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ABSTRACT:

Clustering data streams has gained popularity in recent years due to their potential of generating relevant information for planning
building automation, evaluating energy efficiency scenarios, and simulating emergency protocols in indoor spaces. In this paper, a Data
Stream Affinity Propagation (DSAP) clustering algorithm is proposed for analyzing indoor localization data generated from e-counters
systems. The data streams are a sequence of potentially infinite and non-stationary data points, arriving continuously where random
access to the data is not feasible and storing all the arriving data is impractical. The DSAP model is developed based on a two-phase
approach (i.e., online and offline clustering phases) using the landmark time window model. It is non-parametric in the sense of not
requiring any prior knowledge about the number of clusters and their respective labels. The validation and performance of the DSAP
model is evaluated using real-world data streams from a behavioural experiment aimed at finding new spatio-temporal patterns in stair
usage due to an educational intervention campaign.

1. INTRODUCTION

Indoor localization technologies have been explored for gener-
ating location data of people in indoor spaces, including WiFi,
BLE beacons, RFID tags, visible light wave, and ultra-wideband
(Namiot, 2015). In particular, infra-red, optical (e.g., RGB videos
or flat images), break beam, thermal, and ultrasonic sensors have
been used for counting people in indoor spaces (Mautz, 2012).
One simple way of counting people is using ultra-wideband radar
sensors mounted in e-counter devices that can be used for count-
ing multiple people passing through a passage or a wide door.
Two sensors equipped with antennas which have narrow beam
width are used to form two invisible electronic layers in the path.
These layers are used for sensing the presence of a person and
recognizing the direction of the movement.

The stream data generated from e-counters can be considered as
a sequence of infinitive, ordered, and fast-changing data points
d1, d2, ..., di that are arriving continuously (which requires an
online clustering phase through the data points) where random
access to the data points is not feasible and storing all the arriv-
ing data points is impractical (which requires an offline clustering
phase) (Han et al., 2011). Therefore, the traditional set-up where
an entire static data set is available for clustering can not be ap-
plied to data streams (Toshniwal, 2013)

Time window models including sliding, damped, landmark, and
pyramidal, are also needed to develop stream clustering mod-
els (Nguyen et al., 2015). These time windows aim to handle
the spatio-temporal distribution of the data streams. Selecting
a time window makes it possible to analyze and store a stream
within a specific time frame and discard the previous historical
data (Mansalis et al., 2018).

The affinity propagation method has been chosen for analyzing
indoor localization data in this research work. It is a partitioning-
based message passing algorithm that treats every data point as a
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potential centroid, and each point is given equal importance (Del-
bert, 2009). Also, the AP algorithm does not require the number
of clusters as an input which makes any continuously operating
automated operation more robust, especially if it is implemented
in a cloud environment. Overall, there are a few robust streaming
algorithms based on the Affinity Propagation clustering method.
The clustering process usually requires a strategy capable of con-
tinuously partitioning stream data points while taking into ac-
count restrictions of memory and time. Table 1 summarizes the
main characteristics of four streaming algorithms that were pro-
posed in previous research work.

Algorithms Year Time window model

StrAP 2008 Sliding (online)
IStrAP 2012 Sliding (online)
ISTRAP 2018 Sliding (online)

APDenStream 2013
Sliding (online)

Pyramidal (offline)

Table 1: Overview of streaming AP clustering algorithms

This paper proposes a novel Data Stream Affinity Propagation
(DSAP) model using the landmark time window for clustering
data streams obtained from indoor e-counters. The DSAP model
is capable of supporting the online-offline phases. In the online
phase, micro-clusters are constantly computed using a landmark
time window to handle the most recent data points in the stream
and to continuously follow the changing data distribution. The of-
fline phase is then performed, and the micro-clusters themselves
are clustered to provide the overall clustering results. The entire
online and offline phases that deliver the final clusters are per-
formed without any user intervention.

To the best of our knowledge, no research work on indoor lo-
calization data streams using a streaming AP algorithm and the
landmark time window model has been previously proposed in
the literature. Out of these previously proposed algorithms, none

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022 
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-81-2022 | © Author(s) 2022. CC BY 4.0 License.

 
81



of them have explored the landmark time window before. Mainly
because StrAP, IsrAP, ISTRAP, and APDenStream take the op-
portunity to use a repository to emulate the sliding time window
model in the online phase.

