
 
 

AUTOMATIC DETECTION AND DIMENSIONAL MEASUREMENT OF MINOR CONCRETE 
CRACKS WITH CONVOLUTIONAL NEURAL NETWORK  

 
 

Y. Guo1,2, Z. Wang2, X. Shen1,*, K. Barati1, J. Linke2 
 

1 School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia –  
(youheng.guo, x.shen, khalegh.barati)@unsw.edu.au 

2 Linke & Linke Surveys, Sydney, NSW 2019, Australia – jadynwang@gmail.com, j.linke@llsurveys.com.au 
 

Commission IV, WG IV/9 
 
 
KEY WORDS: Convolutional Neural Network, Semantic Segmentation, Digital Single-Lens Reflex Camera, Crack Detection, 
Crack Measurement. 
 
ABSTRACT: 
 
The increasing number of aging infrastructures has drawn attention among the industry as the results caused by critical infrastructure 
failure could be destructive. It is essential to monitor the infrastructure assets and provide timely maintenance. However, one of the 
crucial problems is that the budget allocated to the maintenance stage is much less than that for the designing and construction stages. 
The cost of labor, equipment, and vehicles are significant. Therefore, it is impossible to perform a thorough inspection by human 
inspectors over each asset. A more efficient method will be needed to solve this problem. This paper aims to provide an automatic 
approach to detecting and measuring the dimensions of minor cracks that appear on concrete structures with a noisy background. This 
research also investigates the relationship between image pixel size, accuracy, detection rate of cracks, and shooting distance of images. 
The proposed method will be able to reduce the cost and increase accuracy. A case study was performed on a concrete sewer with 
cracks distributed on the surface in Sydney, New South Wales, Australia.  
 

1. INTRODUCTION 
 
The problem with aging infrastructure has become one of the 
most concerning issues globally, especially in the developed 
countries. Infrastructures vary from roads, rails, and public 
buildings to bridges, power plants, and dams. Any potential 
failure would cause severe impacts to both human life and 
economics. As most of the crucial infrastructures are made of 
reinforced concrete structures, such as bridges, power plants and 
water dams, the inspection of these structures is considered in 
priority. With the increasing age, defects such as cracking, 
spalling, and corrosion could inevitably appear. Once a certain 
amount of defects is identified, a decision must be made to repair 
the defects or even abandon the asset by balancing the cost. A 
comprehensive inspection is indispensable to support the 
decision-making. 
 
The traditional inspection conducted by human workers is risky 
when accessing dangerous areas (such as heights or tunnels). 
Another shortcoming of manual inspection is the difficulty of 
recording. It is hard to record the defect's exact location on a 
curved surface like a power plant or chimney, leading to record 
inconsistency. Besides, it is time-consuming for one inspector to 
conduct the examination. If multiple inspectors are involved, 
errors might appear due to the difference in recognition. The 
potential market for solving this problem is enormous with low 
efficiency and high cost.  
 
Recently, some research has been conducted to perform a crack 
assessment using unmanned aerial vehicles (Liu et al., 2020) and 
apply deep learning techniques for crack segmentation (Wang et 
al., 2022). Semantic segmentation has been one of the emerging 
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technologies and applied to various industries. With the help of 
semantic segmentation in the asset inspection industry, the 
computer will automatically complete the time-consuming part 
of the work by labeling and measuring the defects. Instead of 
hanging on a wall to capture the data, an experienced inspector 
will only need to sit in the office, review the distribution, analyze 
results, and provide professional opinions. Furthermore, by 
creating a 3D mesh model using photogrammetry and machine 
vision, the geo-location of the defects can be recorded in digital 
format. 
 
