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Abstract

This study aims to develop a methodology to assess hull fouling based on ship propulsion data such as speed, draft and weather
related data. Hull fouling is an unavoidable phenomenon in ships and results in higher fuel consumption and the maintenance
frequency has be the optimal one. Despite the fact that until now this task has primarily relied on empirical rules, it turns out that it
can be improved by employing machine learning techniques. Using data from clean-hull ships, we aim to isolate and consider only
the weather in this study. Our goal is to replace empirical rules with machine learning, as the vast amount of data we possess can
significantly aid us in this endeavor. It ends up to be a regression problem, and therefore, we experiment with several supervised
algorithms using k-fold cross validation to finally select models based on ensemble methods or artificial neural networks. We
propose the potential use of MLP Regressor, Random Forest Regressor and XGB Regressor since all of them yielded very good
results in terms of some performance metrics. The timely detection of hull fouling can provide substantial benefits in terms of
resource management and environmental sustainability.

1. Introduction

Shipping companies remain highly important in the contempor-
ary global economy since it is estimated that around 80 per-
cent of all goods are carried by sea (Statista, 2024). With the
growth of the world economy over the past decades, the amount
of cargo transported by ships has increased as well. Therefore,
shipping companies dedicate resources, both time and capital,
to attain optimal performance and lower operational costs. Fuel
consumption and the general operational performance are very
crucial in such companies.

1.1 Hull Fouling

Hull and propeller fouling can significantly impact the over-
all performance of a ship. The hull is the exterior surface of
the ship that is in direct contact with the water. Hull fouling
refers to the accumulation of marine (micro) organisms, such
as barnacles and algae, on the submerged surface of a ship
(Coraddu et al., 2019). This phenomenon produces an addi-
tional resistance for the ship, leading to higher fuel consump-
tion and power demand (Song et al., 2020). One of the most
famous and crucial strategies to mitigate hull fouling is dry
docking.

1.2 Dry-Docking

Dry docking is very important in the maritime industry since it
plays a key role in maintaining the safety, reliability, and effi-
ciency of ships. It is about bringing a ship to a specially de-
signed platform (shipyard) for maintenance. During dry dock-
ing, ships undergo a series of activities including, but not lim-
ited to, hull inspection and maintenance, checking the propeller
and rudder, cleaning tanks, and overhauling the engine. Each
company sets its own frequency for dry dockicng and it is ap-
proximately every 40 to 50 months depending on factors such
as the age and the model of the ships (Kr Dev and Saha, 2015).

The cost of dry-docking is a significant component of a ship’s
operational expenses and it is usually represented as a six or
seven figure amount (Apostolidis et al., 2012). Thus, the fre-
quency has to be as efficient as possible. Obviously, if ship-
ping companies conduct dry docking earlier than the optimal
frequency, emissions due to hull fouling would be reduced to
zero, but the costs would be higher. Conversely, if they delay
dry docking significantly beyond the optimal frequency, emis-
sions due to hull fouling would increase, but the costs would be
lower. Therefore, it is important to determine the ideal timing
for dry docking.

1.3 Our work

To date, the detection of hull fouling is based on some empir-
ical rules for the weather. However, nowadays we possess a
vast amount of data on different operational features of ships,
such as speed, power demand, and weather-related data among
others. Using these data properly, along with the help of ma-
chine learning, can lead to notable progress in the early detec-
tion of hull fouling. Shipping industry significantly contributes
to the greenhouse effect by emitting large quantities of carbon
dioxide, nitrogen oxides and sulfur oxides (Aakko-Saksa et al.,
2023). Ships, which heavily rely on fossil fuels such as heavy
oil and diesel, emit these harmful gases into the air, contribut-
ing to global warming and negatively affecting air quality (Wan
et al., 2018). To address these environmental issues, immediate
actions are necessary and one of them is the optimal frequency
for dry docking.

