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ABSTRACT: 

Capturing the intricate dynamics of population movements in urban areas holds substantial implications for urban planning 
and management, particularly in the context of disaster mitigation. There is an attempt to introduce methods for 
estimating the spatiotemporal distribution of population flows, leveraging demographic data from various kind of sources. In 
earlier spatiotemporal interpolation methods, some key assumptions were made to obtain data at shorter intervals. In this study, 
we present an alternative spatiotemporal interpolation method by loosening assumptions and increase its versatility and facilitates 
flexible application across various contexts and objects. This is achieved by estimating the square root of the movement 
probability matrix for longer time intervals. The efficacy of our approach is demonstrated through its application to actual data 
from the Tokyo 23 wards, allowing for the estimation of the spatiotemporal distribution of population flows across various time 
intervals. Our results not only affirm the accuracy of the estimates but also provide insights into the intricate population flows 
within the densely populated regions of the Tokyo 23 wards. Moreover, by estimating population data at shorter time intervals, 
we explore the characteristics of these flows, offering an understanding of the dynamics that shape urban demography. 

* Corresponding author 

1. INTRODUCTION

The spatial distribution of individuals within metropolitan areas 
exhibits temporal variations, driven by human activities and 
facilitated by the mobility afforded by rapid urban 
transportation systems. Recently, there has been a burgeoning 
interest in the observation and analysis of macro-scale 
population flows across different timeframes. This heightened 
interest is motivated by the imperative to address various 
applications within the domain of urban planning. These 
applications encompass the alleviation of crowding at large-
scale public events, the facilitation of evacuation guidance in 
the aftermath of major earthquakes, and the optimization of area 
marketing strategies within commercial industries. For these 
purposes, various spatiotemporal demographic data have been 
employed. Table 1 illustrates examples of data that are 
particularly valuable for macro-scale analyses, majorly 
employed within the context of Japan.  

Dataset Person Trip 
survey (PT) 

Mobile Spatial 
Statistics (MSS) 

Konzatsu-tokeiⓇ 
(KT) 

Content travel behavior spatial 
distribution 

population flow 

Sampling rate ■ about 2 –
3 %

○ about 40 % ■ about 0.5 %

Spatial unit ■ zone ○ 500m grid-cell ○ 250m grid-cell 
Time 
resolution 

○ every minute 
on weekdays

○ every 1 hour ○ every 5
minutes

Frequency ■ every 10 yrs. ○ everyday ○ everyday 
Available 
information 

○ sex, age,
home address, 
dep./arr. time, 

purpose of trip. 

■sex, age, home 
address 

(prefecture or 
municipality zone) 

○sex, age 

Notably, the Person Trip survey data (PT data) serves as a 
comprehensive source that is a questionnaire-based survey 
conducted by the government. It provides information on sex, 
age, purpose of trip, departure/arrival locations and times, 
among other details [Regions: Greater Tokyo Metropolitan 
Area/ Samples: Random sampling based on census data (about 
1.4 million households from about 16 million households)/ 
Valid data: about 340 households (sampling ratio = 2.13 %)]. 
However, PT data is collected only every 10 years and has a 
low sampling rate. 

The ubiquity of mobile phones has ushered in a novel 
opportunity to gather dynamically changing location 
information from users with higher sample rates (Deville et 
al., 2014; Ratti et al., 2006; Calabrese et al., 2011). Mobile 
Spatial Statistics (MSS) represents one such dataset derived 
from mobile phone location data, providing regional 
population information in grid-cell units at any desired time 
and day (Seike, 2011). From a macroscopic perspective, 
mobile data serves as a widely recognized proxy for 
comprehending the demographic dynamics of individuals 
residing at nighttime and engaging in activities at daytime 
within a specific area. Consequently, mobile data can be 
utilized to estimate population movements to a certain 
extent. From a microscopic standpoint, however, it does not 
offer insights into the directional vectors or distances 
associated with population flows. 