Our proposed DSAP algorithm is actually a simplified approach
in comparison to IStrAP (Zhang et al., 2008), ISTRAP (Li and
Li, 2012), and APDenStream (Zhang et al., 2013). Our research
premise is that indoor localization data streams have a unique
time-evolving cluster structure that does not require update strate-
gies such as outlier repository, decay function, and recurrence
judgement rules to handle outliers, mainly because the constrained
indoor spaces make the occurrence of outliers extremely low. To
the best of our knowledge, StrAP, IsrAP, ISTRAP, and APDen-
Stream have not yet been applied for indoor localization data
streams. Unfortunately, the programming codes of these algo-
rithms were not provided by their authors to us, hampering their
evaluation in terms of finding streaming clusters from indoor lo-
calization data.

We demonstrate the potential of applying DSAP to find new in-
sights into stair usage in indoor spaces. The experimental results
validate the robustness of the DSAP model in handling dynami-
cally evolving data streams based on intrinsic validation indices
and performance evaluation metrics.

2. DATA STREAM AFFINITY PROPAGATION

The DSAP model has been developed to overcome the clustering
limitations such as detecting abrupt and gradual changes as soon
as they occur, and distinguishing drift from noise. It consists of
three main phases described as follows:

• Clustering Phase: computes micro-clusters using a land-
mark time window model to harvest data streams. It also
computes macro-clusters by re-clustering all the centroids
of the micro-clusters found in each time window. The goal
is to discover hidden dense clusters structures from indoor
localization data streams.

• Validation Phase: assesses the quality of the clustering re-
sults when there is no ground truth label of data. The se-
lected metrics are silhouette index, Caliński-Harabasz in-
dex, and Davies-Bouldin index (scikit-learn developers, 2020).
The focus is to assess between-clusters dispersion and inter-
cluster dispersion for all clusters.

• Performance Evaluation Phase: estimates the efficiency
of the DSAP algorithm using the time and space complexity
metrics. The aim is to find the right balance between mem-
ory consumption and the speed of execution for the DSAP
algorithm.

The DSAP source code in Python programming language is freely
available at https://github.com/nasrineshraghi/DSAP. The version
of Python used is 3.7. Spyder 3.3.6 IDE which is part of Ana-
conda 2019. Main libraries applied in Python are scikit-learn,
pandas, numpy, matplotlib, datetime, scipy, psutil, itertools and
skmultiflow. Figure 1 summarizes the DSAP model discussed in
this section. The three phases are depicted with their main steps
and respective tasks.

2.1 Clustering Phase

The DSAP algorithm is based on the online and offline clustering
phases. The online micro-cluster phase detects newly arriving
data points and updates the historical clusters accordingly. The
offline macro-cluster phase generates summary clusters from the
centroids of the micro-clusters.

Figure 1: Flowchart of the proposed DSAP model

2.1.1 Online Micro-Clustering The online micro-cluster phase
initializes by receiving data streams as a continuous sequence of
data points that are harvested using the landmark time window
model. Therefore, the specifications for creating a landmark time
window are its start time and landmark duration. In practice, the
landmark duration can be defined by using a landmark time in-
terval (e.g. every hour) or by a landmark event (e.g. every 100
data points). Every time a new window is created, all the data
points from the previous windows are discarded. All data points
within the window have the same weights, which can allow us to
generate hourly, daily, or monthly summary comparisons.

This online micro-cluster phase consists of three major steps: ini-
tialization, comparison, and activateAP with update ϵWj .

Initialization Step

In the initialization step, the data stream is ingested in a win-
dowed manner using the landmark time window model W0,W1, ...Wj

where each window Wj contains Ω data points and L is defined
as the time interval of window Wj = [x1, x2..., xi, ..xΩ].

The clustering process is initiated by assigning the first sequence
of data points from a data stream to the initial landmark time
window W0. The landmark time interval is a-priori determined
based on user requirements, data rate, and expected latency of the
expected data streams. For example, if high latency is expected in
harvesting the data points, a long duration for the time intervals
is advised. In contrast, in processing data from high rate streams,
short time intervals will improve the clustering process.

