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ABSTRACT:

Urban monitoring based on wireless sensor networks is a recent paradigm that exploits a large number of low-cost sensors deployed
in certain places or/and on mobile devices to collect data ubiquitously at a large scale. In this study, we explore and compare
the coverage of stationary and opportunistic vehicular sensing methods with respect to the requirements of a task at hand. We
distinguish spatial granularity, temporal granularity, and budget constraints. First we compare the spatio-temporal coverage of
stationary sensing and opportunistic vehicular sensing for various tasks, which demonstrates that these two sensing methods are
suitable for different tasks. Then we propose a hybrid sensing deployment framework integrating a genetic algorithm to achieve
the maximum spatio-temporal coverage for specific tasks. Experiments with a real-world vehicle trajectory dataset demonstrate
that the proposed hybrid sensing framework achieves the maximum spatio-temporal coverage in various tasks. Our results provide
fundamental guidelines on network planning for urban monitoring applications.

1. INTRODUCTION

Over the past decades, with the advance in the technology
of low-cost sensors and wireless communication, wireless
sensor networks (WSNs) have evolved to a new data collec-
tion paradigm for urban monitoring at a large scale (Zhao and
Guibas, 2004, Duckham, 2013). The new paradigm plays a
significant role in smart city domain by empowering city com-
puting for decision makers (Anjomshoaa et al., 2018, Lee et
al., 2020). Compared with traditional stationary environmental
monitoring stations, the low-cost sensors can be deployed in
larger numbers at finer spatial granularity (Mao et al., 2012).
WSNs have been applied for example in weather monitoring in
the wild (Barrenetxea et al., 2008), and air pollution monitoring
in urban environments (Boubrima, 2019, Mao et al., 2012).

Low-cost sensors can be deployed in stationary sensing (SS)
to collect data at selected locations over long periods of time,
thus, with static and limited spatial coverage (O’Keeffe et al.,
2019, Anjomshoaa et al., 2021). Alternatively, those sensors
can also be mounted on mobile devices, e.g., smartphones (Ji
et al., 2016), drones (Yanmaz et al., 2018), and vehicles (Apte
et al., 2017, Lee and Gerla, 2010), or be directly carried by
humans (Ma et al., 2020). Mobile sensors are able to monitor
certain phenomena in places traversed by their hosts, i.e., at
varying locations. In opportunistic vehicular sensing (OVS), a
common kind of mobile sensing, mobile sensors are deployed
on a set of existing vehicles without any influence on the routes
of these vehicles (Anjomshoaa et al., 2021). Thus, OVS im-
proves the spatial coverage compared to SS, but at the cost of
temporal coverage (Boubrima, 2019).

The concept of coverage is a fundamental metric to evaluate
the sensing quality (Chen et al., 2017, Ghosh and Das, 2008,
Zhao et al., 2015), and it includes both the spatial and tem-
poral domains. SS and OVS each have their merits and draw-
∗ Corresponding author

backs in their spatial and temporal coverage. Several studies re-
vealed already the benefits of OVS in the sensing coverage over
SS, but only at a given spatio-temporal granularity depending
on phenomena being monitored in those studies (Chen et al.,
2017, Gao et al., 2016, O’Keeffe et al., 2019). However, the
required spatio-temporal granularity varies with the properties
of phenomena being monitored and the applications in mind.
For instance, a high spatial density is needed for monitoring
noise, whereas temperature can be captured with lower spatial
granularity (Anjomshoaa et al., 2021). In the temporal domain,
monitoring street surface quality is less sensitive to temporal
granularity compared to monitoring traffic flow. Besides, task
initiators allocate budgets to the sensing, reflecting the value of
the generated information. These budgets determine how many
sensors can be deployed for sensing tasks, creating an optim-
ization problem for the coverage (Asprone et al., 2021): Given
the requirements of a certain task, in terms of spatial granular-
ity, temporal granularity, and budget limitations, the task is to
determine which sensing method is superior to the other and
should be chosen by an agency.