Addressing the need for data on population flows and their 
trajectories, certain mobile phone datasets, such as Konzatsu-

Table 1. Examples of population statistics (○: Advantage, ■: 
Disadvantage). 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W4-2024 
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W4-2024-145-2024 | © Author(s) 2024. CC BY 4.0 License. 145



tokeiⓇ (KT), offer the population flows between grid-cells in 5-
minute intervals. Despite this advantage, there are some 
limitation or shortfalls on the data's instability in grid-cells with 
data-exclusion due to privacy protection (Kamada, 2017). 
Despite the availability of these datasets, each presents its own 
set of limitations, encompassing factors like time interval, 
sampling rate, and spatial units. Consequently, there are some 
attempts have proposed methods that involve combining 
multiple datasets to generate new, more comprehensive datasets 
that leverage the strengths of each while compensating for their 
respective shortcomings. Osaragi and Kudo (2019), for instance, 
integrated multiple demographic datasets, including PT data and 
MSS, to obtain extensive data on static individuals in urban 
areas. Similarly, Osaragi and Hayasaka (2019) introduced a 
method for acquiring the spatiotemporal distribution of 
population flows, employing PT data, MSS, and KT through an 
entropy maximization approach.  

Acquiring information at various time intervals is crucial for 
versatile usage of these datasets and analyzing population flow 
characteristics across different regions and time periods. 
Namely, given the potential to capture more detailed movement 
with shorter intervals in spatiotemporal demographic data, there 
is a compelling need to devise a spatiotemporal interpolation 
method. Numerous methods exist for interpolating time 
intervals in data. Tatsumi and Matsuba (2008) summarized 
several, including linear interpolation, neighborhood 
interpolation, and random interpolation. Kitakawa (2003) 
proposed a linear Gaussian state space model to address 
essential problems in time series analysis such as interpolation. 
Another study utilized population flow data at short intervals, 
combining the shortest route from departure to arrival areas and 
railway/road network data, revealing correlations between the 
number of stores and time slot population (Shimazaki et al., 
2009). The fractal dimension was also employed in a method 
for generating interpolation values for economic time series 
(Chiba and Matsuba, 2005). 

Building upon an integration method for multiplying 
spatiotemporal demographic data, this research introduces a 
novel spatiotemporal interpolation method designed to observe 
the spatiotemporal distribution of population flows at shorter 
time intervals. Assuming constancy in population flows within 
arbitrary time intervals, the population flows at shorter time 
intervals is computed through the square root calculation of the 
movement probability matrix. For regions exhibiting relatively 
large estimation errors, a selection process is proposed when 
utilizing actual data. Subsequently, utilizing the short time 
interval data derived from the spatiotemporal interpolation 
method, the spatial distribution of population flows in several 
regions is explored during various time periods. This 
exploration aims to capture more nuanced details regarding the 
moving ranges and directions of individuals within urban areas. 

2. METHODOLOGY

2.1 Existing Spatiotemporal Interpolation Method 

In existing interpolation methods, the linear interpolation 
method is commonly utilized for various spatiotemporal 
demographic data. For example, Osaragi and Hayasaka (2019) 
pre-processed MSS, PT data, and KT based on two assumptions 
to obtain shorter interval data: Assumption (1) is linear changes 
in population within a grid-cell between time t and t+Δt, while 
Assumption (2) is population flows follow a simple Markov 

process based on a movement probability matrix (Figure 1). 
Linear interpolation was applied to derive population and static 
fraction at any desired time, and moving fraction in various time 
intervals was obtained by multiplying the movement probability 
matrix to standardize the data's time intervals. Subsequently, the 
population served as a constraint to differentiate between static 
individuals and population flows, with inter-grid-cell moving 
population estimated via the moving fraction using a maximum 
likelihood algorithm. 

Figure 1. Standardization of the time intervals across datasets. 

The preceding study obtained the spatiotemporal distribution of 
population flows at shorter time intervals based on the two 
assumptions. However, excessive reliance on assumptions in 
estimation procedures may lead to the generation of unrealistic 
results. Especially, Assumption (1) is considered hard to 
compatible for population flow estimation. By loosening 
Assumption (1) and relying exclusively on Assumption (2), we 
develop a method that increases its versatility and facilitates 
flexible application across various contexts and objects.  

2.2 Proposing Spatiotemporal Interpolation Method 

The spatiotemporal interpolation method is depicted in Figure 2. 
The variables employed in the calculation are as follows: 
Mit:   The population in grid-cell i at time t. 
sijt~t+Δt: The number of people move from grid-cell i to grid-cell 

j between time t and t+Δt including siit~t+Δt (siit~t+Δt is the 
number of people stay in the grid-cell i). 

fijt~t+Δt: The inter-grid-cell moving fractions from grid-cell i to 
grid-cell j between time t and t+Δt including fiit~t+Δt (fiit~t+Δt 

is the fraction of people stay in the grid-cell i) . 
SΔt: The moving population matrix in time interval Δt whose 

element is sijt~t+Δt.
FΔt: The movement probability matrix in time interval Δt whose 

element is fijt~t+Δt.