This paper aims to provide an automated approach to detecting 
and measuring the dimensions of minor cracks that appear on 
concrete structures with a noisy background. The relationship 
between actual pixel size, accuracy, detection rate, and shooting 
distance is also revealed. It starts with a literature review focusing 
on convolutional neural network (CNN)-related semantic 
segmentation technology and previously used methods for crack 
measurement. Next, a thorough methodology is presented to 
introduce a practical workflow to conduct crack measuring 
utilizing semantic segmentation and computer vision, including 
data capturing, crack detection, and crack measuring. Based on 
the proposed methodology, a case study over the cracks on a 
concrete sewer in Sydney, New South Wales, Australia, was 
conducted to prove the automatic workflow's applicability, and 
the relationship between accuracy and shooting distance was 
discussed. 
 
 
 
 
 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022 
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-57-2022 | © Author(s) 2022. CC BY 4.0 License.

 
57



2. LITERATURE REVIEW 
 
The development of different CNN models is reviewed in this 
section. Different approaches to obtaining the actual crack 
dimensions are also examined. 
 
2.1 CNN Models 
 
Manual inspection is still widely used in recent years, as 
experience is the critical issue for this work. However, 
introducing artificial intelligence will help reduce the burden by 
scaling down the area of interest. Artificial intelligence has been 
developing rapidly in recent years, especially in two dimensions. 
Semantic segmentation algorithms are generally based on a 
convolutional neural network, a relatively mature computer 
science technology. Krizhevsky et al. (2012) trained a deep 
convolutional neural network with 60 million parameters and 
achieved a significant score in the ImageNet contest. Zeiler and 
Fergus (2014) revealed the mechanism of AlexNet and developed 
a new model that outperformed AlexNet. Szegedy et al. (2015) 
proposed an Inception network that optimized the utilization of 
computing resources. Szegedy et al. (2016) provided principles 
to design a high-performance network with low computation cost. 
Ronneberge et al. (2015) proposed an efficient strategy to use 
available samples with annotations fully.  
 
Based on CNN, many researchers have developed different 
structures for different purposes; for example, Tesla used a 2D 
AI detection system to identify various objects on the road and 
enable automatic driving, AI facial identification, and motion 
capturing (Qassim et al., 2018). Defect detection is one of the 
semantic segmentation applications in the Architecture, 
Engineering, and Construction (AEC) industry. Kim et al. (2020) 
stated that semantic segmentation-driven crack detection is more 
objective and reliable than traditional manual inspection.  
 
2.2 Crack Detection with CNN 
 
Regarding crack detection, most algorithms have similar 
structures, including encoder and decoder. The encoder is usually 
trained with many annotated datasets, including everyday objects, 
and training would be very time-consuming. The decoder is 
trained with a smaller dataset for a particular project. Oliveira and 
Correia (2012) proposed an automatic system for crack detection 
and characterization, and the proposed algorithm could detect 
multiple cracks from 56 images in about 2 min. Chen et al. (2019) 
suggested a simple and improved structure of convolutional 
neural networks achieving high accuracy. Chen et al. (2019) 
believed a large convolution and pooling methodology with 
fewer network layers could be utilized to get a better result for 
simple crack identification. By setting the learning rate to 0.01, 
Li and Zhao (2019) developed an algorithm with high accuracy 
based on CNN structure and AlexNet. Liu et al. (2019b) adopted 
U-Net for high efficiency and robustness. Dung (2019) proposed 
a crack detection method based on FCN for semantic 
segmentation on concrete crack images. The automated crack 
identification and visualization algorithm used by Jang et al. 
(2019) are enabled by transfer learning from GoogLeNet. Qu et 
al. (2020) applied LeNet-5 to classify the cracks and optimized 
VGG16 to extract concrete crack characteristics. Chow et al. 
(2020) provided an artificial intelligence-based inspection 
workflow for anomaly detection and reduced the search space of 
defects up to 80% for minor defect regions. Wang and Su (2022) 
suggested a SegCrack model including a hierarchically structured 
transformer encoder to output features and a top-down pathway 
with lateral connections to upsample and fuse features. Although 

much research has been conducted on crack detection, the labeled 
area is still not accurate enough for minor cracks. 
 
