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ABSTRACT: 
 
Owing to the increasing focus on places in urban planning and design, methods to evaluate the quality and value of urban places is 
crucially needed. Many studies use deep learning models to identify the proportion and composition of landscape elements in images 
for evaluation. The accuracy of semantic segmentation achieved with such models is often validated using Cityscapes, a street-level 
image dataset taken from German cities. However, few studies have quantitatively revealed the inference accuracy decrease caused 
by culture-specific characteristics of streetscapes. 
 
In this study, we calculated by-class intersection over union (IoU) and newly-defined indices of false inferences to demonstrate how 
and to what extent deep learning models can infer each landscape element falsely when applied to Japanese street-level images. Our 
analysis revealed that certain landscape elements are more difficult to infer correctly based on specific causes, such as their 
appearances in images and unique characteristics of the fixed physical configuration of Japanese streets. By applying the false 
inference categorization framework presented in this study, researchers can adjust their approaches considering two aspects: a 
decrease in inference accuracies of deep learning models and the impact of culture-specific characteristics of streetscapes on people's 
perception and valuation of urban places. Based on the results and analyses, a future research direction is to develop and implement 
more accurate image recognition models considering culture-specific characteristics to understand people's perceptions of urban 
spaces and assess the value of urban places by using the big data including street-level images. 
 
 

 
* Corresponding author 

1. INTRODUCTION 

1.1 Growing Attention to Places 

During the 20th and 21st centuries, the world has been 
experiencing an era of urbanization (Friedmann, 2010). 
According to the United Nations, the urban population, which 
was only 270 million in 1900, surpassed 750 million in 1950 
and exceeded 50% of the entire world population in 2007. 
Today, the number of urban dwellers is estimated to be 4.2 
billion (Ritchie & Roser, 2018; United Nations, 2018). Looking 
at the two centuries of urbanization macroscopically, it is 
noticeable that we have already passed halfway through the 
significant shift. 
 
Supposing that urban planning was born to address the 
problems arising from urbanization, its aim and scope would 
differ between the first and second halves of the urbanization 
swell. During the first half, the main focuses were improving 
public health, enhancing urban aesthetics, and properly 
arranging urban functions (Corburn, 2009; Ward, 2004). After 
Patrick Geddes advocated civics and Ebenezer Howard the 
garden city, in Europe, North America, and later in Asia, cities 
experienced the advent of the modern urban planning by the 
1910s (Hall, 2013; Home, 1990; Peterson, 2009; Sorensen, 
2005). From then on, rational, valid, objective, scientific, and 
comprehensive planning based primarily on functionality 
defined the urban physical context of the 20th century (Faludi, 
2013; Hudson et al., 1979). 
 

In contrast, the focus of urban planning in the latter half of 
urbanization shifted onto the "place," which acquired an 
academic definition in the 1970s by humanitarian geographers 
such as Yi-fu Tuan and Edward Relph as spatial locations that 
have been become meaningful through human experiences 
(Manzo & Perkins, 2006; cf. Relph, 1976; Tuan, 1979). Places 
became an academic focal point for researchers to understand 
the cities through the lens of their psychological relationships 
with the people. Urban planning and design have gradually 
shifted their focus since the 1960s, when activists and 
philosophers became increasingly critical of rational 
comprehensive urban planning for prioritizing efficiency and 
simultaneously marginalizing people (Irving, 1993). 
 
Meanwhile, urban design practitioners and policymakers have 
maintained a theoretically strained relationship with the theories 
of place that were discussed and developed in human geography 
or environmental psychology. Subsequently, they narrowed 
their argument on places down to the urban regeneration of 
creating lively public spaces (Aravot, 2002). In 1980s, Bryant 
Park in New York City was transformed into a vibrant and 
inviting plaza, symbolizing the revival of a city in disrepair 
(Francis, 1989; Madden, 2010). The New Urbanism movement 
flourished inspired by those practices, resulting in its principles 
articulating in the form of the Ahwahnee Principles and the 
New Urbanism Charter (Grant, 2005; Katz, 1994). Later, 
Danish architect Jan Gehl insisted that planners prioritize 
people's lives before space and architecture. He also argued that 
enhancing public life in public spaces was essential for 
achieving democratic and fulfilling lives (Gehl, 2013). 
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Moreover, British urban planner Patsy Healey specified that 
urban planning projects should aim to enhance the quality of 
places (Healey, 2010). Partly as an antagonism to dominant 
objectivity and rationality adopted in the past, urban planning 
now means not just the planning of spaces but the making of 
places as well. 
 