Figure 2. Comprehensive overview of the spatiotemporal 
interpolation method. 

This research employed data from PT data, MSS and KT, which 
showed the spatiotemporal distribution of population flows 
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(Osaragi and Hayasaka, 2019). According to this data, we 
obtained the inter-grid-cell moving population sijt~t+Δt in time 
interval Δt (Δt=60 minutes). Using the method proposed in their 
study, the inter-grid-cell moving fraction fijt~t+Δt could be 
estimated using the population of grid-cell i (Mit and sijt~t+Δt).  

~t t t t
i ij

j
M s +∆=∑ (1) 

~ ~ /t t t t t t t
ij ij if s M+∆ +∆= (2) 

Next, we considered the population flows that composed of 
sijt~t+Δt, and the movement probability matrix composed of 
fijt~t+Δt. The same as their study, we assumed that inter-grid-cell 
moving fraction fijt~t+Δt is constant in any arbitrary time interval 
according to the simple Markov process based on movement 
probability matrix FΔt. Under this assumption, the movement 
probability matrix in time interval Δt/2, could be obtained by 
calculating the square root of movement probability matrix FΔt. 
The inter-grid-cell moving fraction fijt~t+Δt/2 in time interval Δt/2 
is the element of FΔt/2.  

1 /22( )t tF F∆ ∆=        (3) 
Finally, the number of people sijt~t+Δt/2 who move from grid-cell 
i to grid-cell j between time t and t+Δt/2 can be obtained using 
Mit and movement probability matrix FΔt/2 whose element is 
fijt~t+Δt/2. 

~ /2 ~ /2t t t t t t t
ij ij is f M+∆ +∆= × (4) 

2.3 Method for Calculating Square Root of Movement 
Probability Matrix 

2.3.1 Denman-Beavers iteration: Various methods have 
been employed for calculating the square root of a matrix, with 
the Schur method and Newton's method standing out as widely 
utilized approaches (Björck and Hammarling, 1983). The Schur 
method involves simplifying the matrix to Schur triangular form, 
enabling the computation of the square root by evaluating the 
square root of the triangular matrix (Deadman et al., 2013). 
While this method is numerically stable, it has the potential to 
yield numerous imaginary numbers in the square root matrix, 
particularly when dealing with multidimensional matrices. 
Alternatively, the square root of a matrix can be computed using 
Newton's method, which is expressed as iterative equations. 
Despite its favorable mathematical convergence properties, 
Laasonen (1958) highlighted that Newton's method is 
numerically unstable in certain contexts. 

To address this instability, Denman and Beavers (1976) 
introduced iteration equations as an extended variant of 
Newton's method, hereafter referred to as the DB method, 
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 (5) 

which considered matrix Y0 is movement probability matrix FΔt, 
matrix Z0 is an identity matrix I whose dimension is the same as 
matrix Y0, Yk-1 and Zk-1 are the inverse matrices of Yk and Zk 
respectively. k is the iteration time. 

Higham (1986) and Cheng et al. (2001) independently validated 
that the DB method ensures the numerical stability of 
computing the square root of a matrix. Furthermore, the DB 
method demonstrated its capability to compute the square root 
of a matrix, yielding solutions exclusively composed of real 
numbers, all within a concise calculation timeframe. In this 
research, the DB method was employed to calculate the 

approximate square root matrix, relying on convergence 
calculations with matrices FΔt and I after undergoing k iterations. 
2.3.2 Methodology for determining calculation iterations: 
Round-off errors may occur during the calculation of inverse 
matrices in the division step of the DB method. These errors can 
lead to a floating result in the iteration calculations to some 
extent. Additionally, there is a potential for the accumulation of 
round-off errors with increasing iteration times, denoted as k. 
Consequently, it becomes necessary to establish the appropriate 
iteration times to achieve an accurate approximation of the 
square root of the matrix. Figure 3 illustrates the process of 
determining calculation iterations. Initially, employing matrix 
FΔt and matrix I with the DB method, we computed matrix Yk+1 
and matrix Zk+1 for N iterations, where N represents the 
maximum number of iteration times. Subsequently, it was 
acknowledged that matrix Fk+1* was the square of matrix Yk+1. 