2.3 Crack Measurement with Image Processing 
 
With a captured crack image, measuring the actual dimensions 
will be a crucial step as it can quantify the defects and enable 
inspectors to evaluate the status of the result. Some researchers 
have performed experiments to extract the information from 
images. Cho et al. (2018) proposed an edge-based crack detection 
technique. To measure the average width of the cracks in pixels, 
Feng et al. (2020) divided the area by the length of the crack 
skeleton. Vashpanov et al. (2019) developed a method to 
determine the crack's dimension based on the image's pixel 
intensity distribution and achieved an accuracy of less than ±15%. 
Existing research adopted a fixed distance to calculate the actual 
size. However, less effort was put into the relationship between 
shooting distance and measured results. 
 

3. METHODOLOGY 
 
The proposed methodology will present a practical workflow to 
conduct crack measuring. The proposed neural network is 
adjusted for minor crack detection in a noisy background. In this 
section, data capturing, crack detection, and crack measuring will 
be presented separately. 
 
3.1 Data Capturing  
 
It is easier to detect tiny cracks on the concrete surface from 
images. Therefore, in this study, two-dimensional images are the 
primary data source. The device and technique for capturing 
images will be reviewed in the following two sections. 
 
The primary type of dataset will be 2D images. Therefore, a 
digital single-lens reflex (DSLR) camera will be needed to 
capture the photos. The reason to use DSLR is because of the 
fixed focal length, which will be used in the later process. 
Moreover, it should be noted that the smartphone’s camera is not 
recommended as the parameters could be processed in the 
background, which might lead to errors. The distance between 
the camera and the object must be measured by tape. 
Alternatively, using laser measure will be more convenient. 
 
In this research, a simple routine is considered. The camera 
should point at the target object perpendicularly. Furthermore, 
the target crack should be located on a flat surface. More 
complicated situations, such as cracks found on curved or bumpy 
surfaces, will be discussed in future research. 
 
3.2 Crack Detection 
 
How to accurately detect and annotate cracks is a crucial step in 
this research. The backbone of this function is a CNN which has 
been widely applied in semantic segmentation. The proposed 
neural network is adjusted for minor crack detection. 
 
3.2.1 Structure of the Model: CNN is the leading technology 
used to realize crack detection. Regarding crack detection, most 
models have a similar structure: encoder and decoder. As for 
encoders, the primary purpose is to extract features and patterns 
that are either highly abstracted or detailed. It is usually trained 
with many annotated datasets, including everyday objects (such 
as trees, cars, and light poles). The reason for using a broad 
dataset is to train the ability of the encoder to code the objects 
into vectors. However, training this would be very time-
consuming. Moreover, for decoder should be trained with a 
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specific dataset for a particular object. The proposed 
convolutional neural network model is presented below (see 
Figure 1). 
 

 
 

Figure 1. The structure of the proposed CNN model. 
 

3.2.2 Training Dataset: The first task is to capture enough 
images containing concrete cracks. According to the learning 
curve provided by Banko and Brill (2001), the algorithm's 
accuracy increased dramatically with the sample size when the 
sample is under 100 million inputs. From 100 million to 1 billion, 
the increase is much smaller. Therefore, a good number of images 
will achieve satisfactory accuracy while using the minimum 
resources. 
 
Ideally, the images are taken from a similar environment to the 
project. However, this does not always work due to the limited 
access to similar areas. Alternatively, there are some available 
datasets online with thousands of images. The training dataset 
used in this paper includes CRACK500 (Zhang et al., 2016), 
CRACK500 (Yang et al., 2019), GAPs384 (Eisenbach et al., 
2017), CFD (Shi et al., 2016), AEL (Amhaz et al., 2016), 
cracktree200, DeepCrack (Liu et al., 2019a), and CSSC (Yang et 
al., 2017).  
 
