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Abstract

Point cloud fusion is a process plays pivotal role in geospatial data analysis that aims to integrate data from multiple sources to
create a comprehensive and precise representation of the environment. Integrating point clouds acquired from cross-source or hy-
brid sensors presents unique challenges due to differences in geometric accuracy, precision, and the size of data gaps, along with
variations in available attributes. Significant progress has been made in developing algorithms and methods to address these chal-
lenges, but the problems are not sufficiently resolved and remain one of the most challenging aspects of geospatial data processing.
In this paper, we present a new approach for airborne cross-source point cloud fusion through a slice-to-slice adjustment. Our
method generates cross-sectional slices and aligns them following some sequential steps. This approach enhances the accuracy
and completeness of the fused point cloud, overcoming issues related to geometric disparities and data gaps. Experimental res-
ults demonstrate the effectiveness of our approach in improving registration accuracy, preserving geometric detail, and providing
valuable insights for utilizing the potentials of both data sources.

1. Introduction

Light Detection and Ranging (LiDAR)-based point clouds have
gained popularity for 3D data representation in various fields
including computer vision, robotics, and geospatial engineer-
ing. These 3D data serve many purposes, such as object recon-
struction, detection, recognition, classification and segmenta-
tion. Point clouds provide detailed and accurate representations
of the environment, enabling precise analysis and understand-
ing of the surrounding space. With the development of high-
precision sensors, this technology captures millions of points
of the scanned objects, provides detailed and precise informa-
tion for analysis and modelling.

To capture point clouds over a large urban area, airborne laser
scanning (ALS) is considered the best and most reliable tech-
nique due to its capability to provide accurate information of
the scene (Mandlburger et al., 2017; Zhang et al., 2019). ALS
captures detailed data for a large area quickly and efficiently.
Besides, features like multiple returns make it possible to de-
tect objects at different depths, and can capture ground objects
under trees or vegetation by penetrating foliage through small
gaps (Figure 1-LiDAR). This makes it a valuable tool for vari-
ous applications such as forest management, city modelling,
urban planning, and archaeological surveys. On the other hand,
the passive sensing technology, airborne photogrammetry with
subsequent dense image matching (DIM) has come into focus
for urban scene 3D data collection. Also, fast-growing ob-
lique photogrammetric sensors are being used to capture high-
resolution oblique imagery from multiple angles (Figure 2), and
sensors like the Leica CityMapper push it a step ahead by in-
tegrating ALS and photogrammetry (both nadir and oblique-
looking) sensors on the same platform, simultaneously collect-
ing both data types for comprehensive urban analysis (Toschi et
al., 2018; Toschi, 2019). This integration allows for creating a
highly detailed and more complete picture of an urban scene.

However, the problem arises when the sensors can only capture

data within their limited view range, requiring them to align
to generate a complete and large 3D representation, commonly
known as point cloud registration (Huang et al., 2021; Li et al.,
2020). This is a process of alternatively looking for correspond-
ence and estimating the transformation matrix to minimize the
geometric projection error. In addition, ALS and DIM point
clouds differ significantly in terms of geometric accuracy and
precision. For instance, ALS points can have a vertical accuracy
of 5 cm, whereas DIM-derived points have a vertical accuracy
of 10–20 cm (Zhang et al., 2019). Usually, DIM data contains
more noise than ALS data, even for flat or smooth surfaces.
Low-contrast images (e.g., in shadows and along narrow alleys)
complicate DIM, but this is not an issue for ALS data. Due
to its overhead scanning position, ALS cannot fully cover ver-
tical elements (e.g., building facades, tree trunks, traffic signs),
whereas oblique imagery can (Moe et al., 2016). Although
DIM is denser than LiDAR, roof ridges are often rounded off
more in the DIM than LiDAR point cloud (Mandlburger et al.,
2017; Zhang et al., 2018). Additionally, the vegetation point
cloud provided by DIM exhibits relative incompleteness com-
pared to the LiDAR data. In grassy areas, this disparity leads to
height differences, with the DIM point cloud registering a few
centimeters higher than the corresponding LiDAR point cloud
(Figure 1-DIM). Similar error matrics and geometric inconsist-
encies were identified between terrestrial laser scanning (TLS)
and DIM point clouds (Leslar, 2015; Cavegn et al., 2014). All
these above issues make the registration process challenging
and require advanced algorithms and methods.