* 2
1 1( )k kF Y+ +=             (6) 

Next, considering that Fk+1* is a matrix with elements 
represented by ~ˆ t t t

ijf +∆ , we calculated the norm ||Fk+1|| between 

matrix Fk+1* and movement probability matrix FΔt over the time 
interval Δt. 

~ ~
1

ˆ|| || ( )t t t t t t
k ij ij

i j
F f f+∆ +∆

+ = −∑∑ (7) 

Comparing each norm from 1st time to N-th time, the Yk+1 with 
the smallest norm was considered to be the approximate square 
root of matrix FΔt.  By comparing the norms obtained from the 
1st iteration to the N-th iteration, the Yk+1 corresponding to the 
smallest norm is deemed to be the approximate square root of 
the matrix FΔt. 

Figure 3. Process of determining the calculation intervals. 

2.3.3 Adjustment for negative values in the square root 
matrix: Due to the limitation that individuals can only move to 
a restricted number of grid-cells within the time interval Δt, the 
movement probability matrix FΔt inherently includes numerous 
0 and small values. As a consequence of round-off errors 
stemming from the abundance of 0 or small values in matrix FΔt, 
the matrix FΔt/2 derived from FΔt often incorporates numerous 
negative values due to the effects of iterative calculations.  
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Figure 4 illustrates the process of adjusting negative values in 
the estimated approximate square root matrix of FΔt/2. In 
instances where an element ~ˆ t t t

ijf +∆ of matrix FΔt/2 was a negative 

number, it was adjusted to 0. Nevertheless, following the 
adjustment of negative values, the summation of elements in 
each row of the matrix might exceed 1. Consequently, an 
additional adjustment was made to ensure that the sum of 
elements in each row equaled 1. 

~ /2
~ /2

~ /2

ˆ
ˆ

t t t
ijt t t

ij t t t
ij

j

f
f

f

+∆
+∆

+∆
=
∑ (8) 

Figure 4. Method for adjusting negative values 

Through the aforementioned procedures, we can derive the 
movement probability matrix FΔt/2, wherein each element 
represents the inter-grid-cells moving fraction fijt~t+Δt/2 during 
the time interval Δt/2. Subsequently, employing the 
methodology detailed in Section 2.2, we can determine the 
inter-grid-cell moving population sijt~t+Δt/2. 

Initially, based on the movement probability matrix SΔt during 
time interval t, two distinct movement probability matrices can 
be computed: one matrix in which the sum of elements in each 
row equals 1 (Figure 5A), and another movement probability 
matrix where the sum of elements in each column equals 1 
(Figure 5B).  

Subsequently, the square root of these two movement 
probability matrices (Figure 5 (C), (D)) was computed to derive 
movement probability matrices and corresponding moving 
population matrices for the time interval Δt/2. The summation 
of elements in each column in the matrix was denoted as 
Mi*t+Δt/2, and the summation of elements in each row was 
denoted as Mi** t+Δt/2. The population of grid i, at time Δt/2, 
denoted as Mi t+Δt/2, was considered the average of the two 
estimated populations Mi* t+Δt/2 and Mi** t+Δt/2. 

* /2 ~ /2t t t t t
i ij

i
M s+∆ +∆=∑ (9) 

** /2 /2~t t t t t t
i ij

j
M h+∆ +∆ +∆=∑               (10) 

/2 * /2 ** /21 ( )
2

t t t t t t
i i iM M M+∆ +∆ +∆= +   (11) 

We formulated Equations (12) and (13) to characterize the 
relationship between the population at time t, Mi t, and at time 

t+Δt/2, Mi t+Δt/2, the inter-grid-cell movement sijt~t+Δt/2, where n 
represents the number of grid-cells. 

Figure 5. Procedure for refining the movement probability 
matrix within a shorter time interval. 

~
n

t t t t
i ij

j
M s +∆=∑ (12) 

/2 ~ /2
n

t t t t t
i ij

i
M s+∆ +∆=∑  (13) 

The calculation of the number of people moving between grid-
cells, sijt~t+Δt/2, was carried out by utilizing the inter-grid-cell 
moving fractions fijt~t+Δt/2 between time t and t+Δt/2 based on 
the maximum likelihood estimators, which yield the highest 
values for the occurrence probabilities. 