To the best of our knowledge, this issue has not been addressed
in the literature. To fill the gap, this paper addresses a num-
ber of research questions. The initial one is: For which tasks
does the spatio-temporal coverage of one sensing method ex-
ceed the other? To answer the question, we estimate and com-
pare the spatio-temporal coverage of SS and OVS for tasks with
various requirements. The next research questions address the
optimal deployment of a limited number of sensors to achieve
a high spatio-temporal coverage, which has been a key prob-
lem in urban monitoring. Existing studies mainly focus either
on SS (Mao et al., 2012, Chakrabarty et al., 2002) or vehicu-
lar sensing (He et al., 2015, Asprone et al., 2021, Zhao et al.,
2015, Cortes et al., 2004) to achieve maximum coverage. Al-
though several studies have discussed hybrid sensing (HS), con-
sisting of stationary and mobile sensors, these studies aim at
optimizing vehicle selection or moving route planning based
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on the known number and placements of stationary sensors to
obtain a coverage (Zhang and Fok, 2017, Zygowski and Jaekel,
2018). To the best of our knowledge, no study explores how
to co-deploy stationary sensors in HS. The challenge in co-
deployment is to achieve the optimal spatio-temporal cover-
age for a limited number of sensors with an appropriate split
between stationary and mobile sensors. The research questions
that need to be addressed include a) can HS achieve higher
spatio-temporal coverage than SS and OVS for a given task?
b) what is the optimal configuration of SS and OVS in hybrid
sensing? To answer these questions, we propose a HS frame-
work that optimizes the deployment of HS to achieve an ex-
pected optimal spatio-temporal coverage according to historical
trajectories of candidate vehicles and task requirements.

The main contributions of this study can be summarized as fol-
lows:

• We demonstrate that SS can achieve a higher spatio-
temporal coverage over OVS for some tasks, and vice
versa.

• We propose a HS framework integrating an objective func-
tion, a genetic algorithm, and a stationary sensor deploy-
ment mechanism to optimize HS for urban monitoring
with the maximum spatio-temporal coverage. The frame-
work solves an NP-hard problem heuristically, resulting in
the solution with a high sensing coverage.

• We evaluate SS, OVS, and HS on a substantial trajectory
dataset from a global city, and use the case study also
to verify the reliability and validity of our proposed HS
framework.

Accordingly, this paper is organized as follows. In Section 2,
the definition of spatio-temporal coverage and the proposed hy-
brid sensing method are introduced. In Section 3, we evalu-
ate the different sensing methods and present the computational
results obtained by applying the methods in real scenarios. The
major conclusions and research limitations are presented in
Section 4.

2. METHODOLOGY

In this section, first, we present the formal definition of terms
regarding the sensing task and spatio-temporal coverage (Sec-
tion 2.1). Then, a framework for HS deployment is developed
to obtain the maximum spatio-temporal coverage (Section 2.2).

2.1 Definitions

In this section, we give definitions regarding the sensing task
and spatio-temporal coverage of sensing.

A sensing task usually has its certain task requirements and
budget limitations. The task – i.e., the nature of the phe-
nomenon being monitored and the application in mind – de-
termines the required spatio-temporal granularity. The budget
limitations restrict the number of sensors – stationary sensors as
well as vehicular sensors. Therefore, a task is defined as mon-
itoring a phenomenon in a target area S over a certain sensing
cycle T by either SS, or OVS, or both.

Definition 1: Spatio-temporal granularity. According to the
requirements of the task at hand, the target area can be divided

into unit cells, where the required spatial granularity (Gs) de-
termines the cell base, and the cell height is determined by the
required temporal granularity (Gt). The task requires the cov-
erage of each unit cell by at least one sensor. For instance, in
Figure 1(a) the target area is spatially partitioned into four cells,
denoted as S = {A,B,C,D}), and the time axis is divided into
eight unit intervals, denoted as T = {t1, ...t8}. We say, Gs is
2× 2 (Ji et al., 2016, Wu et al., 2019), Gt is T/8, and the total
number of cells is 32.

