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ABSTRACT: 

 

The emergence of Digital Twins in city planning and management marks a contemporary trend, elevating the realm of 3D modeling 

and simulation for cities. In this context, the use of semantic point clouds to generate 3D city models for Digital Twins proves 

instrumental in addressing this evolving need. This article introduces a processing pipeline for the automatic modeling of buildings, 

roads, and vegetation based on the semantic segmentation results of 3D LiDAR point clouds. It employs a semantic segmentation 

approach that integrates multiple training datasets to achieve precise extraction of target objects. Open-source reconstruction tools 

have been adapted for building and road modeling, while a Python code was optimized for tree modeling, leveraging a foundational 

code. The case study was conducted in the city of Liège, Belgium. The obtained results were satisfactory, and the schemas and 

geometry of the developed models were validated. An evaluation of the adopted reconstruction methods was conducted, along with 

their comparison to other methods from the literature. 

 

1. INTRODUCTION 

Digital Twins (DTs) for cities have become an efficient and 

collaborative decision-making tool that helps overcome cities' 

challenges (Ketzler et al. 2020; Jeddoub et al. 2023). The Urban 

Digital Twins (UDTs) serve city needs by integrating data, 

models, and processes into a one-stop platform, enabling two-

way flows from the physical world to the digital replica and vice 

versa (Lehtola et al. 2022). As we embark on the journey of 

implementing UDTs, semantic 3D city models gain perspective 

(Stoter, Arroyo Ohori, et Noardo 2021). Over the past decades, 

many scholars have increasingly focused on the creation and 

use of 3D city models beyond simple visualization (Stoter et al. 

2020). Indeed, semantic 3D city models offered many potential 

applications to urban and geospatial analysis and application at 

the city scale based on open standards such as CityGML1 

(Biljecki et al. 2015). 

 

Up to date, many city models are spread worldwide, 

implemented using different data and approaches, and serve 

various purposes. In contrast, there is a lack of a standard or 

common framework for 3D city modeling, which was one of the 

main motivations behind the work of (Lei, Stouffs, et Biljecki 

2022). The authors designed a holistic instrument to benchmark 

and evaluate 3D city models worldwide. Based on the findings, 

cities, such as Brussels and Namur, have invested in the 

creation of their 3D city models in the Belgian context. 

 

Inspired by current digital technologies and recognizing the 

relevance of UDTs in the context of urban planning and 

management, the city of Liege has invested in the 

implementation of 3D city models as the first step toward the 

development of DTs. This study presents the results of SEM3D 

                                                                 
1 https://www.ogc.org/standard/CityGML/ 

(3D semantic object extraction for urban application), a project 

supported by Digital Wallonia and conducted in the GeoScITY2 

lab with the collaboration of the city of Liège. The main 

contribution is to automatically extract 3D semantic objects for 

urban applications and explore the 3D modeling process to 

create 3D models of the derived urban objects. The paper 

proposes and tests an overall framework, from data preparation 

to 3D modeling. The particularity of this approach is that it is 

not restricted to a specific urban object (e.g., buildings) but also 

enables the modeling of other thematic objects (i.e., roads and 

vegetation) using open-source tools and the semantic 

segmentation results of 3D LiDAR data. The main contribution 

is to shed light on the relevance of the semantic segmentation of 

3D airborne LiDAR data in the city modeling framework. The 

proposed framework uses the existing data and adapts available 

open-source tools to create a standardized CityJSON3 3D city 

model of common urban objects. The paper is structured as 

follows: Section 2 gives an overview of the use of semantically 

segmented point cloud data in city modeling processes. Section 

3 presents the proposed workflow, ranging from data 

preprocessing and transformation to 3D modeling. A 

description of the study area is provided in the same section. 

Section 4 discusses the findings. Section 5 concludes and gives 

an outlook for future perspectives. 