1.2 Evaluating Urban Places Based on Streetscapes 

Owing to the increasing academic attention paid to urban places, 
there has been prominent needs to assess their quality and value. 
Initially, information about places was gathered through 
workshops and interviews. However, these methods lack 
comparability and scalability (Zhang et al., 2018). Numerous 
research has attempted to solve these problems using 
information technologies and big data. As Tim Cresswell 
pointed out, the concept of place is both epistemological and 
ontological (Cresswell, 2014). Conceptual frameworks, such as 
place identity and landscape value, have been established to 
evaluate the ontological aspects of urban places ("what kind of 
values they have"; Proshansky et al., 1983; Brown, 2004). The 
geographic distributions of place values have been visualized 
using participatory methods of public participation geographic 
information systems (PPGIS; Brown & Weber, 2012). 
 
Meanwhile, streetscape has often been used to assess 
epistemological aspects of places. Evaluating urban spaces 
using visual information, which accounts for most of our 
sensory stimuli, is a longstanding practice, including the notable 
studies by Kevin Lynch (Lynch, 1964, 1984). Then, a new trend 
has been emerging recently that applies computer vision 
technologies to recognize what is in images and videos. 
Ordonez & Berg (2014) conducted a survey in which 
respondents were presented with street images and asked to rate 
the "safety," "uniqueness," and "wealth" they felt about each 
image. Then, they proposed a regression model that estimates 
the level of those attributes using the image features as 
parameters. Zhang et al. (2018) conducted similar regression 
analyses for six indicators: safety, liveliness, beauty, wealth, 
depression, and boredom. These studies provide notable 
examples of how to elucidate people's perceptions using big 
data of streetscape images. 
 
1.3 The Use of Deep Learning Models and Their 
Limitation 

These studies use deep learning models to identify the 
proportion and location of landscape elements in an image. For 
example, the model used by Zhang et al. (2018) is the pyramid 
scene parsing network (PSPNet; Zhao et al., 2017). Such deep 
learning models use Cityscapes, a dataset containing streetscape 
images taken from 50 German cities (Cordts et al., 2016), to test 
the accuracy of pixel-level semantic segmentation; that is, the 
task of inferring which landscape elements each pixel of the 
image expresses. The benchmark indices shown on the 
Cityscapes dataset website indicate how accurately each model 
was able to conduct the labelling task regarding each landscape 
element (Cityscapes Dataset, 2022). 
 
However, because urban streetscape datasets, such as 
Cityscapes, were created to help develop autonomous vehicles, 
most landscape elements annotated are related to transportation 
and mobility. In contrast, the use and form of buildings or street 
furniture, which may seriously affect people's evaluation of a 
city, are not classified on the dataset. In addition, the sidewalks 
along German roads would be different in shape from those on 
Asian roads, and German buildings would be different in 

material and form from those in Africa. Likewise, the colourful 
and vivid billboards that can be seen in large cities in Asian 
countries would not be present in Germany. While it may be 
essential to understand the impact of these cultural differences 
in urban streetscapes on deep learning models, only few 
research have been conducted considering this aspect. 
 
Different cities and countries have different cultures. In turn, 
cultural differences have considerable influences on streetscapes 
through laws and regulations that produce specific types of 
urban spaces, various measures and techniques that affect the 
physical configuration of spaces, and differences in the shape 
and size of products used. Consequently, the difference in 
streetscapes among cultures may affect the research on the 
perception of urban places based on image recognition. 
Although Ordonez & Berg (2014) studied four U.S. cities (New 
York, Boston, Chicago, and Baltimore) and Zhang et al. (2018) 
studied two Chinese cities (Beijing and Shanghai), it has not 
been confirmed whether the deep learning models are as 
accurate as expected when applied to cities in these countries. It 
is necessary to specify the impact of differences in urban 
streetscapes on deep learning models. 
 