Figure 1. Spatial and spatiotemporal coverage ratios of 
stationary, opportunistic vehicular and hybrid sensing, with two 
sensors, Gs = 2 × 2 ({A, B, C, D}), Gt = T /8, and candidate 

vehicles V = {v1, v2, v3}.

Definition 2 : The number of sensors N . In a  sensing task, 
only a limited number of sensors can be used to complete the 
task due to budget limitations. For instance, in Figure 1(b) 
shows the base cells that each vehicle vi visits at each time tj . In 
this case, there are three candidate vehicles (V = {v1, v2, v3}), 
but only two vehicles might get recruited due to budget limita-
tions, such that the number of sensors is N = 2 in this monitor-
ing task. Figure 1(c) shows all three possible combinations of 
choosing two vehicles out of the three. Similarly, Figure 1(d) 
shows results for two stationary sensors deployed alternatively 
in A, B, C or D. Figure 1(e) shows results for one stationary 
sensor and one vehicular sensor.

Definition 3 : Unit cell coverage Ii,j .  I i,j represents whether 
the unit cell si is covered in time period tj or not. The equation 
is defined as:

Ii,j =

{
1 if si is covered by at least one sensor during tj

0 otherwise
(1)

Definition 4: Spatial coverage ratio RSC . Ideally, each unit
cell is expected to have at least one sensor (or one vehicle
passing) to monitor the requested phenomenon. RSC is defined
as the proportion of spatial coverage at every time period. The
number of grid cells covered at time period tj is denoted as
SCj , and defined as follows:

SCj =

|S|∑
i=1

Ii,j (2)

Based on Equation 2, RSC at a time period tj can be represen-
ted as follows:

RSCj =
SCj

|S| (3)
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In OVS, to calculate SC, vehicle trajectories are analysed to
obtain the vehicles trajectory matrix Mv . For example, in Fig-
ure 1(b), vehicle v1 drove through base cells B and D in time
period t5, i.e., SC5 = 2, RSC5 = 0.5. Similarly, SC and
RSC can be computed for multiple sensors. For example, Fig-
ure 1(c) shows the spatial coverage ratio of two vehicles at each
time period. In SS, RSC is constant during the sensing time T
and only depends on the number of sensors and their (fix) dis-
tribution over all base cells. For instance, if sensors are placed
in base cells A and B, the RSC is always 0.5 (Figure 1(d)). In
the following we assume an optimal distribution, i.e., no more
than one sensor per base cell. In a similar way, the RSC of HS
formed by one stationary sensor and one vehicle is shown in
Figure 1(e).

Definition 5: Spatio-temporal coverage ratio RSTC . RSTC

is defined as the average coverage ratio of base cells during time
period T (T = {t1, t2, ...tn}). Formally, it is defined as:

RSTC =

∑|T |
j=1 RSCj

|T | (4)

As shown in Figure 1(c) and (d), RSTC of v2 and v3 is 0.666 in
OVS, while RSTC of two stationary sensors in any two of the
four base cells is always 0.5.

2.2 Hybrid sensing framework

For a given number of sensors, the best spatio-temporal cover-
age may not be obtained by SS or OVS alone but with a com-
bination of the two. To achieve a maximum spatio-temporal
coverage with a limited number of sensors, an optimized HS
deployment framework is proposed. We formulate the HS de-
ployment problem as an optimization problem (Section 2.2.1).
Then, a genetic algorithm is proposed to solve the optimization
problem (Section 2.2.2).

2.2.1 Problem formulation For the problem formulation,
the input includes Gs, Gt, N , and the historical trajectories of
candidate vehicles. So

Given:

• A total of m base cells S = {s1, s2, ..., sm}, depending on
Gs;

• q candidate vehicles in the pool from which |V ′| vehicles
can be recruited for the sensing task, V = {v1, v2, ... vq}
and |V ′| ≤ q.

• N , the number of sensors (stationary or/and vehicular
sensors) that can be afforded for a given budget;

• the historical vehicle trajectory matrix Mv according to q,
Gs and Gt;

then the objective of the problem is to achieve maximum spatio-
temporal coverage RSTC :

Objective: Select a subset of base cells S′ ⊂ S to place sta-
tionary sensors, and a set of candidate vehicles V ′ ⊂ V such
that:

S′ = argmax
S′⊂S

RSTC(S).