 

2. RELATED WORKS 

Digital twins for cities are data-hungry platforms (Batty 2018; 

Masoumi et al. 2023). They are based on heterogeneous data 

sets (geospatial data and sensor data, to name a few). 3D point 

cloud data from airborne acquisition is the most common input 

data for DTs’ implementation. They have shown their 

                                                                 
2 https://www.geoscity.uliege.be/cms/c_12409035/en/geoscity 
3 https://www.cityjson.org/ 
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capabilities as an input layer for city modeling, namely for 3D 

building modeling (Jeddoub et al. 2024). For instance, 3D 

Registration of Buildings and Addresses (3D BAG4) is 3D 

reference building data covering the whole Netherlands in 

several output formats. The data are provided based on an 

automatic 3D reconstruction pipeline at different levels of detail 

(LoD). The workflow uses the 2D building footprints and the 

AHN point cloud data (the national height model of the 

Netherlands) acquired by airborne laser scanning (ALS). 

Furthermore, 3dfier5 is an automatic workflow and open-source 

software that reconstructs LoD1 models using classified LiDAR 

point cloud data in LAS format and 2D semantic polygons (i.e., 

building footprints, water bodies, etc.) (Ledoux et al. 2021). 

The workflow is based on a set of rules and uses a configuration 

file to generate the 3D model. The software has support for 

various formats. In addition, the authors in (Nys, Billen, et Poux 

2020) have proposed an automatic CityJSON workflow that 

extracts roof surfaces from LiDAR data and generates LoD2.1 

building models. Another related work, City3D, was conducted 

by (Huang et al. 2022), presenting a large-scale 3D building 

reconstruction from the ALS point cloud. The authors propose 

an approach that infers the vertical walls of buildings from 

airborne LiDAR point clouds. In their work, the authors address 

in a comprehensive way the challenges related to large-scale 

urban reconstruction from ALS data, namely: building instance 

segmentation, incomplete data, and complex structures. 

However, many of these processes do not involve advanced 

classification of the point cloud data. In this regard, enhancing 

semantic segmentation-based Artificial Intelligence (AI) 

approaches improves the use of 3D point cloud data, thus 

creating 3D urban models (Ballouch et al. 2022; 2024). It 

enables the automatic extraction of single and multiple city 

objects, which simplifies object modeling. Many DT initiatives 

have acquired point cloud data (airbone or unmanned aerial 

vehicle data) to create and enrich their semantic 3D city models 

(DImitrov et Petrova-Antonova 2021; Peters et al. 2022; 

Khawte et al. 2022). In fact, optimizing the semantic 

segmentation process is of great interest to reconstruct 3D city 

models and implement UDTs efficiently and correctly.  

 

3. MATERIALS AND METHODS 

This section explains the methodology used in the framework of 

this work. It consists of three main steps: data collection, data 

processing, and 3D modeling. The workflow is summarized in 

Figure 1. The pink boxes describe input data (namely point 

cloud data, topographical data, and images), while the blue ones 

refer to the intermediate transformations and processes. The 

resulting CityJSON 3D city model is presented in a green box. 

In the following, we first describe the input data. Then, we 

explain the semantic segmentation process and, finally, the 

reconstruction process for each city object. 

The first step involves the collection of the input data sets. 

Then, the second step takes raw point cloud data and performs a 

semantic segmentation process. For this, an AI-based approach 

is used. The approach fuses ALS point clouds with 

corresponding aerial photos. It can accurately extract the main 

3D objects within an urban scene with both geometric precision 

and semantic richness. Deploying a fusion approach with other 

sources (aerial photos, satellite images, etc.) allows for 

combining the spectral richness of images and the altimetric 

accuracy of 3D point clouds. Our aim is to automate the 

                                                                 
4 https://3dbag.nl/en/viewer 
5 https://tudelft3d.github.io/3dfier/ 

 

extraction of 3D objects, such as roads, vegetation, etc., in our 

study area, presented subsequently in section 3.2, with high 

accuracy and performance. 

 

 
Figure 1. The general workflow. 

 

The third step is dedicated to the modeling process. For each 

urban object, an approach or an open-source tool is deployed. 

The extracted semantic classes from the semantic segmentation 

of 3D point cloud data are assigned to each modeling pipeline. 