 ~ /2 ~ /2t t t t t t t t
ij ij i js f A B+∆ +∆= × ×  (14) 

~ /2

t
t i
i m

t t t t
ij j

j

MA
f B+∆

=
×∑               (15) 

/2

~ /2

t t
t i
i m

t t t t
ij i

i

MB
f A

+∆

+∆
=

×∑  (16) 

The variables Ai t and Bj t exhibit mutual dependence; however, 
arbitrary initial values were selected for a converging 
calculation, yielding a unique value for the number of 
individuals moving between grid-cells sijt~t+Δt/2. 
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3. CASE STUDY

3.1 Study Area and Data 

The analysis focused on the Tokyo 23 wards, where human 
movements are notably active, and the study area was divided 
into grid-cells of spatial units measuring 500 m by 500 m. 
Demographic data from the Mobile Spatial Statistics (MSS) on 
a weekday in October 2008 were utilized (Figure 6). Individual 
locations were estimated from PT data at 60-minute intervals, 
with the PT data from weekdays being aligned with time use 
survey results. Given the low sampling rates for KT, the data 
from multiple days were amalgamated. Days with anomalies 
due to natural causes and those coinciding with significant 
public events were excluded, resulting in approximately half a 
year's worth of data from which one day's worth of weekday 
data was extracted. 

Figure 6. Study area and dataset employed for analysis. 

Furthermore, an external region outside the study area, 
encompassing urban zones and water spaces, was considered. A 
considerable number of individuals were observed to move 
between this external region and the study area. Consequently, 
an external grid was established to depict the broader region 
beyond the study area. This external grid played a crucial role in 
the spatiotemporal distribution of population flows, ensuring 
the conservation of the total population across the entire region. 

3.2 Excluding Boundary Effects from Estimated Data 

Given the presence of an external grid representing a wide 
region outside the study area, a substantial movement of people 
occurred to/from this external grid, making its population 
significantly larger than that of any other grid-cells. 
Additionally, a considerable number of individuals engaged in 
inflow/outflow movements between the external grid and the 
grid-cells close to the boundary line of the study area, which we 
termed as boundary grids. To distinguish estimation results with 
potentially large errors, we introduced a method for defining 
boundary grids (Figure 7). Initially, we identified the boundary 
line of the study area by inputting the polyline of the Tokyo 23 
wards boundary into ArcGIS, focusing on the boundary 
adjacent to other urban areas (Figure 7(a)). The coastline 
boundary was omitted from selection, as there were minimal 
movements of people to/from the external grid in the study area. 

Next, to identify grid-cells in close proximity to the boundary 
line, we generated a buffer zone with a width d [m] from the 
boundary line (Figure 7(b)). For this study, d [m] was 
considered equivalent to the size of a grid-cell (500 m). 
Subsequently, grid-cells overlapping with the buffer zone were 
selected as boundary grids (Figure 7(c)). It is essential to 
acknowledge that the estimated results of population flows 
to/from these boundary grids may contain larger estimation 
errors than other grid-cells—a phenomenon termed as boundary 

effect. Due to the reduced reliability associated with the 
boundary effect, we proactively excluded these boundary grids 
when assessing accuracy in the subsequent section. 

Figure 7. Method to eliminate the impact of boundary effects. 

3.3 Validation of Estimate Accuracy 

Given the absence of precise data depicting the number of 
people in fine spatiotemporal units, a method was devised to 
evaluate the accuracy of the spatiotemporal interpolation 
approach. Figure 8 illustrates the validation process of estimate 
accuracy. For this validation, we specifically choose data from 
the time frame between 14:00~16:00 to exclude morning and 
evening rush hours characterized by large fluctuations in 
population flow. This time window was selected to mitigate the 
impact of dynamic changes and enable a more focused 
evaluation of the accuracy of our estimates. The ensuing 
sections provide a detailed account of the validation process, its 
outcomes, and the implications for the reliability of our 
spatiotemporal interpolation method. 

Figure 8. The procedure for evaluating accuracy. 

Based on the data acquired during the 14:00~15:00 period (Δ
t=60 minutes), a movement probability matrix SΔt was derived. 
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We represented each element of this matrix sij14:00~15:00, the 
population of grid i at 14:00 Mi14:00, and the inter-grid moving 
fraction fij14:00~15:00 (with the elements in every row summing to 
1) (Figure 8(1)). 
 