1.4 Research Objective 

The purpose of this study is to understand the culture-specific 
effects on the accuracy of deep learning models. This was 
primarily done by comparing the segmentation accuracy of each 
landscape element validated on Cityscapes with those when 
using Japanese streetscape images. Deep learning models used 
were DeepLab v3 plus (Chen et al., 2017) and PSPNet (Zhao et 
al., 2017). Specifically, we compared the published benchmark 
values for each landscape element with those obtained using 
Japanese streetscape images and counted the number of 
incorrectly inferred pixels between different landscape element 
classes. Moreover, we examined the factors that cause such 
differences in accuracy (culture-specific landscape elements and 
differences in design and materials in the same element). In 
doing so, since not all differences in inference accuracy can be 
attributed to culture-specific characteristics, of course, we set up 
a framework for the types of false inferences and attempted to 
distinguish culture-specific effects from others. This trial 
provides insights into the use of big data including urban 
streetscape images for evaluating places in cities worldwide. 
 

2. INDICES AND METHODS 

2.1 Definitions of Indices 

An index to evaluate the accuracy of semantic segmentation 
achieved by deep learning models is intersection over union 
(IoU). This index is defined as the number of "true positive" 
pixels divided by the total number of "true positive," "false 
positive," and "false negative" pixels; the maximum value is 1 
when the model makes completely accurate inferences, while 
the minimum is 0 for the utterly inaccurate inferences. The IoU 
for each class of landscape elements is denoted as the by-class 
IoU, and the mean value for all classes is denoted as the mean 
IoU (mIoU). 
 
IoU is an evaluation index based on inference accuracy on the 
same class. However, the purpose of this study is to clarify how 
the different streetscape characteristics due to the cultural 
background affect the inference accuracy achieved by deep 
learning models. Therefore, in addition to this index, two novel 
indices, namely, the "Number of Falsely Inferred Pixels" (NFIP) 
and "Rate of Falsely Inferred Pixels" (RFIP), are introduced. 
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They are indicators of how each landscape element was inferred 
as other landscape elements. We defined NFIPtf as the number 
of landscape element T pixels per image that have been 
incorrectly inferred as landscape element F. We also defined 
RFIPtf as the percentage of landscape element T pixels that were 
incorrectly inferred as landscape element F. 
 
2.2 Deep Learning Models 

Deep learning models tested in this study are DeepLab v3 plus 
and PSPNet. DeepLab v3 plus is a model that combines a 
spatial pyramid pooling module with an encoder-decoder 
structure to refine the segmentation results, especially at object 
boundaries, by leveraging both (Chen et al., 2017). It has 
achieved an 82.1% mIoU by classes for the pixel-level semantic 
labeling task as a benchmark on the Cityscapes dataset 
(Cityscapes Dataset, 2022). PSPNet is a model that uses a 
convolutional neural network (CNN) to create feature maps, 
followed by a pyramid module to obtain both local and global 
information (Zhao et al., 2017). The mIoU by classes for the 
pixel-level semantic labeling task in the Cityscapes dataset was 
81.2% (Cityscapes Dataset, 2022). In this study, we used the 
models that were pre-trained with the Cityscapes dataset. 
 
2.3 Landscape Elements 

In the Cityscapes dataset, 30 classes of landscape elements are 
defined as shown in Table 1. IoU values are calculated for 19 of 
these landscape elements for each deep learning model. The 
elements included are road, sidewalk, building, wall, fence, pole, 
traffic light, traffic sign, vegetation, sky, person, rider, car, truck, 
bus, train, motorcycle, and bicycle (Chen et al., 2017; Zhao et 
al., 2017). In this study, we attempted to verify the difference in 
accuracy for these 19 classes. 
 

Category Classes 
 IoU Evaluation 

Targets 
Non-IoU 
Evaluation Targets 

Flat Road, Sidewalk Parking, Rail track 
Human Person, Rider - 
Vehicle Car, Truck, Bus, On 

rails, Motorcycle, 
Bicycle 

Caravan, Trailer 

Construction Building, Wall, 
Fence 

Guard rail, Bridge, 
Tunnel 

Object Pole, Traffic sign, 
Traffic light 

Pole group 

Nature Vegetation, Terrain - 
Sky Sky - 
Void - Ground, Dynamic, 

Static 
Table 1. Landscape elements defined in Cityscapes dataset. 