For instance, to model buildings using open standards (i.e., 

CityJSON), GeoFlow6 uses the building point cloud data as well 

as the building footprints to automatically generate the 3D 

building models at LoD2. For the road modeling, the class 

number of the corresponding road point cloud data is specified 

in the configuration file necessary to run the open-source tool 

3dfier. The same logic is applied to the vegetation modeling. 

The derived vegetation point cloud data were integrated into the 

modeling process based on an adapted code. This code7 was 

based on the fundamental code previously available as open 

source. 

 

3.1 Data collection 

The data sources include LiDAR point clouds and PICC8 (Plan 

d'Information sur le Cadre de Cartographie) data. The PICC 

serves as the three-dimensional digital cartographic reference 

for the entire Wallonia region in Belgium, with precision less 

than 25 cm, comprehensively capturing all identifiable elements 

of the Walloon landscape, such as buildings, structures, railway 

networks, hydrographic networks, roadways (including lanes, 

edges, sidewalks, etc.), and more. The datasets were provided 

by the Walloon region in Belgium. Additionally, other datasets, 

namely the SUM-Helsinki dataset and the SensatUrban dataset, 

were acquired through free downloads via links provided later 

(refer to Table 1). Consequently, the Liège dataset was created 

by us based on the region's data. Table 1 provides a description 

of the data sources. 

 

 

 

                                                                 
6 https://github.com/geoflow3d/geoflow-bundle 
7 https://github.com/RobbieG91/TreeConstruction 
8 https://geoportail.wallonie.be/georeferentiel/PICC 
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Table 1. Data sources. 

 

3.2 Semantic segmentation of 3D LiDAR points clouds  

The quality of semantic segmentation results plays a crucial role 

in the geometric accuracy of 3D urban models created based on 

these results. Therefore, the choice of a semantic segmentation 

approach that accurately extracts urban objects is essential. To 

achieve this, the LiDAR point clouds were fused with their 

corresponding images using the "RandLaNet" deep learning 

model (Hu et al. 2020).  This model was adopted for semantic 

segmentation due to its documented performance in the 

literature (Hu et al. 2020; Guo et al. 2021). In this study, we 

trained this model on three different datasets: SensatUrban, 

accessible at https://github.com/QingyongHu/SensatUrban; a 

dataset from https://3d.bk.tudelft.nl/projects/meshannotation/; 

and a dataset created in the urban context of Liège city (access 

to this data is available upon request). Model parameters and 

hyperparameters were adjusted. The predictions made by the 

trained model were based on point cloud data from the 

"Outremeuse" neighborhood in Liège, Belgium. The location of 

this neighborhood is shown in Figure 2 below. The data used 

for creating the Liège dataset and working on the Outremeuse 

neighborhood are from recent LIDAR acquisitions in the 

Walloon region of Belgium (2021–2022). 

The data characteristics include an average flight altitude (AGL) 

of 2400 m, density of 6.8 points/m², and the use of Double 

LMSQ780 and Double VQ780II-S equipment. The data were 

provided in 8 blocks in”. LAS” format, adhering to ETRS89 / 

Lambert Belgian 2008 planimetric coordinates, Second General 

Leveling altimetric coordinates, and planimetric accuracy with 

RMSE <= 1 m and altimetric accuracy with RMSE <= 0.4 m. A 

preprocessing step, including cleaning, was conducted to ensure 

data consistency. After adjusting projections and merging 

LiDAR point clouds with corresponding images (see Figure 2), 

the Outremeuse neighborhood data were prepared for 

prediction, while data from other areas in Liège were utilized 

for creating the third training dataset. Data preprocessing was 

performed using CloudCompare, and data preparation and 

processing were carried out using the Ubuntu tool. 

 

The model "RandLaNet" has already been validated through our 

previous studies as well as by several studies in the literature 

using various evaluation criteria, including measures such as 

Accuracy, Intersection over Union (IoU), Recall, F1-score, and 

Confusion matrix (Hu et al. 2020; Guo et al. 2021; Ballouch et 

al. 2022). Therefore, in this study, we have opted just for visual 

validation through a comparison of the model's results with the 

ground truth (see Figure 3), considering the comprehensive set 

of evaluation metrics used in prior research. 