Aligning two or more point clouds in a single coherent co-
ordinate system known as registration, whereas point cloud fu-
sion involves combining multiple point clouds from different
sources or sensors to create a single unified point cloud rep-
resenting the entire scene. Fusion aims to merge information
from different point clouds to create a more comprehensive and
complete representation of the scanned area (Mandlburger et
al., 2017). Point cloud fusion is used in various applications,
including creating high-resolution 3D models, integrating data
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LiDAR
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Figure 1. Data acquisition diagram using airborne LiDAR and
oblique photogrammetry or DIM sensors.

from different sensors (e.g., LiDAR and photogrammetry) and
improving point cloud quality. Although these two (registra-
tion and fusion) concepts may be related in some applications,
they serve different purposes and are discussed in separate con-
texts within the literature (Abdelazeem et al., 2021; Yang et al.,
2021). However, the use of different sensors to improve point
cloud quality is crucial in various fields of study.

In the context of airborne LiDAR and DIM, new hybrid sensor
solutions (Toschi, 2019) are rapidly entering the airborne topo-
graphic and urban mapping industry, combining both sensors
on the same platform. These hybrid sensor systems provide fast
and efficient large-scale point clouds and are considered essen-
tial to generating 3D models of buildings in dense urban areas.
Along with this sensor, hybrid georeferencing is a recent devel-
opment of traditional strip or bundle adjustment that simultan-
eously optimizes the relative and absolute orientation of LiDAR
point clouds and aerial images (Glira et al., 2019; Haala et al.,
2020). This process is particularly useful if both sensors share
the same trajectory and are flown on the same platform (Toschi
et al., 2018; Haala et al., 2020).

Many methods have been developed over the years for regis-
tration and fusion in relevant research fields; this paper pro-
poses a point cloud fusion framework that utilizes line fusion
techniques to integrate data from LiDAR and photogrammet-
ric sensors. We aim to enhance the quality of the resulting
point cloud by filling gaps and improving the accuracy of the
DIM point cloud. Our framework leverages the complement-
ary strengths of LiDAR and photogrammetry, such as precise
distance measurements of LiDAR and detailed texture inform-
ation from photogrammetry, to create a more comprehensive
and accurate representation of the environment. We validate the
effectiveness of our framework through extensive experiments
and demonstrate its potential with real urban data by comparing
the results with commonly used existing methods.

2. State-of-the-Art

Many previous studies have focused on the registration of
LiDAR point clouds and aerial images separately. Few meth-
ods have explored the registration of LiDAR point clouds and
aerial images together. Although optical images and ALS are

georeferenced on the same coordinate system before registra-
tion, misalignment may occur due to sensor systems and sys-
temic errors. In this section, we will discuss the existing meth-
ods and techniques for cross-source registration, as well as the
challenges and potential solutions for improving the alignment
accuracy between LiDAR point clouds and aerial images.

2.1 Challenges

The challenges include dealing with differences in scale, res-
olution, partial overlap, and geometric distortions between the
LiDAR point clouds and aerial images (Huang et al., 2021;
Zhang et al., 2018). These arise due to several factors, includ-
ing differences in viewpoint and acquisition time, resulting in
partial overlap between the captured point clouds and aerial im-
ages. This partial overlap causes discrepancies in the spatial
alignment and geometric registration of multi-sensor data. One
of the critical challenges in data fusion is accurately selecting
correspondence points between different sensors (Tajdari et al.,
2023; Chang et al., 2020). Researchers constantly explore vari-
ous methods and algorithms to address this issue, but there is
still no universally accepted solution. Furthermore, variations
in acquisition techniques lead to discrepancies in density and
noise levels within the point cloud data. Different lighting con-
ditions, image datasets, and the dense matching algorithm (Re-
mondino et al., 2014; Cavegn et al., 2014) can pose further chal-
lenges in accurately integrating LiDAR and DIM data. These
challenges must be carefully addressed to ensure accurate align-
ment and merging of the two datasets. However, research shows
that the fusion of LiDAR and DIM can effectively mitigate
these distortions and improve the overall data quality to perform
better in various applications such as urban planning, forestry
management, and disaster response. It can also enhance object
detection and classification accuracy.