The only constraint is the number of sensors N :

Subject To: |V ′|+ |S′| = N .

Note that the optimal sensing deployment does not always re-
quire a mix of stationary and vehicular sensors. Single-mode
sensing deployment might also satisfy the objective.

2.2.2 Genetic algorithm design In this study, we mainly
focus on how many stationary sensors and/or vehicular sensors
should be deployed, and where the stationary sensors should
be placed. Vehicle recruitment optimization has been discussed
in previous works (He et al., 2015, Zhao et al., 2015). In this
study, we only focus on the deployment of stationary sensors
ignoring vehicle selection.

Each base cell has two states, with or without stationary sensors.
As the time complexity of working out the optimal solution is
O(2|S|), the problem above is an NP-hard problem. Thus, to
solve the problem, it is necessary to trade off between com-
plexity and optimality. The genetic algorithm (GA), a classic
evolutionary algorithm for optimization, is inspired by the pro-
cess of natural selection of the fittest (Goldberg and Holland,
1988, Holland et al., 1992). On one hand, the algorithm can
find various alternative solutions in the solution population. On
the other hand, the combination of directional search and ran-
dom search in the genetic algorithm provides a good trade-off
between finding the optimal solution and limiting the search
space. Owing to these characteristics, the genetic algorithm
has been extensively applied to objective optimization prob-
lems (Kim et al., 2008, Tian et al., 2016). It has also been
applied to optimize urban monitoring for selecting vehicles in
OVS (He et al., 2015). In the genetic algorithm, three key issues
need to be addressed: genetic representation, population initial-
ization, and genetic operators (including crossover, mutation,
and selection).

Genetic representation encodes the candidate solutions of an
optimization problem into variable arrays called gene strings.
For the optimization problem of HS deployment, each potential
solutions is represented as a gene string whose length equals to
the number of base cells. For each character in the string, we
use 1 to indicate a stationary sensor is placed in the base cell
and 0 otherwise. For instance, in Figure 2, Gs is 3× 3 (i.e., the
number of base cells is 9). The string (0,1,1,0,1,0,0,1,1) stands
for stationary sensors being placed in base cells s2, s3, s5, s8
and s9. The fitness (f ) of each individual gene string is repres-
ented by RSTC of the corresponding combination of stationary
and vehicular sensors. The larger the fitness f , the better the
individual.

Figure 3 shows the process of GA. First, a certain number (pop-
ulation size) of potential solutions, each representing a place-
ment scheme for stationary sensors, are randomly generated as
the initial population (i.e., the first generation). Then in sub-
sequent iterations, all the individuals in the current generation
crossover in pairs to generate new individuals, simulating the
genetic recombination process. For instance, as shown in Fig-
ure 2, the genes in s4 to s6 are crossed for these two solutions,
generating two new individuals. Note that crossover may gen-
erate invalid solutions if the sensor number constraint is viol-
ated. To keep the number of sensors fixed in each solution,
any increase or decrease in the number of stationary sensors
in the crossover gene segment is compensated for by remov-
ing or adding a stationary sensor from the other gene segments.
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Figure 2. An example of representation, crossover and mutation in the genetic algorithm.

For instance, in Figure 2, after crossover, the first new indi-
vidual will have an additional stationary sensor, so a randomly
selected gene character encoded as 1 (here s9) is changed to 0.
Similarly, the second new individual will have one less sensor,
so the gene in s9 changes to 1 from 0. This step guarantees
the number of stationary sensors remain unchanged for each
new individual, thereby avoiding invalid solutions. After cros-
sover, each new individual has a certain probability of mutation
depending on mutation rate, i.e., the content of a solution is
changed randomly, to simulate the genetic drift in nature. For
instance, in Figure 2, the gene characters from s3 to s6 are re-
versed after mutation. At the end of the iteration, we employ
the tournament selection method (Miller et al., 1995) to keep
only a proportion of better individuals as the new generation
for the next iteration and discard the rest by ranking individuals
in order of their fitness. To be specific, in the tournament, sev-
eral individuals in the generation are randomly selected to form
a group. After a certain number of groups are formed, solutions
with the highest fitness (RSTC) in each group remain to gen-
erate the next generation population and others are discarded
(see Section 3.2.2 for detailed parameter settings). Finally, in
the last generation (final iteration), the best individual with the
highest fitness is chosen as the best solution representing the
optimized HS deployment.