Initially, under the assumption that the moving fraction 
fij15:00~16:00 between 15:00~16:00 is the same as fij14:00~15:00 
between 14:00~15:00, based on the simple Markov process, we 
estimated the movement probability matrix F*2Δt. The elements 
of this matrix, denoted as fij*14:00~16:00 between 14:00~16:00, 
were obtained by squaring the elements of the movement 
probability matrix FΔt representing fij14:00~15:00 (Figure 8(2)). 

*2 2( )t tF F∆ ∆=                   (17) 
Subsequently, the movement probability matrix S*2Δt, 
representing sij*14:00~16:00 between 14:00~16:00, could be 
derived from the matrix F*2Δt (Figure 8(3)). The estimated 
population of grid i at 16:00 (Mi*16:00) could be obtained using 
the following equation: 

*16:00 *14:00~16:00
i ij

j
M s=∑                  (18) 

Utilizing the spatiotemporal interpolation method proposed in 
Section 2, we can ascertain the probability matrix of inter-grid-
cell movement, denoted as F*Δt, with elements representing 
fij*14:00~15:00. Concurrently, the population matrix S*Δt can be 
estimated, featuring elements sij*14:00~15:00, for the time interval 
between 14:00~15:00 (Figure 8(4)~(5)).  Subsequently, the 
accuracy assessment involves a comparison between the 
elements sij14:00~15:00 and sij*14:00~15:00of SΔt and S*Δt (Figure 8(6)). 
 
Figure 9 presents a comparison between the moving and static 
populations during the 14:00~15:00 timeframe, derived from 
both observed and estimated data. In order to mitigate large 
estimation errors arising from boundary effects, the estimated 
values pertaining to the moving and static populations to/from 
boundary grids were precluded. The results indicate overall 
good accuracy in the estimated values. However, a detailed 
examination reveals instances where the estimated populations 
of inter-grid-cell movement and static populations within grid-
cells were underestimated. This discrepancy can be attributed to 
the overestimation of populations moving to external grids 
through the employed comparison method, particularly in 
scenarios involving population flows between external grids 
and boundary grids. 
 

 
Figure 9. Precision of estimating both moving and static 

populations. 

 
3.4 Spatiotemporal Distribution of Population Flows in 
Urban Space 

Figure 10 illustrates the spatiotemporal distribution of 
population flows to/from the grid-cell containing Shinjuku 
station at intervals of 60 minutes, 30 minutes, 15 minutes, and 
7.5 minutes during the 8:00~9:00 period. The visualization 

reveals a diffusion of both inflow and outflow people over time, 
indicating an expanding moving distance and range. 
 

 
Figure 10. Spatial distribution of population flows to/from 

Shinjuku Station during different time intervals. 
 
Notably, the population flow range is considerably broader with 
the 60-minute interval data compared to the 7.5-minute interval 
data. The 60-minute data demonstrates that individuals migrate 
to more distant grid-cells within Tokyo 23 wards. In contrast, 
the 7.5-minute data highlights a concentration of population 
flows in close proximity to railway lines connected to Shinjuku 
station. The shorter time interval data reveals a shorter moving 
distance for population flows. 
 
Figure 11 depicts the spatial distribution of population flows 
from Shinjuku Station at intervals of 60 minutes and 7.5 
minutes during various time periods. The 60-minute data readily 
highlights the impact of time periods on population flows. 
Specifically, during peak commuting hours (8:00~9:00 and 
17:00~18:00), the movement range of individuals was notably 
broader compared to the daytime period (12:00~13:00). 
Conversely, utilizing shorter time interval data allowed for the 
observation of regional characteristics. For instance, the 7.5-
minute interval data reveals that the movement range of 
individuals from Shinjuku Station predominantly aligns along 
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the railway lines. This observation indicates that individuals 
departing from Shinjuku Station primarily utilize the railway 
system. Given that Shinjuku Station serves as a major hub 
interconnected with various stations and regions through an 
extensive network of railway lines, it is more convenient for 
individuals departing from Shinjuku Station to rely on these 
railway connections. 
 

 
Figure 11. Spatial distribution of population flows from 

Shinjuku Station at intervals of 60 minutes and 7.5 minutes 
during different time periods. 