2.2 Point Cloud Fusion

The fusion of ALS and photogrammetry-derived DIM point
clouds can only be performed efficiently if they are registered
precisely to eliminate the geometric inconsistency between the
two different types of data (Peng et al., 2019; Toschi et al., 2021;
Yang et al., 2021). This registration process entails identify-
ing the rigid or non-rigid transformation that best aligns the
points in one point cloud with the corresponding points in an-
other point cloud (Li et al., 2021). However, most of the exist-
ing registration methods developed so far have focused on the
alignment of rigid transformations. The research on non-rigid
registration is still ongoing, and the development is relatively
tardy compared to rigid registration (Li et al., 2021). Typically,
point cloud registration methods include Iterative Closest Point
(ICP) (Besl and McKay, 1992; Li et al., 2021), graph matching
(Chang et al., 2020; Fu et al., 2023) and feature-based (Huang
et al., 2020; Rusu et al., 2008) approaches. One feature-based
deep learning method used for point cloud registration is Point-
NetLK (Aoki et al., 2019), which takes advantage of using the
features learned by PointNet (Charles et al., 2017). Nurunnabi
et al. (2021) showed that PointNet is highly sensitive to hyper-
parameters when dealing with large-scale ALS point clouds.
However, due to its simplicity, ICP is the most used approach in
practice, especially for rigid registration. Its effectiveness has
limitations, such as sensitivity to outliers and tendency to fall
into the local minimum. Despite its limitations, it is still widely
employed as a benchmark for assessing the efficiency of new
registration algorithms.
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Figure 2. A sample aerial LiDAR (A), oblique imagery (B1) and DIM points (B2) dataset.

Most of the non-rigid registration algorithms perform better
than the rigid registration algorithms when enough correspond-
ence can be found between two point clouds Chang et al.
(2020). ICP-based non-rigid registration is one of the most used
methods. Like rigid registration, non-rigid registration also in-
volves aligning multiple point clouds by iteratively establishing
correspondence by nearest neighbors and updating the trans-
formation. Although this transformation is not limited to trans-
lation and rotation, it can also include scaling, shearing, and
deformation. Any non-rigid point cloud registration technique
finds difficulties in aligning point clouds with large deforma-
tions or shape changes. Also, they are not robust enough to
tackle noise, and outliers, and when there are gaps in the data
(Ali et al., 2018). This limitation requires further research and
development. In particular, developing efficient algorithms and
methods that can handle these challenges is crucial. In addi-
tion, the fusion of these data is not yet reliable and efficient for
feature extraction and 3D city modelling.

3. Problem Definition

Cross-source or multi-platform point cloud registration aims
to align multiple point clouds acquired from different sources
(LiDAR scanners, RGB-D cameras, or photogrammetry) into a
common coordinate system. The main challenge of this prob-
lem lies in the fact that point clouds can have significant dif-
ferences in scale, orientation, spatial distribution, and varying
levels of noise and occlusion (Moe et al., 2016; Cavegn et al.,
2014; Wang et al., 2023; Yu et al., 2021). These variations
make it difficult to obtain satisfactory results through conven-
tional point cloud registration methods (Wang et al., 2023). In
addition, the registration process should be able to handle large-
scale datasets with millions or billions of points. The goal of re-
gistration is to find a transformation matrix that maps the points
from one source to the reference frame of another source, so
that the overlap ratio of the two point clouds can be maximized.