Figure 3. The flowchart of a genetic algorithm.

3. CASE STUDY AND RESULTS

This section presents the results of the proposed methods ap-
plied to a case study of Shanghai, China. Firstly, the study area 
and data are introduced in Section 3.1, and then the results of 
the case study are shown in Section 3.2.

3.1 Study area and data

In the case study, the study area (i.e., the target area of the sens-
ing task) is the Shanghai land administrative region (within lat-
itude 30◦42′ to 31◦52′ N, and longitude 120◦52′ to 121◦58′ E), 
the most populous city in China. It is an international center of 
economics, trade, science and technology, and has 16 admin-
istrative districts with a total area of 6340.5 km2. Monitoring

changing phenomena in this city is important for policymakers
and city managers to make decisions, for scientists to explore
urban changes, and for industries to develop novel services.

To explore the spatio-temporal coverage of OVS, we use a
large-scale dataset of taxi GNSS trajectories in Shanghai, which
are provided by Qiangsheng, a large and city-owned taxi com-
pany based in Shanghai. The dataset contains the GNSS tra-
jectories of more than 12,000 taxis during the period of April 1
to April 7 (Sunday to Saturday) (Table 1). The GNSS sampling
frequency is about 10 s. Each GNSS recording is denoted by a
tuple (taxi ID, timestamp, longitude and latitude).

To facilitate the analysis, we conduct data preprocessing ac-
cording to the following five steps:

• Step 1: Removing all trajectory points that are located out-
side of the target area.

• Step 2: Converting coordinates to the World Geodetic
System 1984 as a common spatial reference system.

• Step 3: Assuming a sensing frequency of 60 s, i.e., res-
ampling each trajectory at 60 s intervals.

• Step 4: To explore the RSTC of SS and OVS in differ-
ent sensing tasks, a number of sensing tasks are generated.
We generate 7000 different tasks with Gs ranging from
10× 101 to 160× 160, Gt from 1 h to 12 h and N ranging
from 1 to 1000. Table 1 summarises the requirements of
these tasks.

• Step 5: Combining historical vehicle trajectories with Gs

and Gt, vehicle trajectory matrix is generated for each
task.

Table 1. Data and experimental setup.

Dataset Taxi trajectories
Period 1-7 April 2018 (Sunday to Saturday)
Time interval after data preprocessing 1 min
# taxis in the dataset 12025
Gs (base cells) 10×10, 20×20, 40×40, 80×80

and 160 × 160

Gt (h) 1, 2, 3, 4, 6, 8 and 12
N 1 to 1,000

3.2 Results

Results are presented in four parts. First, the RSTC of SS and
OVS are calculated and compared (Section 3.2.1). Second, the
performance of the proposed HS framework is shown by com-
paring its solution with SS and OVS in terms of spatio-temporal
coverage (Section 3.2.2). Then, the reliability and validity of
HS proposed by our framework is evaluated (Section 3.2.3).
1 The minimum bounding box of the target area is divided into 10 rows

and 10 columns resulting in 100 cells
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(a) 10× 10 (b) 20× 20 (c) 40× 40

(d) 80× 80 (e) 160× 160

Figure 4. The ratio of spatio-temporal coverage in stationary and opportunistic vehicular sensing for various tasks.