 

 
Figure 2. Geographical location of the Outremeuse district. 

 

 

Figure 3. (A) 3D point cloud representation and (B) example of 

3D semantic segmentation outputs- Outremeuse district. 

 

3.3 3D modeling workflow 

This section outlines the processing pipeline we followed for 

generating 3D models from a classified point cloud. The 

required data include the classified point cloud obtained from 

section 3.2 and the PICC. 

 

3.3.1 Automatic 3D buildings modeling 

 

Building modeling was conducted using the GeoFlow tool, an 

open-source tool for 3D building model reconstruction from 

point clouds. The objective is to generate a realistic three-

dimensional representation of buildings by harnessing point 

cloud data, vector data (PICC), and modeling functions 

provided by GeoFlow. 

 

To execute the reconstruction from input data, both a JSON file 

containing a flowchart describing the logic of the reconstruction 

and the executable GeoFlow are necessary components. The 

flowchart outlines how different plugins and nodes connect, 

while GeoFlow executes the logic defined in the flowchart. 

 

3.3.2 Automatic roads modeling 

 

Studies and methods for 3D road modeling are still limited. The 

focus was historically on 3D building models. This is due to the 

lack of complete data and because most 3D roads have linear 

representation. However, a recent study conducted by 

(Yarroudh, Nys, et Hajji 2023), has proposed an automatic 

process of 3D road modeling based on CityGML 3.0 

specifications and CityJSON encoding. The authors produce a 

LoD2 3D road model using a semi-automatic extraction 

workflow based on mobile mapping LiDAR data. 
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Given the type of data provided in the scope of this work, we 

opted for the two approaches below: the first approach relies on 

developing an FME workbench. FME is an ETL (Extract, 

Transform, and Load) process that allows a series of data 

transformers. It also has the capability to read, convert, and 

write many data types and formats. Initially, we created an FME 

workspace (refer to  

 

Appendix) for the roads using only the 2D road axis and the 

georeferenced DEM generated from the LiDAR data using the 

"SurfaceModeller" transformer. We create a CityJSON v1.0.1-

compliant model describing the road. The FME workbench is 

reusable. For now, the workbench allows the generation of the 

LoD1 road model. Further work will help extend it to produce 

higher LoDs. The second approach that seemed to be promising 

was the use of 3dfier. The tool allows you to generate smooth 

road surfaces in different output formats. To implement the 

practical modeling of roads with 3dfier using the classified 

point cloud and PICC data, we have followed a few steps. 

Firstly, the PICC data is initially linear, while 3dfier requires a 

set of topologically connected polygons as input data. To 

address this, we use QGIS tools to transform the linear 

representation into a polygonal result (see Figure 4). The axis 

and edges provided by the PICC data were transformed into 

surfaces using QGIS, thereby generating polygons representing 

the roads. These polygons were then used to perform the lifting 

based on the semantics of the road polygons. We then adjusted 

and adapted the 3dfier lifting options and setting parameters. 

Essentially, 3dfier relies on a binary classification of ground 

and non-ground (minimum requirements). However, in our 

case, a detailed classification was performed. We incorporated 

this detailed classification to accurately extract the "roads" class 

(use classes 2 and 11), which 3dfier will utilize during the 

lifting process. 

Following the 3dfier requirements, we configured the (.yml) file 

used in the scope of this work. 

 

 
 

Figure 4. The data preparation for 3dfier road modeling: (a) the 

shapefile raw data, linear representations (b) the polygonal 

representation based on QGIS tool. 

 

3.3.3 Automatic vegetation modeling 

 

To automatically generate 3D models of trees from airborne 

LiDAR point cloud data with a LoD2, a three-step process was 

followed: classification, segmentation, and modeling. Firstly, 

the point cloud must be exclusively classified as vegetation, 

after which individual trees need to be segmented. Finally, these 

segments of individual trees serve as the data source for 

constructing 3D tree models. The steps are illustrated in Figure 

5. 

 

 
 

Figure 5. General Workflow for Tree Modeling 

 

A) Classification: 

 

The classification phase has already been detailed in section 

3.2. To extract the vegetation point cloud, we utilized the 

CloudCompare tool. After importing the classified point cloud 

and displaying the scalar field corresponding to the 

classification, we proceeded to extract the "vegetation" class. 