 
4. COMPARISON OF EXISTING AND PROPOSED 

METHOD  

Given the existence of a previously proposed spatiotemporal 
interpolation method in Osaragi and Hayasaka (2019), we 
attempted to compare the results obtained from the two distinct 
spatiotemporal interpolation methods, i.e., the existing method 
and our method proposed in this research. 
 
This section specifically focuses on data selected from the time 
period between 14:00~16:00, characterized by relatively stable 
population flow. From the acquired data, the population of grid-
cell i at 14:00 (Mi14:00) and 16:00 (Mi16:00) was derived from the 
Mobile Spatial Statistics (MSS), while the static occupant 
fraction at 14:00 (Pi14:00) and 16:00 (Pi16:00) was obtained from 
Person Trip (PT) data. The population and static occupant 
fraction at 15:00 were estimated through linear interpolation 
utilizing the following equations: 

15:00 14:00 16:00 14:001 ( )
2i i i iM M M M= + −                 (19) 

15:00 14:00 16:00 14:001 ( )
2i i i iP P P P= + −                   (20) 

Subsequently, the inter-grid-cell moving population 
(sij**14:00~15:00) between 14:00~15:00 was estimated by 
leveraging the population and static occupant fraction data for 
each grid-cell at 14:00 and 15:00, along with the moving 
fraction (pij14:00~15:00) from KT. This estimation process 
facilitates a direct comparison between the moving fraction 
(fij**14:00~15:00) and the previously estimated (fij*14:00~15:00) from 
Section 3.3. 
 
Figure 12 presents a comparative analysis of results obtained 
through two spatiotemporal interpolation methods. The x-axis 
represents the estimated outcomes using the method proposed in 

Osaragi and Hayasaka (2019), while the y-axis corresponds to 
the estimated outcomes using the method introduced in this 
research. The comparison reveals a high degree of similarity in 
the distribution of population flows estimated by these two 
methods. However, it is noteworthy that the spatiotemporal 
interpolation method introduced in this research generally 
yields lower estimates for the population flows in comparison to 
the results obtained by the existing method. 
 

 
Figure 12. Comparison of the estimated results obtained 

through the existing method and our method. 
 
Figure 13 illustrates the spatiotemporal distribution of 
population flows at 15-minute and 30-minute intervals using 
two distinct spatiotemporal interpolation methods. A noticeable 
trend emerges wherein the moving population estimated in this 
research is consistently lower than the moving population 
estimated using the existing method. Conversely, static 
population estimated in this research tends to be higher than the 
estimates for individuals staying in place as per the existing 
method. 
 

 
Figure 13. Comparison of outflow population estimates 

obtained through the existing method and our method proposed 
in this research. 
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5. DISCUSSION AND CONCLUSIONS 

Based on the methodology developed for estimating the 
spatiotemporal distribution of population flows, this research 
introduces a novel spatiotemporal interpolation method aimed 
at estimating such distributions within shorter time intervals. 
Specifically, the population flow distribution in shorter time 
intervals is derived by estimating the square root of the 
movement probability matrix obtained from the moving 
population. The results of accuracy evaluation indicate that the 
estimation outcomes exhibit commendable accuracy. 
 
Subsequently, utilizing the estimated data at shorter time 
intervals, this research elucidated the nuanced patterns of 
human movement within Tokyo 23 wards, delving into the 
characteristics of population flows in shorter time increments. 
Through an examination of the moving ranges and directions of 
individuals within shorter time intervals, this research revealed 
the capacity to discern differences in spatiotemporal distribution 
of population flows, influenced by transportation modes, 
geographical regions, and temporal variations. 
 
The analysis underscored the critical importance of 
comprehending detailed human movement patterns in the 
development of simulation models for population flow 
distribution post-disasters or during special events. A notable 
limitation of this paper is the lack of real-world implementation 
of the proposed method in urban settings, especially in critical 
scenarios like emergency situations and traffic management or 
policy-making. Additionally, there is a need to explore the 
effectiveness of the methodology in different contexts or cities 
as part of future research efforts. For a prospective avenue for 
real-world implementation, the proposed spatiotemporal 
interpolation method is essential for enhancing estimation 
accuracy in consecutive steps of interpolation. With the 
availability of shorter interval data, there is potential to establish 
models for estimating human movements that dynamically 
respond to varying traffic conditions, thus playing a pivotal role 
in facilitating rapid responses to urban emergencies.  
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