Formally, given a set of N point clouds P1, P2, ..., PN , where
each point cloud Pi is defined as a set of points Pi,j =
(xj , yj , zj) with j = 1, 2, ...M, the goal of cross-source point
cloud registration is to find a set of transformation matrices
T = T1, T2, ..., TN such that:

P ′
i = Tj ∗ Pi (1)

where P ′
i represents the transformed point cloud of Pi in the

coordinate system of Pj . The transformation matrix Tj includes
a rotation matrix Rj , a translation vector tj , and a scaling factor
sj , such that:

Tj =

[
Rj tj
0 sj

]
. (2)

The problem can be formulated as an optimization prob-
lem, where the objective function is to minimize the distance
between the corresponding points of the two-point clouds (Li
et al., 2020; Zhang et al., 2020). Various optimization meth-
ods, such as least-squares, maximum-likelihood estimation, and
probabilistic frameworks, have been proposed. However, find-
ing the optimal solution is often computationally expensive and
requires sophisticated algorithms to handle large-scale datasets
with millions or billions of points.

4. Data Preparation

4.1 LiDAR Data

Although several papers made the initial trials and demon-
strated the effectiveness of airborne cross-source data, still a
comprehensive open-source dataset encompassing large-scale
remains unavailable (Huang et al., 2023). The preparation of
LiDAR data only involves selecting the representative area from
an urban scene, cropping this from larger tiles, and employing
statistical outlier and noise filtering algorithms, which is essen-
tial to enhance data quality and prepare it for subsequent ana-
lyses (Nurunnabi et al., 2015). We do subsampling to avoid
overlapping points and bring homogenous density over the en-
tire point cloud, which is suggested but not required for the pro-
posed fusion algorithm.

4.2 DIM Data

To prepare the DIM point cloud, the typical processing chain
was utilized in the Agisoft Metashape software, which is based
on the dense stereo matching algorithm (Remondino et al.,
2014) in a multiview stereo environment. When the photogram-
metric imagery does not contain georeferencing information or
ground control points (GCP), a few corresponding ALS point
clouds were used as GCP information within the photogram-
metric bundle block adjustment (BBA). This step was carried
out because the quality of combining multi-source point cloud
depends on inter-dataset registration and with regards to the
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LiDAR and DIM data processing chain, this registration can
be categorized into four different groups (Toschi et al., 2021):
(i) separate ALS stripe adjustment (SA) and bundle block ad-
justment (BBA), (ii) within the photogrammetric BBA use of
ALS point clouds as ground control information (Yang et al.,
2021), (iii) establish the transformation by using standard fea-
tures (e.g., edges, boundaries, corners and 3D planar surfaces)
(Peng et al., 2019), (iv) a single hybrid adjustment process with
an integrated SA and BBA (Haala et al., 2020; Glira et al.,
2019). Therefore, following the second category, a few cor-
responding ALS point clouds were used as GCP for DIM gen-
eration. Next, like LiDAR data pre-processing, we employed
statistical outlier and noise-filtering algorithms also for the DIM
point cloud. Finally, for the fine registration, the ICP point-to-
point algorithm was employed.

5. Proposed Method

According to the definition and goal of point cloud registra-
tion and fusion, our proposed point cloud alignment algorithm
meets the intent of fusion because it combines the idea of fusing
two or more point clouds having different densities and distri-
butions, collected from different sensors and perspectives into
a single point cloud representation of the same scene or ob-
ject. Our algorithm is primarily concerned with fusing 3D point
clouds into the section view, i.e., the 2D view of a point cloud
slice. Processing 3D point clouds using 2D profiles (x-z, and
y-z) successfully utilized in the ground point filtering algorithm
proposed by Nurunnabi et al. (2016). As far our knowledge
goes, we are employing this approach, sliced-based 2D profiles,
for the first time in fusion. Point cloud registration or fusion is
often evaluated visually by putting a section view of both point
clouds in the same window; this is the primary motivation be-
hind the proposed algorithm. It is reasonable that if point clouds
are locally fused correctly in every section, then the global ac-
curacy of the fusion will be improved. Therefore, designing
an algorithm that could accurately merge point clouds in each
section of the LiDAR and DIM point clouds became imperat-
ive. As described in section 2 and Figure 3, point clouds from
different sensors can vary in density, resolution, noise levels,
and point gap. Due to these data variations, traditional point
cloud alignment algorithms may not be suitable since they re-
quire corresponding points in both point clouds to calculate lin-
ear or non-linear transformations. Therefore, new point cloud
alignment algorithms need to be developed to handle these chal-
lenges. A possible approach is to use point-to-line correspond-
ence as a basis for transformation estimation; a representative
line can be drawn in the target point cloud afterward by align-
ing the DIM point clouds with this line based on Euclidean dis-
tances.