This extraction can be performed in various ways, one of which 

involves accessing the main menu of CloudCompare and 

selecting the "Filter by Value" option.   

 

B) Segmentation:  

 

The aim of this step is to assign an identifier to each tree. One 

can opt to use available automatic codes, such as those 

presented on (https://github.com/r-lidar/lidR/tree/master), or 

choose tools like utilizing an algorithm integrated into the 

CloudCompare tool, as illustrated in this study. To employ 

CloudCompare, simply access the software's main menu, 

navigate to "Plugins," and select the "TreeIso" algorithm. 

Subsequently, we executed three types of segmentation: initial 

segmentation, intermediate segmentation, and refined 

segmentation. Adjustments to the parameters were made until 

achieving a satisfactory result. The selection of parameters 

depends on the type of data, data quality, etc. Finally, a data 

cleaning step is crucial, especially in situations where certain 

trees are not correctly segmented, particularly in dense forest 

areas. Various automatic or semi-automatic cleaning methods 

within the CloudCompare tool can be employed. 

 

C) Modeling: 

 
The modeling process was based on the LoD specifications 

proposed by  (Ortega-Córdova 2018). The required parameters 

are extracted from the segmented vegetation and modeled 

accordingly. These parameters include the tree top (the 99th 

percentile of the height), the tree base (ground height), the 

peripheral point (height range where most points are located), 

the base of the tree crown (the 5th percentile of the height), and 

two intermediate divisions for added detail. These divisions are 

determined using the midpoint between the peripheral point and 

the top, as well as the base of the tree crown, respectively 

(de Groot 2020). These parameters are crucial for constructing 

individual plant objects, as illustrated in Figure 6. 
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Figure 6. Tree construction parameters (de Groot 2020). 

 

Each LoD employs a different combination of the extracted 

parameters to construct tree models. LoD0 uses only the 

peripheral radius and the tree base. LoD1 utilizes the peripheral 

radius, tree base, and tree top. LoD2 incorporates all the 

extracted parameters. The 3D tree models are constructed in 

accordance with CityJSON specifications. It is essential that 

vertices are arranged in a counterclockwise trigonometric order 

(CCW) when viewed from the outside, as it is a common rule in 

3D modeling. This ensures that the faces have outward oriented 

normals. This guarantees that the constructed geometry is 

visible in any rendering software with 3D capabilities and 

adheres to ISO standards [International Organization for 

Standardization, 2019]. 

To initiate the extraction of parameters, the essential input data 

consists of a point cloud with attributes X, Y, Z, Tree Segment 

ID (a specific identifier for each tree obtained from the 

segmentation step), and the attribute "Height Above Ground," 

which was computed using the ground and tree classes. The 

calculations were performed using CloudCompare.  

 

4. RESULTS AND DISCUSSION 

The resulting 3D model for buildings, roads, and vegetation was 

compliant with CityJSON v1.1. All models were validated at 

the schematic and geometric levels. For that, CityJSON has a 

wide range of free and open-source tools and software that 

assist and facilitate the use and manipulation of CityJSON data. 

For instance, Val3dity9 is an open-source software dedicated to 

validating the 3D primitives (geometries) of the model. The 

software reports the geometric and topological errors by 

specifying the object in concern. For each 3D model, different 

errors are reported.  

The Schema validation was fullfiled based on the official 

validator for CityJSON files, cjval10. Cjio11 was also used to 

merge, upgrade, and validate the CityJSON files. The results 

were visualized using the web viewer ninja12. The Table 2 

summarizes the validation process results of all city objects 

modelled in this work. 

 

File Val3dity  Cjval Ninja 

Buildings.json 93,2% 100% valid Semantic 

surfaces 

Roads.json 87%   valid  100% valid No semantic 

surfaces 

                                                                 
9 https://github.com/tudelft3d/val3dity 
10 https://validator.cityjson.org/ 
11 https://github.com/cityjson/cjio 
12 https://ninja.cityjson.org/ 

Vegetation.json 100% valid 100% valid No semantic 

surfaces 

 

Table 2. Validation of the different 3D city objects using the 

open-source validator software. 