 
2.4 Images of Japanese Streetscape 

In this study, the target of comparison with the inference 
accuracy achieved on German urban streetscape imagery was 
that achieved on the Japanese counterparts. We created a dataset 
comprising 1,990 images. Of those images, 1,790 were acquired 
from Google Street View. Image acquisition was carried out by 
specifying latitudes and longitudes approximately every 100 m 
in the north-south direction and approximately every 200 m in 
the east-west direction in an area that roughly covers the 
southern half of the special wards of Tokyo, Japan (35.68°N - 
35.72°N, 136.6°E - 136.8°E). The imaging direction was set as 
the following: due north at the initial point, due east at the next 

point, then due south, due west, and coming back to due north. 
After collecting the images, we manually excluded unsuitable 
ones for streetscape image recognition, such as heavily distorted 
or indoor images. 
Moreover, one hundred images of Fujimidai neighborhood, 
Kunitachi City, Tokyo, where the authors' research group is 
conducting their joint research. Yet another one hundred Google 
Street View images obtained by the authors from different parts 
of the Tokyo metropolitan area were added. Note that, although 
using images acquired from Google Street View for analysis 
was not prohibited as of 2019 when we conducted this study, it 
is not permitted now according to their updated terms and 
conditions. In response to the change in their service, we opted 
to use images obtained from the open-source imagery platform 
Mapillary instead of Google Street View. The images used in 
this study are available on the Zenodo repository (doi: 
10.5281/zenodo.6546479). 
 
2.5 Calculations of By-class IoUs and Falsely Inferred Pixel 
Indices 

Using the images and deep learning models described above, we 
calculated the by-class IoUs and falsely inferred pixel indices 
using the following procedure. First, semantic segmentation was 
performed on the prepared 1,990-image dataset using the two 
deep learning models to paint images into 20 area types, namely 
selected 19 landscape elements in the Cityscapes dataset and 
other areas. Second, manual annotation was applied to each 
image to define the ground truth for the regions of the landscape 
elements. Third, we used an online platform for computer vision 
named Supervisely (https://supervise.ly/) to recognize the 
ground truth and inferred landscape element class on a pixel-by-
pixel basis between the ground truth and inference results. Then, 
by-class IoUs were calculated based on the number of pixels for 
"true positive," "false positive," "true negative," and "false 
negative." We compared these values to those published on the 
Cityscapes dataset website. In addition, we calculated how 
landscape elements were falsely inferred. Finally, for all the 
pairs of different classes, NFIP and RFIP were calculated. 
 
2.6 Analysis of Factors That Cause Differences in the 
Inference Accuracy 

Next, we examined the forms and causes of false inference that 
decrease the accuracy of semantic segmentation achieved by 
deep learning models. First, based on the IoU and falsely 
inferred pixel indices calculated by the method described in the 
previous section, we detected pairs with a large percentage of 
false inferences (combinations of landscape elements in ground 
truths and inference results). In addition, because the "void" 
area of the ground truth is thought to contain landscape 
elements that are not covered by the model but are likely to 
influence people's evaluation of places, we specifically 
extracted typical elements included in the "void" area. Then, we 
examined how they were inferred by DeepLab v3 plus. 
 
Based on these results, we developed a framework for assessing 
the forms and causes of false inference. Next, taking Japanese 
streetscapes as an example, we discussed the impact of culture-
specific street characteristics on the inference accuracy of the 
deep learning models. This discussion ranges across the 
landscape element classes set in the Cityscapes dataset and 
other landscape elements included in the void area. 
 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022 
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-73-2022 | © Author(s) 2022. CC BY 4.0 License.

 
75



 

3. RESULTS 

3.1 Calculated By-class IoUs and Decrease in the Inference 
Accuracy 

Figure 1 presents the calculated by-class IoUs for the two deep 
learning models. Note that the "train" class was excluded 
because not enough images taken in Tokyo contained trains. 
Therefore, the by-class IoUs include values for 18 types of 
landscape elements in the figure. 
 

 
Figure 1. The mIoU and by-class IoUs for Germany and Japan. 
 
The mean IoU was 82.1% using DeepLab v3 plus and 81.2% 
using PSPNet on the Cityscapes dataset (Cityscapes Dataset, 
2022). However, the accuracy dropped to 40.0% and 22.2%, 
respectively, for the Tokyo dataset. The range of accuracy 
decreases were relatively small for the "road" (18.4 points for 
DeepLab v3 plus and 23.8 points for PNPNet) and "vegetation" 
classes (22.6 points and 23.9 points, respectively). On the other 
hand, it was the most significant for the "sidewalk" class, at 
65.0 and 80.6 points, respectively. This was followed by the 
"traffic light" class results, at 73.7 and 76.9 points, respectively. 

There were also differences in how the accuracy dropped 
among the deep learning models. The "sky" class had an 
accuracy decrease of only 10.2 points for DeepLab v3 plus, 
while PSPNet experienced a 75.1-point drop. 
 