Researchers have developed various algorithms and methods to
fit the best line in sparse data like point clouds. Due to the com-
plexity and distribution of urban point cloud data, polynomials
usually fail to give satisfactorily fitted lines. We tried the prom-
ising and robust algorithm ”LOWESS” (LOcally WEighted
Scatterplot Smoothing) (Cleveland, 1979), but fails to provide
the best representative line (Figure 3), which developed to ap-
proximate global function by simple local functions. Since
point cloud can contain noise, and tree points cannot be repres-
ented by a line; also the main target of the proposed algorithm is
to fuse planner surfaces (i.e., roof, facade, and ground), so we
proposed an algorithm for applying a filtering process to sort
and connect the interested points to get the best representative
line of that section.

5.1 Line Drawing Algorithm

The proposed algorithm starts by applying a noise filtering
method to remove unwanted points from the point cloud data.
A notable robust method for noise filtering is in Nurunnabi et al.
(2015). To ensure that only pertinent points are considered for
line fitting, we also consider tree points as noise points based
on their separation from the other points. This ensures that only
relevant (linear and planar) points are considered for line fit-
ting. First, the algorithm slices the given point cloud into small
parts, processes the 2-D orthogonal projection x− z or y− z of
the points for each slice, and sorts all the points based on their
x-coordinates. Then initialize the first point as F = (x1, z1)
using the first point from the sorted array S = (xi, zi), and as-
sign F = (x1, z1) in the empty array of Filtered points. The
next step involves the following sequence: pick the second
point from the sorted points and compute the Euclidean Dis-
tance Di from the previous point. Repeat the same process for
the next three points. Then compare the Euclidean Distance
of this three-point sequence (Dj) with (Di). If Di < (Dj),
afterward, append the second point to the filtered points array
and define it as the starting point for the next loop. Connect
the point with the first point. Otherwise, continue to the next
iteration and repeat it until the endpoint of the array S.

The output of the previous step will be an array of filtered
LiDAR Point clouds F = (x, z) based on their distribution
and the specified distance criteria. Another output is the line,
which represents the best-fit line for the LiDAR point clouds
generated by connecting all the filtered points. The proposed
methods for point filtering and line drawing are presented in
Algorithm 1. The algorithm is applied to the y-z profile in the
same way. This representative line is utilized to estimate the
transformation in the fusion algorithm.

Algorithm 1: Planer points filtering and line drawing

Input:
P: LiDAR point cloud, 2D profile, P (x, z)
Output:
F: Filtered LiDAR Point cloud F (x, z), and
a line by connected all filtered point clouds.

1. Sort the points based on their x-coordinates and store them
in the sorted array, S = {(xi, zi)}.

2. Initialize the first point as F = (x1, z1) using the first point
in S = {(xi, zi)}.

3. Filtered points = F .
4. for i = 2 to size of(S) do:
5. Pi = (xi, zi)
6. Di =

√
(xi − xi−1)2 + (zi − zi−1)2

7. Dj =
√

(xi+j − xi)2 + (zi+j − zi)2 for j = 1, 2, 3
8. if Di < min(Dj) then:
9. Filtered points = Filtered points ∪ (xi, zi)