 
4.1 3D building model 

Geoflow has demonstrated its capabilities in providing good 

results both in geometric and semantic terms. The building 

model schema and geometry were both validated. Each building 

is represented by a specific and unique identifier derived from 

PICC data. Thus, semantic and attribute information have been 

accurately assigned to each building. The LoD2.2 is maintained 

for this work, showing various building elements such as 

building roofs, walls, etc. We also generated the LoD1.2 and 

LoD1.3 for future work. This automated modeling method 

offers significant advantages compared to other existing 

reconstruction methods in the literature. For instance, we use 

the same input data to generate the LoD1 building model using 

the 3dfier tool, which may not be sufficient for certain urban 

applications. Furthermore, we conducted another approach 

using FME. We create an FME workbench that produce LoD1 

building model. Despite the advantages it offers, this method is 

semi-automatic and requires human expertise. In addition, it 

poses challenges in automatically incorporating semantic 

information. Figure 7 provides an overview result of the three 

methods. The main errors reported from Val3dity are: 

Consecutive_Points_Same13 and 

Non_Planar_Polygon_Normals_Deviation14 

 

 

 
 

Figure 7. An Example of 3D building model: (A) LoD2 model 

based on Geoflow, (B) LoD1 based on 3Dfier and (C) LoD1 

based on FME of the Outremeuse district. 

 

4.2 Results of 3D Road Modeling 

The produced 3D road model from 3dfier (refer to Figure 8) 

was effectively validated both from geometric and schematic 

levels.  Each road is represented by a unique identifier derived 

from PICC data; thematic attributes are handled by default by 

3dfier. The 3D road model is a LoD1 MultiSurface model. This 

automated modeling method is relevant while working with 2D 

polygonal data representation. The errors reported in val3dity 

are namely: Consecutive_Points_Same and 

Ring_Self_Intersection15.  

As we explained earlier, we created a FME road workbench as 

well. However, the result was invalid from a geometric 

                                                                 
13https://val3dity.readthedocs.io/en/latest/errors/#consecutive-

points-same 
14https://val3dity.readthedocs.io/en/latest/errors/?highlight=Non

_Planar_Polygon_Normals_Deviation#non-planar-polygon-

normals-deviation 
15https://val3dity.readthedocs.io/en/latest/errors/?highlight=RIN

G_SELF_INTERSECTION#ring-self-intersection 
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perspective, and several errors were reported. To solve that, we 

use triangulate function of Cjio. The obtained model is valid 

and only Consecutive_Point_Same error was reported for 2% of 

the 3D primitives. 

 

 
 

Figure 8. LoD1 road model of the Outremeuse district using 

3dfier. 

 

4.3 Results of 3D Vegetation Modeling 

The approach employed for tree modeling has yielded 

satisfactory geometric and semantic results (see Figure 9). The 

schema and geometry underwent through validation (refer to 

Table 2). Each tree is represented by a specific identifier, with 

parameters extracted from the tree and associated semantic 

information. The level of detail in tree modeling is LoD2, 

representing a realistic tree form (see Figure 9). This automated 

modeling approach offers significant advantages compared to 

other existing reconstruction methods/approaches in the 

literature. For instance, the use of 3dfier, while advantageous in 

automatically adding semantic and attributive information, is 

limited to presenting trees at LoD0, which proves insufficient 

for certain environmental and ecological applications. The 3D 

tree model was fully validated, and no geometric errors were 

reported. 

Additionally, employing the tree reconstruction method with 

FME schemas presents some limitations, including scale issues 

and the manual addition of semantic information. However, the 

modeling approach utilized in this study also has its constraints, 

such as errors in the segmentation step, particularly in densely 

populated forest areas where precise tree differentiation poses a 

challenge. 

 

 
 

Figure 9. LoD2 tree models of Results of the Outremeuse 

district. 