3.2.1 Analysis of RSTC in SS and OVS The RSTC of SS
and OVS for various tasks is calculated using seven days vehicle
trajectories (i.e., the sensing cycle for all tasks is seven days)
(Table 1) based on Equations 1 to 4. Figure 4 shows the RSTC

of 7000 tasks with various spatial, temporal, and budget task
requirements. The x-axis, y-axis and z-axis indicate N , Gt and
RSTC , respectively. The green and blue scatters correspond
to SS and OVS, respectively. Meanwhile, the circles represent
tasks where the RSTC of OVS is superior to that of SS, while
the triangles represent tasks where SS can achieve a higher
spatio-temporal coverage. Intuitively, for a fixed number of
sensors, RSTC is higher when the spatio-temporal granularity is
coarser. In terms of the same spatio-temporal granularity, when
the number of sensors is increased, the RSTC of both SS and
OVS becomes larger. However, when the number of sensors
reaches the number of base cells in the target area, RSTC of SS
reaches the maximum (i.e., RSTC = 1) and does not increase
with the increase of sensors any further (Figure 4 (a) to (c)).

By comparing the RSTC of SS and OVS, it is revealed that OVS
is not always better than SS (Figure 4). When the spatial gran-
ularity of a task is coarse, a small number of stationary sensors
can cover the entire target area, while OVS cannot ensure that
vehicles pass each base cell at each time interval due to the ar-
bitrary nature of the vehicle trajectories. For instance, for a spa-
tial granularity of 10 × 10 base cells (which is equivalent here
to a total of 75 base cells since 25 base cells are located on wa-
ter or outside the target area), 75 stationary sensors are enough
to monitor the whole area, while the RSTC of OVS with 1000
vehicles can only reach close to 0.9 (Figure 4 (a)). On one hand,
this is because vehicles can only travel along roads, but in rural
areas where roads are sparse, there may be fewer roads or even
no roads in some of the base cells. On the other hand, there
are fewer vehicles in the suburbs than in the city centre. Thus,
few vehicles or no vehicle pass by these base cells. However,
for tasks with the denser spatial granularity, OVS becomes in-

creasingly advantageous. For instance, when Gs is 80 × 80 or
160×160, due to the limited number of sensors, OVS is advant-
ageous, obtaining a higher spatio-temporal coverage (Figure 4
(e)).

3.2.2 Performance of the hybrid sensing framework To
demonstrate the performance of the HS framework, we assume
historical trajectories of candidate vehicles from the past four
days (1-4 April 2018) are known. We compare the RSTC of
the designed HS with that of SS and OVS for various tasks.
Six tasks with different Gs and N are selected from the pool
of tasks generated in the previous experiment (Section 3.2.1) as
shown in Table 2, consisting of three tasks (Task 1 to 3) where
SS achieved a higher spatio-temporal coverage and three tasks
(Task 4 to 6) where OVS achieved a higher spatio-temporal cov-
erage. For SS, RSTC depends only on Gs and N , thus it is the
same in each iteration. For OVS, since any candidate vehicle
could be selected for the task, we randomly select vehicles, and
calculate RSTC in each iteration. We then take the maximum
RSTC over all iterations. For the hybrid approach, the largest
RSTC in each generation is the result of the iteration. After
many tests, the following parameter settings were empirically
found appropriate: the number of iterations is 200; the muta-
tion rate is 0.25; the immigration rate is 0.2; the population size
is 120; the number of groups and the number of members in
each group is 20 and 10 for tournament selection, respectively.

Table 2 shows RSTC of six tasks. In Task 1, the result of HS
is consistent with SS, i.e., the maximum spatio-temporal cov-
erage is achieved by deploying only stationary sensors and no
vehicular sensors are needed. Compared to SS, RSTC of HS
improves by 20.31 % for Task 3, and 17.33 % for Task 2. For
tasks where OVS can obtain a higher spatio-temporal coverage
than SS, HS does not always outperform OVS. For instance,
OVS can obtain a higher spatio-temporal coverage without sta-
tionary sensors for Task 6, so no stationary sensor is deployed
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Table 2. Six tasks and the ratio of spatio-temporal coverage in stationary, opportunistic vehicular and hybrid sensing.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
Gs 10 × 10 20 × 20 40 × 40 40 × 40 80 × 80 160 × 160
Gt 6 h 6 h 6 h 6 h 6 h 6 h
N 75 200 600 300 300 300
RSTC of SS 1 0.75 0.64 0.32 0.09 0.02
RSTC of OVS 0.64 0.53 0.56 0.47 0.37 0.26
RSTC of HS 1 0.88 0.77 0.55 0.37 0.25
# vehicles in HS 0 23 92 155 293 300
# stationary sensors in HS 75 177 508 145 7 0