The AP algorithm is applied to the all data points belonging to the
first time window W0 for computing the initial micro-clusters and
their respective centroids Cm = Cm1 , Cm2 , ..Cmq . The clusters
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and data points produced by the DSAP algorithm are represented
as sequence of tuples:

[s1 = (Cm1 , N1, t1)] , [s2 = (Cm2 , N2, t2)] ,

...,
[
sq =

(
Cmq , Nq, tq

)]
where Cmq is the centroid of a micro-cluster q, Nq is the number
of data points assigned to the cluster q, and tq is the last times-
tamp assigned to the micro-cluster q.

All data points within the initial landmark time window are con-
sidered as a potential exemplar until a robust set of centroids and
their respective micro-clusters are found by computing the four
AP matrices, i.e. similarity matrix, responsibility matrix, avail-
ability matrix and criterion matrix. The hyperparameters such
as the preference parameter, the damping factor, the maximum
number of iterations, and the convergence iteration are also set
up during this phase. Their values will be constant throughout
all the landmark time windows in the online micro-cluster phase.
The preference value keeps as a median of the similarity matrix,
and the AP algorithm automatically calculates it each time. The
damping factor is in the range of 0.5 to 1, and based on data, it
varies. It can be obtained by testing different values. The rest of
the hyperparameters are kept as default values.

A new dynamic threshold ϵWj is introduced in the DSAP model
for incrementally computing the clusters as time passes by, and as
a result, allowing the analysis to take into account the changes of
recurrently occurring clusters. For the initial time window W0, an
intra-cluster distance matrix is calculated between all data points
and their respective centroids in each cluster using the Euclidean
distance function. The mean of all these intra-cluster distances
gives the initial value of the ϵW0 threshold that will be used in
the next step. The outputs of the initialization step are a set of
micro-clusters centroids (Cm) and an initial ϵW0 .

Comparison Step

As new data points arrive, the DSAP model allocates them into
their respective new time windows Wj = [x1, x2..., xi, ..xΩ] us-
ing the same landmark time interval L as defined in the previous
step. For each new data point, a set of tasks are devised as fol-
lows:

• Compute the Euclidean distances between each new data
point xi and the current micro-cluster centroids Cmq using
Equation 1.

d
(
Cmq , x

)
=

√√√√ n∑
1

(
xi − Cmqi

)2
(1)

where Cmq is a current micro-cluster centroid, x is a new
data point within the current landmark time window; xi and
Cmqi

are Euclidean vectors starting from the origin; and n
space.

• Compare the computed Euclidean distances against the cur-
rent ϵWj . If one of the computed distance values is less than
the current ϵWj threshold (i.e. min(d([Cm], xi)) < ϵWj ),
this new data point will be straightforwardly placed within
a current existing cluster. The DSAP model merges the new
data point xi with the closest existing cluster by updating the
time tq and adding to the number of data points Nq values
in the cluster centroid tuple Cmq . However, if all computed

distance values are higher than the current ϵWj threshold,
the new points will be saved in the time-window repository
temporarily until the landmark time window ends, and later
be used in the next ActivateAP and Update step.

With the arrival of new data points, xi and xj , the intra-cluster
distances T and T ′ are computed in a time window W1. In this
case, the T distance is less than the current ϵW1 , and the new
data point is merged with the existing cluster Cmi . In contrast,
the computed distance T ′ is greater than the current the current
ϵW1 threshold, and this new data point will be saved in the time-
window repository until the end of the streaming for the time win-
dow W1. These tasks are performed every time a new landmark
time window is created and new data points arrive.

The outputs of the comparison step are the set of micro-clusters
from the previous window, but now with new data points associ-
ated with some of the centroids, and an updated timestamp corre-
sponding to the chosen centroids. Additionally, n number of data
points whose Euclidean distance from the centroids was greater
than ϵWj are temporarily kept in the time-window repository.

ActivateAP and Update ϵWj

All the data points that have been temporarily accumulated dur-
ing the execution of the previous step are used to compute new
micro-clusters C′

m using the AP algorithm once again. These
new clusters will be added to the existing clusters Cm that be-
long to their respective landmark time windows. As a result, the
updated Cm = C′

m + Cm is achieved. The new micro-clusters
will have their respective timestamps associated with them.

The next task is to compute the new ϵWj by taking into account
the centroids of the new micro-clusters found within a particu-
lar landmark window. This is accomplished by computing the
mean of the intra-cluster distances using the new micro-clusters.
The update ϵWj is computed by applying the mean between the
new and the current ϵWj . The updated ϵWj is then used when
the forthcoming data points from a new landmark time window
arrive.