 

4.4 Discussion:  

The aim of this work was to propose a general and reusable 

approach to generating 3D city models. The framework ranges 

from data preparation and pre-processing to 3D modeling. The 

methodology was implemented in a case study to illustrate the 

approach and to handle the challenges related to 3D city 

modeling. Especially since the literature mainly focuses on 3D 

building modeling, we presented a 3D modeling pipeline for 

buildings, roads, and vegetation. Table 3 below summarizes the 

findings according to various criteria. It will help guide the user 

through the reproducibility and applicability of the process. 

 

3D models Buildings Roads Trees 

Type of 

methods 

(automatic, 

semi-automatic, 

manual) 

Automatic Automatic Semi-

automati

c 

Input data PICC data 

Point 

Clouds  

PICC data 

Point Clouds 

Point 

Clouds 

Minimum 

required 

attributes in 

point clouds 

X, Y, Z, 

Classificatio

n 

X, Y, Z, 

Classification 

X, Y, Z, 

Segment 

ID (for 

each 

tree), 

Height 

Above 

Grounds 

Point cloud 

classification 

(basic or 

advanced) 

Basic Advanced Advanc

ed 

LoD LoD2 LoD1 LoD2 

License, terms 

of use of the 

modeling tool 

General 

Public 

License 

General Public 

License 

Not 

specifie

d 

Supported 

format 

(input/output) 

Input: point 

cloud: LAS 

or. LAZ. 

2D polygon: 

GeoPackage

, ESRI 

Shapefile, 

or a 

connection 

to a PostGIS 

database 

Output: 

CityJSON  

Input: point 

cloud: LAS or. 

LAZ 

Output is in the 

following 

formats: OBJ, 

CityGML, 

CityJSON, CSV 

(for buildings 

only, i.e. their 

ID and height 

(ground+roof) 

are output in a 

tabular format), 

PostGIS, and 

STL. 

Input: 

point 

cloud: 

LAS or. 

LAZ. 

 

Output: 

CityJSO

N  

Geometry type Solid MultiSurface MultiSu

rface 

Semantic 

handling 

Yes  No No 

Minimum 

requirements 

(configuration 

file) 

Classificatio

n into two 

categories: 

ground and 

buildings 

Classification 

into two 

categories: 

ground and non-

ground 

Classific

ation 

involvin

g two 

categori

es: 

ground 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W4-2024 
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W4-2024-13-2024 | © Author(s) 2024. CC BY 4.0 License.

 
18



 

and 

trees 

Thematic 

attributes 

(Native/workar

ound)  

Native 

support 

Native support - 

Time 

(computational) 

Very fast Very fast Very 

fast 

Is there any 

report to guide 

the user. 

Yes: 

https://githu

b.com/geofl

ow3d/geoflo

w-bundle 

Yes: 

https://github.co

m/tudelft3d/3dfi

er 

Yes: 

https://g

ithub.co

m/Robbi

eG91/Tr

eeConst

ruction 

 

Table 3. Basic information of 3D modeling of the city objects 

according to various criteria. 

 

Merging 3D buildings, roads, and vegetation could be achieved 

(refer to Figure 10). 

 
 

Figure 10. 3D city model of Outremeuse district 

 

5. CONCLUSION 

This article presents a processing pipeline designed for the 

automated modeling of buildings, roads, and vegetation using 

semantic segmentation outcomes derived from 3D LiDAR point 

clouds. The methodology employs a good semantic 

segmentation approach, ensuring precise extraction of target 

objects. The open-source reconstruction tools for buildings and 

roads modeling were adapted, and simultaneously, a Python 

code for tree modeling was optimized. The application of these 

methods in a case study conducted in Liège, Belgium, yielded 

satisfactory results, with validated schemas and geometry for 

the developed models. Furthermore, an evaluation of the 

adopted reconstruction methods, including a comparative 

analysis with other techniques from the existing literature, 

underscores the robustness and efficacy of the proposed 

approach. As a perspective, we suggest investigating the 

proposed processing pipeline in other cities that do not yet have 

an urban model to evaluate its efficiency and limits in different 

urban contexts. Additionally, we recommend modeling other 

urban objects with the aim of producing highly detailed urban 

models rich in urban knowledge. 
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FME workbench of road modeling 
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