However, the sizes and distributions of images in different 
datasets might vary considerably. The algorithm prefers similar 
size images so that the same weight can be assigned to each 
image. Therefore, a preprocessing step will be needed to unify 
the image sizes. Furthermore, it also needs to be noted that the 
size should not be too small as it might lose the shape of cracks. 
If the size is too big, processing the image will take a long time.  
Iyer and Sinha (2005) mentioned a method to increase the 
contrast or brightness of the image in the preprocessing stage. 
However, this approach did not make much difference in this 
research. 
 
The next step is annotating the cracks with a set of edited images. 
The labeled cracks are the guidance to tell the algorithm the 
essential features. As this step is quite time-consuming, so the 
advantages and disadvantages of different approaches should be 
considered thoroughly before carrying out. Two types of 
annotation methods were tried. The original image is displayed 
in Figure 2. The ideal annotation method is drawing a mask on 
top of the pixel-level cracks, as shown in Figure 2. It will give 
the best result for training due to the accuracy. However, this 
method usually needs a considerable amount of time. 
Alternatively, the second approach is bounding boxes (see Figure 
2) which require the operator to draw several boxes along the 
crack to locate the location approximately. Compared with the 
former way, this method can reduce the time. However, the 
accuracy will not be as good as a detailed annotation. Therefore, 
selecting the technique will be a trade-off depending on the 
project’s requirement. If there are too many images, outsourcing 

the job to a platform such as Amazon Mechanical Turk (MTurk) 
could be an option. 
 

 
 

Figure 2. Methods for annotation: (a) the original crack,  
(b) pixel-level annotation, and (c) bounding box annotation. 

 
The next step is to separate the dataset for different purposes. The 
suggested division are 70% for training, 20% for validating, and 
10% for testing. However, if the database is large enough, for 
example, 40,000 photos. In this case, 40%, 20%, and 40% are 
also reasonable. During the training stage, hyper parameters 
should be adjusted carefully according to the results, which is 
crucial to improving performance iteratively. 
 
3.3 Crack Measurement 
 
Crack measuring is based on the labeled crack image created 
from the last step. Since the pixels in the crack area are set to 1 
and the rest of the pixels are labeled as 0 for non-crack. Skimage 
will be applied to the cracked area and firstly depict the border of 
the cracked area. Then, a skeleton of the crack will be created at 
the center of two longitudinal lines. After that, the width line will 
be created perpendicularly to the skeleton, as proposed by Cho et 
al. (2018) (see Figure 3).  
 

  
 

Figure 3. The widths of the crack along with the skeleton (in 
pixel). 

 
Scale factors will be needed to obtain the actual dimension of the 
cracks. In this research, scale factors will be obtained from an 
experiment. The last step is to multiply the pixel dimension by 
the scale factor. Validation will be conducted by comparing the 
calculated and actual measurements to test the performance. 
 

4. CASE STUDY 
 
A case study is presented in this section to validate the process of 
crack measuring. A field experiment was carried out on a 
concrete sewer with cracks distributed on the surface in Sydney, 
New South Wales, Australia. 
 
4.1 Data Capturing 
 
The first step is examining the structure and planning a proper 
route to capture data. As the shape of the concrete sewer is a long 
box, images were taken along the sewer.  
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A simplified pattern is applied because the shooting angle and 
distortion affect the result. Only images perpendicular to the 
surface will be analyzed in the following procedures. Sony Alpha 
7 was used to take photos. The focal length is 24mm, and the 
image size is 9,504×6,336. 
 
4.2 Semantic Segmentation Process 
 
This section presents a practical workflow for the implementation 
of two-dimensional artificial intelligence. 
 
4.2.1 The Optimum Size for Processing: An optimum size 
should be selected due to the limitation of computer power. As 
the pixel size of the raw image is 9,504×6,336, it can be cut into 
3,584×3,584, 1,792×1,792, 896×896, and 448×448. After 
running the algorithm on each dimension, the size 448×448 gives 
the best result. 
 