In order to avoid the number of centroids spreading beyond con-
trol, old centroids that are no longer deemed relevant are removed.
To do this, an expiration time hyperparameter ex is introduced.
This value is applied to forget centroids that have not been se-
lected in the recent windows as quantified by ex. The ex number
can be chosen to include all the time windows from the start or
just the last few windows, depending on the user requirements.
All the clusters whose associated timestamps are older than ex
window lengths (ex × L) from the current time are considered
obsolete and hence discarded.

2.1.2 Offline Macro-Cluster Phase The offline macro-cluster
phase in DSAP starts after N time windows have passed. In
this phase, all the micro-clusters Cm generated during the online
micro-cluster phase are re-clustered using the AP algorithm to
generate k number of macro-clusters CM = (CM1 , CM2 , ..., CMk ).
This process is usually not considered time critical, and the num-
ber of macro-clusters is expected to be less than the number of
micro-clusters. The hyperparameters related to the AP algorithm,
such as the maximum number of iterations and the convergence
iteration, are default values. The preference parameter is set to
median the similarity matrix of all the micro-clusters obtained
from the online phase, and the damping factor is a fixed number
for this phase.
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2.2 Validation Phase

Intrinsic clustering validation uses the internal information of the
clustering process to evaluate the goodness of a clustering struc-
ture when the ground truth labels are unknown. The well-known
metrics Silhouette Index (S), Caliński-Harabasz index (CH), and
Davies-Bouldin index (DBI) were selected to validate the good-
ness of macro and macro clusters found by the DSAP algorithm.

2.2.1 Silhouette Index The silhouette index was introduced
by (Rousseeuw, 1987) on the premise of the silhouette width of
a data point to measure how similar a data point is to its own
cluster compared to other clusters. The silhouette index Si for a
data point i ∈ x in cluster Ck ∈ C is calculated as follows.

ai =
1

Ck

∑
j∈Ck,i̸=j

d(i, j) (2)

bi = min
Cm∈C,Cm ̸=Ck

1

Cm

∑
j∈Cm,i̸=j

d(i, j) (3)

si =
bi − ai

max(ai, bi)
(4)

The first parameter a is the average distance between the sample
and all the others in the same class, and the second parameter b
is the mean distance between the sample and all the other points
in the next closest cluster. Negative Si scores for a point i means
that the data point is in the incorrect cluster. Positive scores show
a robust and dense clustering. Moreover, values around zero in-
dicate overlapping clusters. If the Si has a higher value, it means
a greater ratio between bi as compared with ai, causing the data
point i to be more similar to the other data points in the same
cluster.

2.2.2 Caliński-Harabasz Index It is also known as the vari-
ance ratio criterion, which is used to score dense and well-separated
clusters. A recent comparative study of available clustering in-
dices demonstrated this index as one of the best cluster validity
indices (Arbelaitz et al., 2013).

Well defined clusters yield high values of this index. Therefore,
the maximum value of the index is used to select the best parti-
tion. For n data points, k clusters where B and W are the be-
tween within cluster scatter matrices, the index is computed as
(Caliński and Harabasz, 1974):

CH =
traceB/(k − 1)

traceW/(n− k)
(5)

where

Bk =

k∑
q=1

nq(cq − ci)(cq − ci)
T (6)

Wk =

k∑
q=1

∑
x∈Cq

(x− cq)(x− cq)
T (7)

with Cq the set of points in cluster q, cq the center of cluster q,
cD the center of D, and nq the number of points in cluster q.

The CH is computationally efficient to calculate, but just like the
silhouette index, the CH index is biased towards convex clusters,
assigning them higher values than the density-based clusters such
as those obtained through DBSCAN.

2.2.3 Davies-Bouldin Index The Davies-Bouldin Index (DBI)
was introduced in 1979 by (Davies and Bouldin, 1979), and it
computes the average similarity between each cluster Ci for i =
1, 2, ..., k and its most similar one Cj . For this index, similar-
ity is defined as a measure Rij that optimizes si (i.e., the average
distance between each data point in the cluster and the centroid of
that cluster; and dij (i.e., the distance between cluster centroids i
and j). A simple choice to construct Rij is that of non-negative
and symmetric as follows:

Rij =
si + sj
dij

(8)

Then the Davies-Bouldin index is defined as:

DB =
1

k

k∑
i=1

max
i̸=j

Rij (9)

With this index, a minimum value denotes the best partitioning of
the data. The average similarity calculation is much simpler than
the computations required for calculating the silhouette index.
Like the previous two metrics, DBI too suffers from a preference
towards convex clusters as compared to density based clusters
owing to the usage of centroid distance that limits the distance
metric to Euclidean space.