by the framework proposed. Meanwhile, for Task 5, only a few
stationary sensors are placed, and RSTC of optimized HS is al-
most the same as RSTC of OVS. However, this does not mean
that OVS is superior to HS for tasks where OVS outperforms
SS. For Task 4, HS improves RSTC by 17.02 % compared to
OVS. To sum up, when Gs is coarse, with an adequate number
of sensors SS can achieve higher spatio-temporal coverage than
OVS and the optimized HS allocates only stationary sensors.
However, when the provided sensors cannot cover all base cells,
the optimized HS can achieve a higher spatio-temporal cover-
age than single-mode sensing, i.e., SS or OVS. When Gs is fine,
it is not always feasible to provide stationary sensors covering
all base cells due to the limited budget. Hence, the advantages
of SS diminish, ane more vehicular sensors will be needed. For
some tasks with a very fine Gs requirement, OVS is slightly
better than HS. The framework we proposed can determine not
only how many stationary and vehicular sensors are needed in
HS (Table 2), but also which base cells stationary sensor should
be placed in. Figure 5 shows the optimal placement of the sta-
tionary sensors for the six tasks determined by the genetic al-
gorithm. The green color means a stationary sensor needs to be
placed in the base cell, while the red color means the base cell
does not need a stationary sensor. It can be seen that station-
ary sensors are mainly deployed close to the boundaries of the
target area – areas not well served by vehicles.

3.2.3 Validation When we apply the proposed HS frame-
work to optimize the sensor deployment, we predict the spatio-
temporal coverage based on historical vehicle trajectories. But
due to the arbitrary nature of vehicle trajectories, the predicted
spatio-temporal coverage may not reflect the actual sensing
coverage during the task execution. Therefore, we need a val-
idation of the assumption that vehicles selected based on their
historic trajectories would achieve a sensing coverage close to
predictions. To validate this assumption, we compare the pre-
dicted coverage from historical trajectories with the actual cov-
erage obtained from current trajectories.

In Section 3.2.2, the deployment of HS was made using tra-
jectories over four days (1-4 April 2018). We will now valid-
ate the coverage estimates using trajectories over the next three
days (5-7 April 2018), supposing that the sensing task is sched-
uled for any of these days. We will focus on the reliability
and validity of these estimates, assuming that sensing cycles
of these tasks are one day (5 April 2018), two days (5-6 April
2018) and three days (5-7 April 2018). The actual RSTC in the
sensing cycle is compared with the estimated RSTC from the
HS deployment framework for Tasks 2 to 5 where mixed-mode
sensing achieves higher RSTC .

Two deployment schemes according to the deployment de-
signed by the proposed framework are evaluated. HS-I is the
scheme where the selection of vehicles executing the sensing
task and the placement of stationary sensors are defined accord-
ing to the HS deployment; HS-II is the scheme where only the
placement of stationary sensors and the number of vehicles are

defined according to the HS deployment, whereas vehicles are
randomly selected. To evaluate the generalization of the frame-
work for tasks with multiple sensing cycles, RSTC of the HS
is calculated in three sensing cycles. For HS-II where vehicles
are randomly selected, we conducted 200 tests to calculate the
mean value of RSTC to reduce bias. In terms of OVS, we select
the same vehicles for the selected tasks, and calculate RSTC of
OVS in three sensing cycles. For SS, coverage is independent
of vehicle trajectories, so it does not change.