3.2 Calculated Falsely Inferred Pixel Indices and Trends in 
False Inference 

Falsely inferred pixel indices (NFIP and RFIP) defined in the 
methods section were calculated for DeepLab v3 plus. Table 2 
reports the NFIPs for the selected landscape element pairs based 
on the ground truth and inference results. The resolution of 
Google Street View images used in this study is 640x640; in 
other words, each image consists of 409,600 pixels. The full 
table is available on the same Zenodo repository mentioned 
above. The rows of the table indicate the ground truth classes, 
which indicate landscape elements defined in the Cityscapes 
dataset, plus the "google" class, which is independently set up 
for the Google logo included in the Google Street View images. 
The number of rows is 29 because the three classes of "void" 
have been integrated. The columns show inference results that 
include 18 landscape element types, excluding the "train" class, 
out of the 19 landscape elements that deep learning models 
target for inference. The number in the cell, where the ground-
truth "car" and inference result "car_dl" intersect, indicates that 
the area of where the actual car was correctly inferred to be a 
car was 3,521.04 pixels per image. Similarly, the value in the 
cell, where "sidewalk" and "road_dl" intersect, indicates that the 
area inferred by the model to be a road despite being a sidewalk 
was 15,345.46 pixels per image. 
 

Ground Truth Inference Result (unit: pixels per image) 
road_dl car_dl building_dl sky_dl 

Road 108763.77 146.84 166.44 1.11 
Sidewalk 15345.46 125.05 1415.95 6.85 
Car 102.15 3521.04 150.03 0.02 
Building 304.77 167.99 86227.49 502.00 
Wall 1187.84 57.41 3278.10 6.82 
Fence 230.80 52.36 2023.15 79.03 
Vegetation 404.13 49.23 1011.47 57.78 
Terrain 953.63 9.33 61.66 0.14 
Sky 1.29 0.30 4017.82 67083.93 
Table 2. NFIP for the selected pairs of landscape elements. 

 
Table 3 reports the RFIPs that indicate what percentages of the 
ground truth for certain selected landscape elements were 
inferred as specific landscape elements. The full table is 
available on the Zenodo repository. For example, the value in 
the cell where "road" and "road_dl" intersect indicates that the 
model correctly inferred 98.09% of the roads as roads. On the 
other hand, the cell value where "traffic light" and 
"traffic_light_dl" intersect is 5.82%, indicating that traffic lights 
were rarely correctly identified. 
 
There were 17 pairs for which more than 10% of the ground 
truth was incorrectly inferred as another specific landscape 
element (Table 4). The highest percentage of false inferences 
was found when traffic lights were inferred as buildings 
(60.72%), followed by sidewalks inferred as streets (60.33%). 
Generally, the pairs with the lowest accuracy included 
"sidewalk," "traffic light," or "traffic sign" classes. For the 
"sidewalk" class, more than 60% of the cases were classified as 
the "road" class. For the "traffic light" class, approximately 60% 
of the area were inferred as "building," and approximately 12% 
as "vegetation." For the "traffic sign" class, 53% of the areas 
were correctly identified as traffic signs; however, 
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approximately 23% were inferred as the area of the "building" 
class. Although the IoU for the "traffic sign" class was low, 
namely, 0.15, the fact that 53% of the ground truth areas were 
correctly recognized suggests that in many cases, areas that 
were not traffic signs were inferred falsely as traffic signs. 
 

Ground Truth Inference Result (unit: %) 
road_dl car_dl traffic_light_dl sky_dl 

Road 98.09 0.13 0.00 0.00 
Sidewalk 60.33 0.49 0.00 0.03 
Car 2.52 86.98 0.00 0.00 
Building 0.33 0.18 0.00 0.54 
Traffic sign 0.32 6.25 0.24 2.71 
Traffic light 0.12 0.00 5.82 7.68 
Vegetation 0.82 0.10 0.00 0.12 
Terrain 25.89 0.25 0.00 0.00 
Sky 0.00 0.00 0.00 86.87 
Table 3. RFIP for the selected pairs of landscape elements. 