2.3 Performance Evaluation Phase

Data stream clustering brings about a few unique challenges as
compared to traditional data clustering. The data streams are a
continuous flow of data points that arrive at a rapid rate. Random
access to these data points is not possible and the volatility of the
data streams sometimes limits to having a single look at the data
points upon their arrival. To evaluate the efficiency of the DSAP,
two metrics are proposed: computational time and the memory
consumed to run the DSAP algorithm. These metrics used in this
phase are described in the next sections.

2.3.1 Time Complexity The time complexity of the DSAP
algorithm is affected by three steps in online phase and one step
in offline phase. For a data set size N, divided into time win-
dows of size L, the complexity for the initialization step would
be O(L2logL) + O(L), for AP and threshold calculation on
L points. In comparison step, Euclidean distances are calcu-
lated for the subsequent L point in the next time window lead-
ing to complexity of O(L). If the time window repository has T
data points, then the activateAP step will have a time complex-
ity of O(T 2logT ) + O(T ) for the second instance of AP and
threshold calculation. Finally Cm micro clusters are clustered by
AP whose time complexity is O(C2

mlogCm). As a result, total
worst case complexity of the algorithm is O(L2logL)+O(L)+
N/L(O(L)+O(T 2logT )+O(T ))+O(C2

mlogCm) , which is
affected by the initial window size, the number of points in the
repository and the number of micro clusters. It is expected that
for highly dynamic data set, the execution time would be higher
since more number of micro-clusters will be generated.

2.3.2 Space Complexity Similar to the time complexity, the
memory consumption quantifies the amount of memory taken by
the DSAP algorithm to run as a function of the length of the input.
That means how much memory, in the worst case, is needed at
any point by the algorithm. The same big-O notation is used to
describe the space complexity as well. This parameter represents
the algorithm’s scalability and performance. In simple terms, it
gives the worst-case scenario of an algorithm’s growth rate.
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Figure 2: (a) Tonsley building view from the north-side parking lot, (b)-(f) Tonsley Building layout of levels 1-5

3. BEHAVIOURAL INTERVENTION EXPERIMENT

The experiment was performed in the Tonsley building at the
campus of Flinders University, Australia in 2019. This study
was conducted to observe the potential impact of motivational
and educational interventions on the physical activity of people
with sedentary lifestyles. Tonsley Building is a six-story building
populated by students and staff with entrances facing north and
south directions. The building floor layouts are illustrated in Fig-
ure 2. The north-side entrance faces a small barricaded entrance,
and the main entrance is on the south side adjacent to the covered
Tonsley garden. The building is fitted with lifts that reach all the
levels and have stairs on the north and south sides that connect all
the levels. Additionally, the building has an open space called the
void and has central stairs that connect all the levels. Thus, each
level, stairs are labeled as level Lx+1 −Lx North/South/Central,
where Lx = 1, 2, .5.

E-counter sensors were deployed at all stairs. They are made by
the International Road Dynamics company and consist of a pair
of transmitter and receiver(transmitter: PTx20-1 and receiver:
PRx20W1). The transmitter sends an infrared message to the re-
ceiver; when the infrared light is interrupted by someone passing
through it, a count is registered. If no one passes, then these sen-
sors log a count value of zero every 10 minutes. Each stair has
two sensors, UP/DOWN that determine a person’s direction of
travel up and down the stairs. Signals from the sensors are sent
to wireless hubs in real-time and then from the hubs to the server.
The maximum count value for each direction is about 1,000,000.

The data were collected from February 21, 2019, until July 16,
2019, but only three months of this data set were used for the
experiment from March 18 to June 23, 2019. The sensors cap-
tured movement for all 24 hours and all days continuously. The
raw e-counter data streams consist of approximately 668,000 data
points, out of which almost half the data points were used in our
research work.

During the first month period starting on March 18, 2019, data
were collected to establish a baseline for staircase usage by mak-
ing measurements as unobtrusively as possible. The mid-semester
break from April 15-28 was excluded from the study.