Figure 6(a)-(c) show RSTC of SS, OVS and HS during the de-
ployment (based on vehicle trajectories from 1-4 April 2018)
and sensing task execution (based on vehicle trajectories from
5-7 April 2018). The green bars correspond to SS; the blue bars
with and without grey lines correspond to OVS at deployment
and at sensing task execution, respectively; the pure red bars
correspond to HS at deployment, the red bars with grey lines
and grey grids indicate HS-I and HS-II during task execution,
respectively. Error bars on red bars with grey grid represent the
standard deviation of RSTC of HS-II. Overall, HS can obtain
higher spatio-temporal coverage than OVS and SS, regardless
of employing HS-I or HS-II, except for Task 5. More import-
antly, when the vehicle selection is based on historical traject-
ories (during deployment), the predicted spatio-temporal cover-
age is very close to the actual coverage obtained from current
trajectories (during task execution), demonstrating the valid-
ity of the predictions obtained from historical trajectories. In
addition, comparing RSTC values for different sensing cycles
reveals that RSTC does not change significantly for different
sensing cycles. This demonstrates that the proposed framework
is not sensitive to the sensing cycle, so it can be applied to tasks
with various sensing cycles. For Task 5, RSTC of HS is very
similar to that of OVS during the optimal deployment, so spatio-
temporal coverage obtained by HS-I is still similar to OVS in
task execution. However, RSTC of HS-II is slightly lower than
that of OVS. This is because the selection of vehicles and the
selection of stationary sensor locations is a coupled process in
optimal deployment. The placement of stationary sensors is op-
timized based on vehicle selection, which also shows that HS-I
is consistently superior to HS-II. To sum up, the proposed op-
timization framework for HS deployment produces valid estim-
ates of spatio-temporal coverage and can be generalized to tasks
with various sensing cycles.

4. CONCLUSIONS

This study explores the spatio-temporal coverage of SS and
OVS for various tasks, and proposes a HS framework to im-
prove the sensing coverage. Firstly, we calculated and com-
pared the spatio-temporal coverage of SS and OVS for various
tasks with various spatial, temporal and budget requirements.
The results provided a new insight showing that the spatio-
temporal coverage of SS may exceed OVS for certain tasks.
This study also developed a HS deployment framework integ-
rating a genetic algorithm to co-deploy stationary and oppor-
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(a) Task 1 (b) Task 2 (c) Task 3

(d) Task 4 (e) Task 5 (f) Task 6

Figure 5. The places of stationary sensors in hybrid sensing for six tasks.

(a) 1-day sensing cycle (b) 2-day sensing cycle (c) 3-day sensing cycle

Figure 6. Comparison of the ratio of spatio-temporal coverage between deployment and task execution for different 
sensor deployment in different tasks.

tunistic vehicular sensors, thereby reaching maximum spatio-
temporal coverage. Evaluations show that the spatio-temporal
coverage of optimized HS designed by our framework outper-
forms SS and OVS by up to 20.31 %. In tasks where SS or
OVS can achieve a higher spatio-temporal coverage, the pro-
posed HS framework also finds the single-mode sensing as the
optimal solution. The validity and generalization ability for
various sensing cycles are also evaluated. The results show
that the performance of the proposed HS framework is super-
ior or similar to the single-mode sensing. Our study provides
fundamental guidelines on sensor network planning for urban
monitoring applications.

The results of our study need to be interpreted in consideration
of several limitations. First, we mainly focus on co-deploying
stationary sensors in the HS framework. Although it is shown
that the results are still better than SS and OVS, the optimal
solution for combination of vehicles and stationary sensors can-
not be produced. However, our approach also has its advantage.
In real-world, we may not have candidate vehicle trajectories,

but if there are other vehicle trajectories, we can still use the ap-
proach to deploy stationary sensors, and then randomly select
vehicles carrying sensors (i.e., HS-II in Section 3.2.3). Second,
we ignored some technical limitations of sensors during the pro-
cess of urban monitoring, e.g., signal instability and inaccuracy
caused by sensing devices and sensing conditions. Third, we
do not take into account the difference in price between placing
stationary sensors and installing vehicular sensors, and the later
maintenance. In the future, we will investigate on the optimal
solution for combination of vehicles and stationary sensors,
and incentive reward mechanism to achieve maximum spatio-
temporal coverage in terms of OVS.
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