The encoder is VGG16, referenced from Simonyan and 
Zisserman (2014). It initially has 16 weight layers, and each layer 
consists of Maxpool and Convolution + Batch Norm + ReLU. 
After testing, it was found that adding Batch Norm between 
Convolution and ReLU could improve the performance. The 
input image is cut into 448x448 and fed into the algorithm as a 
[448×448×3] matrix. Furthermore, the dimensions for each layer 
are listed below (see Table 1). 
 

No. of Layer Dimension 
1 224 × 224 × 64 
2 112 × 112 × 128 
3 56 × 56 × 256 
4 28 × 28 × 512 
5 14 × 14 × 512 

 
Table 1. The dimensions of each layer in the encoder. 

 
The decoder is designed for crack detection. Each layer consists 
of Bilinear Interpolate and Convolution Kernel Size 3 + ReLU. 
The dimensions for each layer are listed below (see Table 2). 
  

No. of Layer Dimension 
5 28 × 28 × 256 
4 56 × 56 × 256 
3 112 × 112 × 64 
2 224 × 224 × 32 
1 448 × 448 × 32 

 
Table 2. The dimensions of each layer in the decoder. 

 
The final layer consists of Convolution (kernel size 3) + ReLU, 
Convolution Kernel Size 1, and Log SoftMax. The dimension of 
the output image is [448×448×1], and the value of each pixel is 
either 0 or 1, representing crack or non-crack. 
 
Since the dataset is biased (the number of cracks and non-crack 
images is not equal), the traditional Binary Cross Entry (BCE) 
loss does not work as it tends to regard the picture as not having 
cracks. Instead, a focal loss method based on the structure 
proposed by Lin et al. (2017) is applied for classification. Then, 
backpropagation will be performed to adjust the parameters. The 
VGG16 + Focal Loss model was trained on a smaller dataset with 
fewer epochs. ResNet has been commonly used for crack 
detection. U-Net (Liu et al., 2019b) is one of the most recent 
developments based on ResNet . A comparison between VGG16 
+ Focal Loss, VGG16 + BCE Loss, and Baseline U-Net will be 
conducted (see Table 3). The overall performance of 

VGG16+Focal Loss with an F1 Score of 0.613 is better than the 
other two models. 
 

 Average 
Precision 

Average 
Recall F1 Score 

Baseline 
U-Net  0.616 0.582 0.598 

VGG16+ 
BCE Loss 0.432 0.603 0.503 

VGG16+ 
Focal Loss 0.566   0.670 0.613 

 
Table 3. The comparison between three models. 

 
The results of annotated images for some evident and thin cracks 
are presented in Figures 4 and 5. 
 

 
 

Figure 4. The results of different models for obvious cracks:  
(a) original image, (b) Baseline U-Net, (c) VGG16 + BCE Loss, 

(d) VGG16 + Focal Loss, and (e) VGG16 + Focal Loss with 
more training datasets. 

 

 
 

Figure 5. The results of different models for thin cracks:  
(a) original image, (b) Baseline U-Net, (c) VGG16 + BCE Loss, 

(d) VGG16 + Focal Loss, and (e) VGG16 + Focal Loss with 
more training datasets. 

 
As can be seen, for obvious cracks, the performance of the crack 
is the same. Some noises were introduced in the VGG16 + BCE 
Loss model. However, only the VGG16 + Focal Loss model 
could identify most thin cracks. With more datasets fed to train 
the algorithm, the performance kept improving. The latest model 
was trained with 855 images, and the results are shown in Figures 
4 and 5. 
 
4.2.2 Statistical Results for the Accuracy: The first test dataset 
contains 1,695 images with 1,483 crack images and 212 non-
crack images. The algorithm’s performance was assessed using 
equation (1) to calculate the accuracy. The tested accuracy for 
this dataset is 95.81%. 
 