 
Ground Truth Inference Result RFIP (%) 
Sidewalk Road 60.33 
Rider Person 33.33 
Truck Car 23.46 
Bus Car 38.64 
Motorcycle Car 12.86 
Motorcycle Bicycle 11.00 
Motorcycle Building 13.79 
Wall Building 25.30 
Fence Building 21.23 
Fence Vegetation 11.51 
Pole Building 26.85 
Pole Vegetation 18.67 
Traffic sign Building 23.41 
Traffic light Building 60.72 
Traffic light Vegetation 11.96 
Terrain Road 25.89 
Terrain Vegetation 25.37 

Table 4. List of the pairs with RFIP values higher than 10%. 
 
3.3 Inference Trends for Landscape Elements Not Defined 
as Classes 

We have mentioned the analysis of landscape elements defined 
as classes in the Cityscapes dataset. However, other landscape 
elements are also essential to people's evaluation of urban 
places. Therefore, we decided to count landscape elements that 
were not defined in the Cityscapes dataset but were annotated as 
being in the "void" region. Then, we identified to which classes 
each element was inferred to belong to by DeepLab v3 plus. Six 
hundred images were randomly selected out of the 1,990-image 
dataset prepared, and the presence or absence of each element, 
not the number of pixels, was assessed for each image. 
 
Table 5 lists the landscape elements appearing in at least 30 of 
the 600 images. Streetlights were the most common, appearing 
in 138 images, followed by lightning rods/transformers (108 
images), bollards (86 images), triangular cones (78 images), 
plantings (70 images), curbs (67 images), and flowerpots (63 
images). As for signboards and billboards, because people's 
impressions might differ depending on their form, they were 
divided into eight types: back of traffic signs, rooftop billboards, 
commercial/non-commercial side signboards, free-standing 
commercial/non-commercial billboards, and standing 
commercial/non-commercial signboards. 

Regarding these elements, we counted the classes each 
landscape element was often inferred as. Figure 2 demonstrates 
the case of streetlights. They were inferred as "building" in 73 
images, "vegetation" in 42 images, and "sky" in 34 images. 
Similarly, lightning rods and transformers were most frequently 
inferred as "vegetation" in 54 images; bollards were often 
inferred as "pole," "road," or "sidewalk; triangular cones were 
frequently inferred as "road," "building," or "traffic sign." 
 

Element N Element N 
Streetlights 138 Litter bins 44 
Lightning rods/ 
transformers 

108 Commercial side 
signboards 

43 

Bollards 86 Vending machines 43 
Triangular cones 78 Antennas 37 
Plantings 70 Terminal/ junction 

boxes 
36 

Curbs 67 Electric wire 
protection covers 

34 

Flowerpots 63 Standing commercial 
signboards 

31 

Free-standing non-
commercial billboards  

51 Switchboards 30 

Free-standing 
commercial billboards 

49   

Table 5. List of frequently appearing elements in “void” 
regions. 

 
Figure 2. Classes the streetlights were inferred as. 

 
4. DISCUSSION 

4.1 Typology of False Inference 

This study reveals deep learning models' tendency to 
misinterpret landscape elements in different countries by 
calculating IoUs and falsely inferred pixels indices. As 
represented in the results section, false inferences were more 
likely to occur among certain combinations of landscape 
elements. Reviewing the images in which false inferences occur 
suggests six types of false inferences, where each pair of 
landscape elements falls into one of them. 
 
These six types are first classified along two axes: "similarity of 
appearance/proximity of location" (the forms of false inference) 
and "based on appearance in the image/based on culture-
specific characteristics" (the causes of false inference). The 
"based on culture-specific characteristics" category is further 
divided based on the characteristics of the fixed physical 
configuration of the street space and characteristics of the 
mobile elements that appear temporarily in that space (Table 6). 

Road, 1

Sidewalk, 0

Building, 73

Wall, 1
Fence, 0

Car, 0

Bus, 0

Truck, 0

Motorcycle, 
0

Bicycle, 0Train, 0Person, 0Rider, 0

Pole, 14

Traffic light, 
5

Traffic sign, 
4

Sky, 34

Vegetation, 
42

Terrain, 0
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In the sixfold typology, "similarity of appearance based on 
appearance in the image" (Type I) and "proximity of location 
based on the appearance in the image" (Type II) are related to 
issues of representation. They are not related to differences in 
the streetscape based on cultural differences. In addition, in the 
"based on culture-specific characteristics" category, those 
concerning the characteristics of mobile products (Type III and 
IV) are mainly related to the shape and color of mobility 
products. For example, we can observe examples where buses 
traveling on Japanese streets are smaller than their German 
counterparts, resulting in Japanese buses being falsely inferred 
as cars. However, as such differences regarding products are not 
within the scope of urban design and planning, a detailed 
analysis is omitted. 
 