10. F = Pi

11. Connect the point with the previous point.
12. end if
13. Repeat Steps 5 to 11 size of S times.

5.2 Fusion Algorithm

The proposed algorithm aims to fuse DIM point cloud
Q(x, y, z) with LiDAR point cloud P (x, y, z) to enhance the
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Figure 3. A strip of DIM and LiDAR points in 2D projection
(Top), line drawn by LOWESS method (Middle) and our

proposed method (Bottom).

accuracy and completeness of the resulting point cloud. The al-
gorithm takes the LiDAR point cloud P, and DIM point cloud
Q as inputs and fixes a threshold distance ∆ used to determine
the merge criterion between DIM points and the fitted line. The
output is a fused point cloud, denoted as Q1(x1, y1, z1).

The algorithm (Figure 4) consists of the following sequence of
seven tasks:

1. Slice generation: For a specific y-range, both the LiDAR
point cloud P and the DIM point cloud Q are sliced, creating
cross-sectional planes for analysis.

2. 3D to 2D projection: The points in each cross-sectional
plane are projected onto a 2D plane defined by the x and z co-
ordinates. This simplifies the subsequent steps.

3. Filtering planar surface points: The points Pi on the plane
are subjected to filtering using Algorithm 1, which is designed
to identify and isolate planar surface points. This filtering step
helps to separate significant structural components from noise.

4. Fitting line to planar surface: A line is fitted to the filtered
planar surface points Pi. This line serves as a reference for
assessing the alignment of DIM points with the fitted line.

5. Distance calculation: For each DIM point Q within the
same slice, the algorithm calculates the closest distance di
between the point and the fitted line.

6. Merging criteria check: If the calculated distance di is
smaller than the threshold ∆, the DIM point Q is merged with

LiDAR Point Cloud (x, y, z)

Slice points with small
range of y

x-z profile

Fitting the line

Filtering Inlier points

DIM Point Cloud (x, y, z)

Slice point with same
range of y

x-z profile

Apply transformation in DIM by closest distance with line 

Fused Point Cloud

Figure 4. Fusion process for a profile in y-direction.

the fused point cloud Q1, effectively adding it to the enhanced
point cloud.

7. Fused point cloud updating: After evaluating all DIM
points in the slice, the fused point cloud Q1 is updated. If no
DIM points satisfy the merging criteria, the original point Q
remains unaltered.

The proposed airborne point cloud fusion method is illustrated
in Algorithm 2. The identical approach will be used to estim-
ate the transformation in the opposite direction on the y-z pro-
file. We employ a combination of slicing, plane fitting, dis-
tance assessment, and merging to enhance the accuracy and
completeness of the fused point cloud. By selectively integ-
rating DIM points that align closely with the fitted line, the
algorithm achieves a more accurate representation of the en-
vironment, contributing to improved point cloud analysis and
applications.

Algorithm 2: Airborne point cloud fusion

Input:
P: LiDAR point cloud P (x, y, z)
Q: DIM Point cloud Q(x, y, z)
∆: Threshold distance to merge DIM points with the fitted line
Output:
Q1 : Fused point cloud Q1(x1, y1, z1)

1. For a specific y-range, make slices in both point cloud
2. Project the points in 2d plane (x,z)
3. Filtered the planner surface points Pi using Algorithm 1
4. Draw the line in the Pi

5. Find the closest distances di with line and points Q of same
slice

6. if di smaller then ∆ then
7. Q1 :← di +Q
8. end if
9. Q1 :← Q

6. Experiment and Evaluation

This section demonstrates and evaluates the proposed point
cloud fusion algorithm using airborne LiDAR and DIM data-
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Method RMSE Fitness metric Overlap - ratio Correspondences
ICP 0.01454 0.00042 0.00006 261

Our 1-Direction 0.01232 0.01270 0.00925 8144
Both-Direction 0.00251 0.05511 0.07810 35195

Table 1. Comparison of algorithm accuracy for Experiment 1.