As the first test dataset has more crack images, the portion of 
images in the second test dataset was adjusted to make sure both 
situations were tested. Therefore, the number of crack images 
was reduced from 1,483 to 56, and the number of non-crack 
photos remained the same. The accuracy for the second dataset is 
91.79%. 
 
4.2.3 Results of Automatic Detection on Target Dataset: The 
Semantic segmentation algorithm was run on a dataset containing 
ten sizes of the cracks from 0.1mm to 1.0mm from distances of 
1.0m, 1.5m, 2.0m, 2.5m, and 3.0m. The labels indicating 
different sizes of cracks are shown in Figures 7 and 8, which 
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affect the detecting result. Therefore, the tags are removed to 
achieve a better result.  
 
For small cracks (0.1mm-0.5mm) shot from 1m, only a tiny part 
of the cracks was detected (see Figure 6). While shot from 3m, 
most of the cracks were marked, but the area is much larger than 
the actual one. 
 

 
 

Figure 6. Marked cracks (0.1mm-0.5mm): (a) 1m with the 
label, (b) 1m without a label, and (c) 3m without a label. 

 
For larger cracks (0.6mm-1.0mm) shot from 1m, most of the 
cracks were marked in Figure 7. While the photo from 3m, 
although most of the cracks were drawn, the area is still more 
extensive than the actual crack. 
 

 
 

Figure 7. Marked cracks (0.6mm-1.0mm): (a) 1m with label, 
(b) 1m without label, and (c) 3m without label. 

 
The detected results for cracks under 0.5mm are unsatisfactory, 
which could be caused by many reasons. Cracks are very tiny, 
the edges are rough, and the shadow cast around the crack could 
make the algorithm hard to identify the shape of the crack 
accurately.  
 
4.3 Crack Measurement 
 
As mentioned in 3.3, the first step is annotating the crack area 
using semantic segmentation. The cracked and the non-crack 
regions are colored white and black to gain maximum contrast. 
Then, the shape of the crack is outlined using skimage, and the 
skeletons of the cracks are located at the center of two lines. The 
step of processing is shown in Figure 8. 
 

 
 

Figure 8. The step of processing for crack measurement:  
(a) the original crack, (b) the detected crack area, (c) the edge of 

the crack, and (d) the skeleton of the crack.  
 
After that, the pixel width along the skeleton will be counted. The 
distance from the pixel to the edge will be measured 
perpendicularly for every pixel on the skeleton. Furthermore, it 
will be applied to both sides of the skeleton. 

4.4 The Validation of Results 
 
This section is set to quantify the performance of the proposed 
methodology from three aspects: the rate of recognition, the 
accuracy of manually derived scale factor, and the accuracy of 
automatic measurement.  
 
In the first part, the numbers of correctly detected cracks and 
undetected were manually counted for each image. Moreover, 
rates of recognition could be calculated. The second part is to 
determine the scale factor. The process is manual, where the 
number of pixels for gauges and cracks were manually counted. 
Error rates were also calculated and compared to find an optimal 
condition to apply the proposed methodology. The third part is 
an automated way to calculate the actual crack size based on the 
previously mentioned methodology. Furthermore, error rates are 
estimated to validate the applicability of the whole process. 
 
4.4.1 Rate of Recognition: For each processed image, correctly 
detected cracks are labeled with red dots, and undetected cracks 
are labeled with blue dots, as shown in Figure 9.  
 

 
 

Figure 9. Categorized cracks. 
 
The manually counted process was repeated on each image. The 
recognition rate can be calculated using Equation 1, and the 
statistical results are summarized in Figure 10. 
 
                                 𝑅𝑅 =C/(C+U)× 100% ,         (1) 

 
Where R = rate of recognition 
 C = number of correctly detected cracks 
 U = number of undetected cracks 
 
From Figure 10, it can be concluded that the recognition rate 
increases as the shooting distance increases. 
 