Motivational and educational interventions to increase stair us-
age have taken place from April 29 to May 26, 2019, including
digital screens that displayed health information and live feed-
back throughout the building, especially near the lifts. After the
intervention month, more observations have been gathered from
May 27 to June 23, 2019 to study the impact of the intervention
campaign on stair usage patterns.

During the experiment, hubs were temporarily switched off or
sensors fell off, and some special events took place such as public
holidays, term breaks, and fire drills which affected the number
of people using the stairs. For example, on May 1, at 11:15 a.m,
the fire alarm went off, and everyone had to evacuate the building
using the stairs. Furthermore, if no one passes through the beam
of sensors, the sensors indicate zero during that specific interval.
A huge number of zeros were logged during the experiment es-
pecially after working hours, weekends, and holidays, and as a
result, they were removed from the clustering analysis.

Finally, the sensor location and people count features were se-
lected for computing the clusters. The hyperparameters for the
AP in the DSAP algorithm were consistent and fixed for the en-
tire experiment. The damping value was set to be equal to 0.96,
maximum iteration was 100, and preference was equal to the me-
dian of the similarity matrix.

4. DISCUSSION OF THE RESULTS

The streaming cluster analysis was aimed at finding any evolu-
tionary patterns in stair usage due to an educational interven-
tion campaign. The clustering results were generated using three
months of the experiment, which were named as before, during,
and after the intervention.

4.1 Overall Stair Usage Patterns

Figure 3 top panel illustrates the daily stair usage over the three
months named as before intervention (highlighted in purple), dur-
ing the intervention (highlighted in blue), and after intervention
(highlighted in yellow). It is quite apparent that more people pre-
ferred taking the stairs to go down rather than up. Expected low
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Figure 3: Top Panel:Total number of people using the stairs: before intervention month (purple), during intervention month (blue), and
after intervention month (yellow). Bottom panel: Total number of people using the stairs: before intervention month (purple), during
intervention month (blue), and after intervention month (yellow)

usage of stairs is also observed on the weekends. The observa-
tions also revealed that Levels 4-3 North and 5-4 North were used
the least. This could be due to fewer people using the north en-
trances since the north entrance leads to a low capacity parking
lot.

Although the overall trend of the number of people using the
stairs at each level remains consistent for the three months, one
peak of stair usage occurred on Monday, April 1, before the in-
tervention, another peak occurred on Friday May 10, during the
intervention and happened again on Tuesday, June 11 after the
intervention campaign has ended. After a closer inspection of the
data, it was found that on May 10, a group of students went up
around 12:06 pm, and presumably, the same group came down at
12:23 pm. This led to an increase in the measured count across
many levels. No particular event was found to justify other peaks.

Evolutionary patterns were also observed on an hourly basis for
each month of the experiment, as shown in Figure 3, bottom
panel. The usage peak is around noon for most of the week-
days, most probably due to the lunch break. The people count
is asymmetric on both sides of the peak, with more people using
the stairs on Tuesday afternoons during all months of the experi-
ment. Overall the month before the intervention campaign seems
to have recorded the highest usage than the following months.
By looking at this trend, our preliminary hypothesis is that the
intervention campaign has not generated the expected impact on
motivating people to take the stairs. Therefore, the clustering re-
sults play a significant role in testing this hypothesis.

4.2 Micro-cluster Evolution

The evolution of micro-clusters was interesting to be analyzed in
order to detect any concept drift during the clustering process.
Figure 4 shows the centroids of the micro-clusters and their re-
spective data points that are connected using straight lines. These

results illustrates a few patterns found on Wednesday, May 1. The
one-hour expiration time was chosen to ensure that only the data
points within the one-hour window were used for finding clusters.
The micro-clusters show an increase in activity starting around
9-10 am at the lower levels of the building. In contrast, usage
clusters were found at the peak around noon that were located at
different levels of the building.

As the day progresses, the number of micro-clusters have gradu-
ally decreased. These generated patterns were observed through-
out the experiment, demonstrating the potential of using the DSAP
approach for finding and tracking meaningful micro-clusters over
space and time. The strength of DSAP lies in its ability to contin-
uously find micro-clusters by responding quickly to any changes
in the stream data.

4.3 The impact of the intervention

Figure 5 illustrates the occurrence of the weekly patterns at dif-
ferent levels of the building, revealing that the intervention cam-
paign had a positive impact on people taking the stairs between
level 3-2 and level 4-3 south. In contrast, the campaign has also
shown to have a weak impact in changing the behaviour of peo-
ple when taking the stairs between level 4-3 north and level 5-4
north. Finally, the intervention campaign has not increased the
usage of stairs between level 2-1. No anomalous clusters were
found in these results.