Cause  Form 
  Similarity of 

appearance 
Proximity of 
location 

Based on appearance in the 
image 

Type I Type II 

Based on 
culture-
specific 
characteristics 

Mobile 
products that 
appear 
temporarily 
in the space 

Type III Type IV 

Fixed 
configuration 
of the street 
space 

Type V Type VI 

Table 6. The typology of false inferences. 
 
Based on this, we insist that the types of false inference that are 
affected by the differences in the streetscape characteristics in 
Germany and Japan are those "based on the characteristics of 
the streetscape," namely Type V and VI. Table 7 lists false 
inference types for each of the pairs presented in Table 2, which 
demonstrated RFIP values higher than 10%. The following 
section discusses the combinations prone to false inferences 
based on the culture-specific characteristics of the streetscape 
and factors that contribute to such inferences. 
 

Type Pair 
 Ground Truth Inference Result 

I Rider Person 
 Terrain Vegetation 

II Motorcycle Building 
 Fence Vegetation 
 Pole Building 
 Pole Vegetation 
 Traffic sign Building 
 Traffic light Building 
 Traffic light Vegetation 

III Truck Car 
 Bus Car 
 Motorcycle Car 
 Motorcycle Bicycle 

IV - - 
V Sidewalk Road 
 Wall Building 
 Fence Building 

VI Terrain Road 
Table 7. Types of false inference for pairs of ground truth 

elements and inferred classes of which RFIP>10%. 
 

4.2 Characteristics of Japanese Streetscapes and Their 
Effects 

Among the false inference types, we will address those in which 
the streetscape characteristics are considered a factor (Types V 
and VI). Three pairs of classes, namely, "sidewalk/road," 
"wall/building," and "fence/building," were placed under the 
category of "similarity of appearance based on culture-specific 
characteristics (fixed configuration of the street space)." The 
reason why sidewalks and roads are hard to distinguish seems to 
be that sidewalks and roadways are just separated by low curbs 
or simple white lines, with no difference in height between the 
two in many places, as this is permitted under the law due to the 
de facto difficulty in securing sufficient road space in the 
existing urban areas with high building density (Figure 3a). 
 
(a) An example of the false inference of sidewalk/road: a type 
of the culture-specific similarity of appearance 

 
(b) An example of the false inference of wall/building: a type of 
the culture-specific similarity of appearance 

 
(c) An example of the false inference of fence/building: a type 
of the culture-specific similarity of appearance 

 
(d) An example of the false inference of terrain/road: a type of 
the culture-specific locational proximity 

 
Figure 3. Examples of the false inference based on culture-

specific fixed configuration of streets (image/inference result). 
 
Several possible reasons for the "wall/building" (Figure 3b) and 
"fence/building" (Figure 3c) pairs are the following. Firstly, 
free-standing structures are often provided to block the street 
and private property in Japanese urban areas, which is 
ubiquitous, especially in residential areas. Secondly, structures 
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found on Japanese roads, such as free-standing stone walls and 
block walls, have appearances similar to walls of European 
buildings in terms of colour and material, contributing to the 
decrease in the inference accuracy. The "terrain/road" pair was 
determined to fall under the category of "proximity of location 
based on culture-specific characteristics (fixed configuration of 
the street space)." The scale of plantings along Japanese roads is 
usually tiny, so they are perceived as a continuous flat structure 
along the road (Figure 3d). 
 
The abovementioned characteristics of Japanese streetscapes 
might influence the analysis of several issues related to people's 
streetscape evaluation. For example, the perception of safety 
based on the lack of clear distinction between sidewalks and 
roadways, the perception of comfort based on the placement of 
greenery along the street, and the perception of historical and 
cultural aspects based on Japanese elements such as stone walls, 
Japanese style hedges, and walls or fences of shrines and 
temples. When analysing image-based streetscape evaluation 
for a specific country, researchers should recognize the factors 
described in this section and consider improving the deep 
learning model via transfer learning, focusing on the relevant 
landscape elements. 
 
4.3 Other Landscape Elements That May Influence 
People's Evaluation of Streetscapes 

In this study, we also focused on landscape elements that are 
classified as "void" in the Cityscapes dataset owing to a lack of 
need to classify them to develop autonomous vehicles. However, 
they can potentially impact people's evaluation of streetscapes 
significantly. Table 8 lists all pairs of landscape element classes 
in which the top 15 most frequently occurring landscape 
elements in the void were inferred as another specific landscape 
element at a rate of 20% or more. They are organized along the 
same two axes as in Table 4: forms ("similarity of 
appearance/proximity of location") and causes ("based on 
appearance in the image/based on culture-specific 
characteristics"). 
 