 
 

Figure 10. The chart for the rate of recognition. 
 
4.4.2 Manually Derived Scale Factor: As small cracks are the 
most concerning problems in the industry, a manual experiment 
was conducted over the captured dataset with ten sizes of cracks 
from 0.1mm to 1.0mm from distances of 1.0m, 1.5m, 2.0m, 2.5m, 
and 3.0m. The test was repeated five times to gain a statistical 
result. As shown in Figure 11, cracks from 0.6mm to 1.0mm were 
labeled. A crack gauge was stuck next to the cracks. 
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Figure 11. Crack measuring gauge and labeled cracks. 
 
The gauge's function is to obtain each pixel's actual dimension. 
Gauges including 0.6mm, 0.8mm, 1.0mm, 1.2mm, and 1.4mm 
were selected. As the actual width of the gauge is known and the 
number of pixels could be counted from the image, the pixel size 
could be calculated using the actual gauge dimension divided by 
the counted pixel number (see Table 4).  
 

Distance 
(m) 

Number of Pixels for 
1.4mm 

Pixel Size 
(mm/pixel) 

1 10 0.140 
1.5 7 0.200 
2 6 0.233 

2.5 4 0.350 
3 3 0.467 

 
Table 4. The calculated pixel sizes. 

 
The pixel numbers for every size of the cracks were counted 
manually from different distances (see Table 5). 

 
Manually Counted Pixels Number for Each Crack 

Distance 0.6mm 0.7mm 0.8mm 0.9mm 1.0mm 
1m 5 6 9 10 11 

1.5m 3 4 6 7 8 
2m 2 2 4 4 5 

2.5m 2 2 3 3 4 
3m 1 2 2 2 3 

 
Table 5. The number of manually counted pixels. 

 
Then, the sizes of the cracks could be derived by multiplying the 
pixel sizes from Table 4 and the numbers contained in each crack 
from Table 5. The calculated results are displayed in Table 6. 
 

Calculated Width for Each Crack (mm) 
Distance  0.6mm 0.7mm 0.8mm 0.9mm 1.0mm 

1m 0.700 0.840 1.260 1.400 1.540 
1.5m 0.600 0.800 1.200 1.400 1.600 
2m 0.467 0.467 0.933 0.933 1.167 

2.5m 0.700 0.700 1.050 1.050 1.400 
3m 0.467 0.933 0.933 0.933 1.400 

 
Table 6. The calculated width for each crack. 

 
After that, the error rate can be calculated using the Equation 2. 
 

(2) 

 
The absolute error rate is displayed in Table 7. 
 
 

Absolute Error Rate 
Distance  0.6mm 0.7mm 0.8mm 0.9mm 1.0mm 

1m 17% 20% 58% 56% 54% 
1.5m 0% 14% 50% 56% 60% 
2m 22% 33% 17% 4% 17% 

2.5m 17% 0% 31% 17% 40% 
3m 22% 33% 17% 4% 40% 

 
Table 7. The absolute error rates. 

 
Line charts of the average error rate with standard deviation are 
presented in Figure 12. The average error for the measurement of 
0.1mm crack is much higher than other sizes. As can be seen, the 
error rate gets higher as the shooting distance increases. 
Moreover, as the size increases, the error rate presents a 
decreased tendency. A conclusion can be drawn that the cracks 
under 0.5mm cannot be accurately measured with the current 
setup. 
 

 
 

Figure 12. Individual charts of average error rate with standard 
deviations for each crack.  

 
4.4.3 Automatically Detected Crack Dimensions: The 
accuracy for 0.6mm to 1.0mm is relatively high, and most cracks 
are labeled. The dataset used in this section will be labeled cracks 
of 0.6mm to 1.0mm and shoot from 1m and 3m. The average 
pixel sizes from different distances are shown in Table 8.  
 