4.3.1 Validation and Performance Metrics For the DSAP
evaluation, the AP model was used as a baseline to compare the
performance and validation metrics. We have selected AP be-
cause other stream AP clustering algorithms and their codes were
not available at that time. The same weeks used for computing
the macro-clusters shown in Figure 5 were used in this evaluation.

The results for each of the metrics, along with the number of clus-
ters, processing time, and memory consumption, are summarized
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Figure 4: The evolution of micro-clusters

Figure 5: Clustering results for the first week before, during, and
after the intervention campaign

in Table 2. A significant saving in processing time is immedi-
ately apparent between the DSAP algorithm and AP. The pro-
cessing time here includes the time taken for all the phases and
steps of the DSAP algorithm as it analyzes the entire data using
time windows. For a real stream, the execution time of interest
would be the time taken to execute one window and is expected
to be much lower as in DSAP. The initial window calculation is
the most time-intensive step but is performed only once and does
not affect the current time window.

The accuracy of the two methods is similar, but the micro-clusters
generated by DSAP show slightly improved values, as shown by
the validation metric values. The number of micro-clusters gener-
ated by DSAP are similar to clusters generated by AP suggesting
that the activity levels remain consistent.

The intrinsic validation metrics, Silhouette and Davies-Bouldin
indices for the micro-clusters have similar values to the numbers
for AP clusters. The number of micro-clusters is the same order
as the macro-clusters, hence, some of the validation metrics are
not accurate. It should be noted that the number of points rep-
resented by a cluster significantly affects some of these metrics,
and hence internal evaluation metric numbers need to be carefully
interpreted.

4.4 Conclusions and Future Research Work

In this research work, the DSAP model was developed for uncov-
ering evolutionary patterns based on two phases: online micro
and offline macro phases. The landmark time window model was
proposed to ensure that only the latest data points in the stream
are used in the clustering process.

The main advantage of the DSAP model relies on its simple and
straightforward approach but still retaining the strengths of other
streaming AP-based algorithms (i.e., StrAP, IStrAP, ISTRAP, and
APdenstream) while removing some of the complexities intro-
duced by them. The combination of a user-defined expiration
time, a dynamic threshold ϵWj , the landmark time window model,
and a time-window repository have been crucial to developing a
manageable, fast and accurate clustering algorithm. DSAP runs
entirely autonomously without the need to specify the number of
clusters once the hyperparameters are selected.

Due to stream data availability, the DSAP model was not imple-
mented using live streaming data. Therefore, the main limitation
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of the DSAP model is that it does not handle latency and band-
width problems, which can occur very often when analyzing live
streaming data. Stream data clustering of multiple variables is
also expected to bring scaling issues. Highly dynamic data with
large concept drift is expected to reduce the performance of the
DSAP algorithm as new clusters will be formed in almost every
window slowing down the entire process. These limitations are
planned to be addressed in future versions of the algorithm.

Metrics AP Algorithm DSAP

Before Intervention Week (March 18 - March 24)
Processing Time (s) 22 0.6

Memory Consumption (MB) 536 250

Number of Clusters 14
micro = 15
macro = 5

Silhouette Index 0.4
micro = 0.7
macro = 0.4

Caliński-Harabasz Index 2009
micro = 4872
macro = 87

Davies-Bouldin Index 0.5
micro = 0.8
macro = 0.5

Intervention Week (April 29 - May 5)
Processing Time (s) 25 0.6

Memory Consumption (MB) 536 256

Number of Clusters 11
micro = 16
macro = 5

Silhouette Index 0.5
micro = 0.5
macro = 0.4

Caliński-Harabasz Index 2421
micro = 6292
macro = 35

Davies-Bouldin Index 0.7
micro = 1

macro = 0.2
After Intervention Week (May 27 - June 2)

Processing Time (s) 26 0.6
Memory Consumption (MB) 541 260

Number of Clusters 12
micro = 16
macro = 5

Silhouette Index 0.4
micro = 0.6
macro = 0.4

Caliński-Harabasz Index 1278
micro = 4381
macro = 40

Davies-Bouldin Index 0.5
micro = 0.5
macro = 0.5

Table 2: Overall results from the performance evaluation and
clustering validation
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