The characteristics of streetscapes in Japanese cities seem affect 
the inference accuracy with the following points: As indicated 
in the previous section, the division of roadway, sidewalk, and 
greenery on the road cross-section is unclear; the colour and 
shape of free-standing structures are similar to those of 
buildings. In addition, there are many colourful billboards, 
signages, and vending machines in the city, especially on 
narrow streets. The everyday use of the streets by residents 
(including the placement of flowerpots) is prevalent as well. 
These may affect the evaluation of the quality and value of 
urban places, including safety, convenience, and the strength of 
community ties. We insist that it is necessary to identify 
landscape elements that often appear in the streetscape of the 
country under study, whose presence may indicate cultural 
characteristics, and create an image recognition model that 
considers peculiarities when analysing urban places. 
 

5. CONCLUSIONS 

In this study, two deep learning models (DeepLab v3 plus and 
PSPNet), whose accuracies were verified on a German urban 
streetscape image dataset (Cityscapes), were applied to Japanese 
streetscape images to verify the inference accuracy for each 
landscape element. The analysis was conducted based on 
comparing the values for the IoU metric. We also defined novel 
indices of the falsely inferred pixels to analyse the likelihood 
and factors for patterns of false inference that occur between the 

image recognition classes and landscape elements. The analysis 
revealed that the accuracy was significantly lower with Japanese 
streetscape images. Furthermore, the range of accuracy decrease 
varied depending on the class of landscape elements. 
Considering that Japan was the only target of this study, it may 
be necessary to verify whether the accuracy verified using 
images of urban streetscapes in other cultures is similar. Not all 
false inferences are the result of culture-specific characteristics, 
but if culture-specific landscape elements that tend to have 
significant impacts on the inference accuracy could be identified, 
image recognition models would be improved to be much more 
suitable for each country, making empirical studies of the 
perception and values of places more forcible.  
 
Type Pair 
 Landscape Element Inference Result 

I Bollards Pole 
 Triangular cones Traffic sign 
 Plantings Vegetation 
 Flowerpots Vegetation 
 Litter bins Building 

II Streetlights Building 
 Streetlights Vegetation 
 Streetlights Sky 
 Lightning rods/transformers Building 
 Lightning rods/transformers Vegetation 
 Lightning rods/transformers Sky 
 Bollards Road 
 Bollards Sidewalk 
 Bollards Building 
 Triangular cones Road 
 Triangular cones Building 
 Curbs Vegetation 
 Flowerpots Sidewalk 
 Litter bins Car 
 Antennas Building 
 Antennas Sky 
 Terminal/junction boxes Building 
 Terminal/junction boxes Vegetation 
 Electric wire protection covers Road 
 Electric wire protection covers Building 
 Electric wire protection covers Fence 
 Electric wire protection covers Vegetation 
 Outdoor units of air conditioners Building 

III - - 
IV - - 
V Billboards/signboards Traffic sign 
 Curbs Road 
 Curbs Sidewalk 
 Vending machines Traffic sign 

VI Billboards/signboards Building 
 Plantings Road 
 Plantings Sidewalk 
 Flowerpots Building 
 Vending machines Car 
 Vending machines Building 
 Door gates Building 
 Door gates Wall 
 Door gates Fence 
Table 8. Pairs of elements and their corresponding false 

inference types (Those categorized into void areas). 
 
The classification framework for the various false inference 
patterns introduced in this study will help identify culture-
specific characteristics. The framework consists of two axes: the 
forms (divided into similarity in appearance and proximity of 
location) and causes (divided into appearance in the image and 
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culture-specific characteristics). Furthermore, it is possible to 
distinguish urban design features from others by categorizing 
culture-specific features into movable products and fixed 
physical configurations. Using this methodology, researchers 
can adjust deep learning models considering two aspects: the 
decrease in model accuracies and impact of culture-specific 
streetscape characteristics on people's perception and valuation 
of urban places. Based on the results and analyses presented in 
this study, a future research direction is to develop and 
implement more accurate and tailormade models to understand 
people's perceptions of urban spaces, as well as the value that 
places have, by using big data such as street-level images. 
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