Distance (m) Pixel Size (mm/pixel) 
1 0.134 

1.5 0.200 
2 0.258 

2.5 0.293 
3 0.380 

 
Table 8. Average pixel sizes from different distances. 
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As shown in Figure 13, the automatically measured pixel widths 
are labeled. The actual width can be automatically calculated by 
multiplying a scale factor and annotated in the image. 
 

 
 

Figure 13. The number of measured widths along the crack. 
 
The automatically detected number of pixels, calculated widths, 
and absolute error rates are listed in Tables 9 to 11. 
 

Automatically Detected Pixels Number for Each Crack 
Distance 0.6mm 0.7mm 0.8mm 0.9mm 1.0mm 

1m 11 6 15 5 10 
1.5m 8 7 18 13 13 
2m 9 13 14 12 15 

2.5m 7 12 14 11 14 
3m 11 11 13 10 15 

 
Table 9.  The number of automatically detected pixels. 

 
Calculated Width for Each Crack (mm) 

Distance  0.6mm 0.7mm 0.8mm 0.9mm 1.0mm 
1m 1.470 0.802 2.005 0.668 1.337 

1.5m 1.600 1.400 3.600 2.600 2.600 
2m 2.322 3.354 3.612 3.096 3.870 

2.5m 2.053 3.520 4.107 3.227 4.107 
3m 4.180 4.180 4.940 3.800 5.700 

 
Table 10.  The calculated widths. 

 
Absolute Error Rate 

Distance  0.6mm 0.7mm 0.8mm 0.9mm 1.0mm 
1m 145% 15% 151% 26% 34% 

1.5m 167% 100% 350% 189% 160% 
2m 287% 379% 352% 244% 287% 

2.5m 242% 403% 413% 259% 311% 
3m 597% 497% 518% 322% 470% 

 
Table 11.  The absolute error rates for each crack. 

 
As seen in Tables 9 to 11, the error rates generated 1 meter away 
from the cracks are relatively small. However, the overall 
performance is still not ideal. Although the proposed algorithm's 
accuracy should be further improved, the applicability of the 
proposed workflow has been proved in this paper.   
 

5. CONCLUSIONS 
 
This paper presented an automatic approach to detecting and 
measuring the dimension of concrete cracks with CNN method. 
The relationship between image pixel size, accuracy, and 
detection rate of cracks, and shooting distance of images is 
investigated. The core technology used for crack detection is 
CNN-based semantic segmentation. The encoder adopts VGG16, 
and the decoder is adjusted for crack detecting. Compared to the 
baseline model, this model added a focal loss layer to improve 

the performance. The overall F1 score is improved from 0.598 to 
0.613. And the stability of the model is tested on biased datasets 
with an accuracy over 91%. After that, a crack measuring 
function based on the semantic segmentation processed image 
was introduced. Furthermore, a field experiment was conducted 
to test the accuracy of crack measurement and revealed the 
relationship between shooting distance and accuracy. It is found 
that with the decreasing shooting distance, automatic crack 
measurement error rate drops from 65% to 32%. While the crack 
recognition rate drops approximately from 65% to 50%. As the 
average error rate for cracks under 0.5mm (102%) is significantly 
larger than the cracks over 0.5mm (23%), the proposed 
measurement method is not reliable for cracks under 0.5mm. 
 
As the current research simplified some conditions, everyday 
situations will be considered in a future study, e.g., the image was 
taken perpendicularly to the cracks, and the detected cracks are 
distributed on a flat surface. The geometric distortion correction 
should be considered for precise measurements. More datasets 
will also be needed to train the proposed semantic segmentation 
algorithm and increase the accuracy to meet the industrial 
requirement. Furthermore, by creating a 3d mesh model using 
photogrammetry and machine vision, the geo-location of the 
defects can be recorded in digital format, which will facilitate the 
analysis of structural health conditions.  
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