reported.

ML Evaluation: Table 3 shows the evaluation metric for all 
models based on the random train/test split. Based on a com-
parison of the four evaluation metrics, SVR and RF have the 
best performance in terms of the lowest MSE, RMSE, MAE,
MAPE, and highest R2 values. The results of LGBM are al-
most as good as those of RF. MLR, however, shows more sig-
nificant e rrors. Fig. 6  compares the actual value with the pre-
dicted value for all models and reports the R2. To ensure that 
the best-performing models, RF and SVR (RBF), do not result 
from selecting the best part of the data randomly, we applied a 
five-fold cross-validation technique to train and test our model 
on five sets of data. RF and SVR (RBF) models are trained and 
tested five times; for every iteration, one fold is only used as a 
test set and the rest as training data. The calculation of the eval-
uation metrics yield to MSE of 12.28, RMSE of 3.49, MAE of 
2.42, MAPE of 8.6%, and R2 of 92.0%, surpassing the results
of the random-split as the average of different folds reported for 
the RF model. For the SVR model, MSE of 14.99, RMSE of
3.86, MAE of 2.64, MAPE of 8.6%, and R2 of 90% is slightly 
less than the random-split. In the following, we choose RF as a 
best-performing model and interpret the feature contributions. 
ML Interpretation: Fig. 7 (a) shows the most significant fea-
tures affecting the performance of the RF model. It displays 
the global importance of features defined by the average abso-
lute Shapley value per feature, with all features sorted accord-
ing to this metric. It is evident that during COVID-19, mobil-
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Models/
Metric MLR RF LGBM SVR Tuned-SVR
MSE 43.1 17.0 20.4 79.5 15.3
RMSE 6.5 4.1 4.5 8.9 3.9
MAE 4.9 2.5 2.8 6.1 2.8
MAPE 16.1 8.6 9.3 18 8.6

Table 3. Comparing the evaluation metrics for several 
ML algorithms based on the random-split.
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Figure 7. (a) RF SHAP waterfall plot: It depicts the most 
influential features by sorting all features by the SHAP absolute 
mean values along with the cumulative ratio of their importance.
(b) RF SHAP summary plot: Features are sorted according to the 
sum of SHAP value magnitudes over all samples. The color
represents the features value (red high, blue low).

ity changes in three categories of grocery and pharmacy, work-
place, retail and recreation, vaccination rate, and the amount of 
waste on the streets were the essential features of the model, and 
they accounted for almost 86% of RF interpretations. As shown 
by the green line, the mobility changes of groceries and pharma-
cies contribute around 33% of the interpretability of the model, 
and the mobility changes of workplaces contribute around 27%.

Fig. 7 (b) depicts a SHAP summary plot of the first seven influ-
ential features in which features are arranged according to their 
importance (mean absolute SHAP values) in predicting traffic 
congestion. The horizontal axis displays the SHAP values for 
each feature, and a deeper red colour indicates a higher value 
of the feature, while blue colours indicate a lower value of the 
feature that affected the RF model outcome. This reveals that 
a high value of human mobility in grocery and pharmacy, re-
tail and recreation, and transit stations increases the predicted 
traffic congestion in Dublin city for the RF model. This trend is 
also could be observed in the street-waste feature.
Results suggest that the amount of street-waste and human 
mobility-related features could be a strong proxy for predicting 
traffic congestion in an unprecedented situation like COVID-19.

6. CONCLUSION

This study explores the potential of novel mobility-based fea-
tures and urban street-waste data to predict traffic congestion
during COVID-19. We train several ML algorithms to pre-
dict traffic congestion in Dublin, enhance their performance,
and propose the RF model as the best-performing model. We
explain this model further by identifying the most significant
features contributing to the model outcomes. According to the
SHAP calculation, mobility changes in grocery and pharmacy,
workplace, retail, and recreation, as well as vaccination rates
and urban street-waste, are the best predictors. This study in-
dicates that during unprecedented events like COVID-19, the
effects of government restrictions and human mobility are vis-
ible in human behavior, and the amount of urban street-waste
indicates the street movement patterns and has the potential to
describe traffic dynamics.

This study can assist urban planners in designing a smart city
with a resilient, intelligent transport system and suggest con-
sidering human mobility changes in different categorical places
along with street-waste collected from cities as a novel feature
to predict traffic congestion in cities. It could also help authorit-
ies understand the effects of their precautions measures during
crises on traffic congestion. Further extensions of this study is
expanding the current study to more countries, considering the
spatiotemporal traffic dynamics patterns in different cities, and
comparing the human mobility-based features on traffic con-
gestion during COVID-19.
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