sets. Due to the superior accuracy of LiDAR sensors over air-
borne photogrammetry (Zhang et al., 2019; Leslar, 2015; Tos-
chi et al., 2021), LiDAR point clouds were used as the target
points and DIM as the source. This choice ensured that the
fusion algorithm could achieve a high level of precision and
reliability in the resulting data. In typical scenarios, airborne
LiDAR and DIM exhibit accuracies of around ±5 and ±20cm,
respectively. To validate the efficacy of the fusion algorithm
in this particular experiment, we employ a threshold distance
value of ∆ = 25 cm (representing the sum of 5 cm and 20
cm) for merging DIM points with the fitted line. We evaluate
the algorithm’s performance visually and quantitatively using
various metrics and compare it to registration algorithms.

To measure the effectiveness of the algorithm, several perform-
ance metrics were used. These include Root Mean Square Error
(RMSE), fitness score, overlap ratio, and set of correspondence
(Huang et al., 2017; Li et al., 2020), defined as

RMSE =

√∑n
i=1 ∥Qci − Pci∥2

n
, (3)

Fitness =
1

n

n∑
i=1

∥Qi − Pi∥ , (4)

Overlap Ratio =
noverlap

ntarget
, (5)

Correspondence = d(Qi, Pj) ≤ max 0.02 unit distances, (6)

where Qci is the i-th point in the set of correspondence of
source point cloud, Pci is the i-th point in the set of corres-
pondence of target point cloud, noverlap is the number of over-
lapping points (within the threshold 0.01 unit) between source
and target point clouds, ntarget = number of points in the tar-
get point cloud, Qi is the i-th point in the transformed source
data, Pi is the i-th point in the target data. The double vertical
bars ∥·∥ represent the Euclidean norm or the magnitude of the
vector, and correspondence set contains pairs of indices (i, j)
indicating that the i-th point in the ”source” point cloud corres-
ponds to the j-th point in the ”target” point cloud if and only if
d(Qi, Pj) ≤max 0.02 unit distances.

6.1 Experiment 1

In the first experiment, we use airborne 3D survey mission
data from the Administration of Cadastre and Topography
(ACT) Luxembourg. ALS-based LiDAR, open access data,
are available for the Luxembourg territory at the ACT web-
site (https://data.public.lu/en/datasets/lidar-2019-releve-3d-du-
territoire-luxembourgeois/). These data have a point density of
roughly 15 points/m2 with a horizontal precision of 3 cm and a
vertical precision of 6 cm on average. The dataset is split into
500m x 500m tiles that contain between five to seven million
points on average. We randomly cropped a portion from one
tile scanned in Dudelange City (Figure 2). These 120m x 100m
tiles have 400,921 points. On the other hand, for the airborne
oblique photogrammetric or DIM points for the same area, we
have used raw image data from another mission of ACT for the
same territory conducted in 2020. For this mission, Leica hy-
brid sensors CityMapper-2 was employed, for which the camera

head consists of 150 MP (14,192 x 10,640) Nadir and four ob-
lique views (45 degrees) Leica MFC150 sensors and in a flying
height of 1900m. Following the workflow explained in Section
4, we generate the input point cloud for the proposed algorithm.

Table 1 illustrates the results obtained from ICP and proposed
method, which are evaluated against essential metrics. In terms
of RMSE, the ICP method yielded a value of 0.01454, in-
dicating a certain level of accuracy. However, our proposed
fusion method demonstrated superior performance, achieving
an RMSE of 0.01232 in the x − z profile (in 1-direction) fu-
sion variant and an even more remarkable RMSE of 0.00251
in the x − z plus y − z profile (considering both directions)
fusion variant. Similarly, the fitness metric, which measures
the closeness of points, showed favorable outcomes for the
fusion method. The proposed fusion approach outperformed
ICP with a fitness value of 0.01270 (1-direction) and 0.05511
(both-direction) compared to 0.00042 for the ICP method. Not-
ably, the fusion method showcased enhanced overlap ratio res-
ults of 0.00925 (1-direction) and an impressive 0.07810 (both-
direction), in contrast to the ICP result of 0.00006. Moreover,
the number of correspondences found further emphasizes the
fusion method’s efficiency, with 8144 correspondences in the 1-
direction variant and a substantial 35195 correspondences in the
both-direction variant, surpassing the 261 correspondences in
the ICP approach. This comprehensive comparison underscores
the robustness and accuracy of the proposed fusion method in
addressing the challenges posed by the dataset. Also, the res-
ults (Figure 5) demonstrate the effectiveness of our approach in
improving data accuracy and preserving geometric details

Figure 5. Colour-coded height differences between LiDAR and
DIM, (A) before fusion, and (B) after fusion. (Experiment 1)

6.2 Experiment 2

In the second experiment, we use another set of ALS and pho-
togrammetry data collected over Dublin City in 2015 (Laefer
et al., 2017). ALS was carried out by using a TopEye sys-
tem S/N 443. Imagery data was captured using a Phase One
camera system. The average flying altitude was 300m. We
cropped a representative part of the data, which covers 250m
x 250m areas. Following the process described in Section 4, we
prepare the LiDAR and DIM point clouds for the final fusion.
After applying the fusion algorithm, the results show that the
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Method RMSE Fitness metric Overlap - ratio Correspondences
ICP 0.01550 0.00144 0.00022 7480

Our 1-Direction 0.01153 0.07608 0.05773 506221
Both-Direction 0.00383 0.22927 0.33079 1537927

Table 2. Comparison of algorithm accuracy for Experiment 2.

proposed method is highly successful for airborne multi-sensor
point cloud fusion (Figure 6). For quantitative evaluation of
the proposed algorithm, we calculate all the above-mentioned
matrices. Table 2 presents all the results from this experiment.
Although Dublin city data sets are aligned more than ACT data,
the proposed fusion algorithm still shows its effectiveness in in-
creasing accuracy in every metrics.

Figure 6. Colour-coded height differences between LiDAR and
DIM, (A) before fusion, and (B) after fusion. (Experiment 2)

One of the major challenges in cross-source point cloud fusion
is setting up the correspondence points between different point
clouds. After deploying our method, we successfully estab-
lished more correspondence points than the established method,
which indicates achieving a more accurate alignment of urban
cross-source point clouds. These metrics gave us a full pic-
ture of how well an algorithm worked, and we found that our
algorithm consistently outperformed the existing ICP method
in terms of accuracy and alignment of urban cross-source point
clouds. Moreover, this clarification is evident in the color-coded
height differences between LiDAR and DIM (Figures 5 and
6). The results show the effectiveness and accuracy of the al-
gorithm in producing a complete set of dense data for potential
use in various applications.

7. Conclusion

This paper presented a study on cross-source urban point cloud
fusion, addressing the challenges of integrating diverse point
cloud data from various sources. We demonstrated the ef-
fectiveness of the proposed fusion method in improving the
precision, completeness, and diversity of urban point clouds
through a systematic analysis. The fusion approach presented
in the paper tried to mitigate the limitations of individual point
cloud datasets and enabled the seamless integration of multiple
sources, resulting in a more complete representation of urban
environments. The results showed a significant improvement in
the merged point cloud data quality.

The methodology was validated through two experiments and
comparison studies against existing technique. The results
showcased the superior performance of the proposed fusion
technique in handling data from diverse sources, yielding
highly accurate and detailed representations of complex urban
structures. This paper focuses principally on airborne LiDAR
and DIM data to demonstrate the effectiveness of the fusion

method in enhancing the accuracy and detail of complex urban
structures. Depending on two user-defined parameters: slice
thickness and fusion threshold distance, the approach can be
customized to meet specific project requirements. For future
research, it would be beneficial to investigate the potential im-
pact of different user-defined parameters on the accuracy and
efficiency of the method. We also recommend exploring the
approach’s applicability in various domains. Further research
will be conducted to make the method more automatic by using
adaptive parameter localization.
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