In this paper, we propose and implement a methodology for
predicting hull fouling based on the the actual power re-
quirements of ships due to weather conditions (Measured-
WeatherPower) rather than relying on empirical rules (Empir-
icalWeatherPower). Machine Learning (ML) is incredibly be-
neficial in this context because it helps us to extrapolate novel
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rules, akin to empirical ones, based on authentic data. It is note-
worthy to mention that the data are already being collected and
we propose a methodology on how these data could be used,
without the need for expensive equipment and high computa-
tional technology.

The rest of this paper is organized as follows. Section 2 delves
into the scientific literature review relevant to this study. Sec-
tion 3 describes very briefly the ships that the data refer to, ex-
plains the variables that are subsequently used and discusses
pre-processing techniques. Section 4 begins with foundational
information in the field of maritime, and it also highlights cer-
tain issues with current approaches. Section 5 starts with an
introductory subsection to describe our machine learning ap-
proach and afterwards details the methodology we employed
along with reference in the performance of some machine learn-
ing algorithms. There is also a subsection to describe the out-
come of these algorithms and how it solves the problem. To
summarize, we present overall conclusion in Section 6 and we
also mention possible future work in Section 7.

2. Related Work

This section offers a detailed overview of the scientific literature
relevant to our study. We provide a summary of data-driven
techniques that are important for the needs of this paper, along
with some basic information.

Senteris, Kanellopoulou and Zaraphonitis (Senteris et al., 2019)
explored a data-driven approach using artificial neural networks
(ANNs) and they evaluated 10 different training algorithms in
the task of assessing a ship’s performance and predict hull foul-
ing based on clean-hull ships. Through their work, they con-
sider only weather resistance and they experiment a lot with
ANNs.

Filippopoulos and Stamoulis (Filippopoulos and Stamoulis,
2017) introduced a platform called Internet of Vessels (IoV)
where shipping companies are able to collect and process data
from on-board sensors almost in real time. Engine perform-
ance, gas emissions, trim, draft, temperature and navigation are
some of the data that could be collected. They also refer to the
communication section between the vessels and the shipping
company that owns or monitors the vessels.

Coraddu et al. (Coraddu et al., 2019) suggested two anomaly
detection methods by employing unsupervised machine learn-
ing algorithms such as Support Vector Machines and k-nearest
neighbors to eliminate the need for labeled data related to hull
conditions. Using data from a research vessel (i.e., The Princess
Royal), their study shows the effectiveness of their approach in
real operational scenarios. The proposed models help predict
hull conditions in real-time, improving resources management
and making maintenance decisions such as dry docking in the
best frequency. Overall, their novelty detection method demon-
strates satisfactory accuracy, a noteworthy outcome given that
only 10 samples are required and can be easily labeled by an
operator.

Gkerekos et al. (Gkerekos et al., 2019) conducted a comparative
analysis of data-driven algorithms to assess their effectiveness
in predicting ship main engine Fuel Oil Consumption (FOC).
Their study investigated the impact of various data acquisition
strategies, including traditional noon-reports and Automated
Data Logging & Monitoring (ADLM) systems. They observed

that Extra Trees Regressors (ETRs) and Random Forest Re-
gressors (RFRs) outperformed other models, with ADLM sys-
tems enhancing accuracy by 5–7% and reducing data collection
periods by up to 90%. Their work underlines the importance of
hyperparameter optimization, diverse modeling architectures,
and highlighted the comparable results of simpler models such
as Linear Regression (LR).

Pedersen and Larsen (Pedersen and Larsen, 2009) adopted an
approach in the ship performance monitoring domain, depart-
ing from traditional reliance on empirical or hydromechan-
ical methods. Instead, they implemented a single hidden layer
neural network (ANN) for predicting mean propulsion power,
achieving remarkable accuracy. This neural network, specific-
ally trained for the tanker ”Torm Marie” across diverse condi-
tions, outperformed conventional methods. The success of this
approach is attributed to the incorporation of key input vari-
ables such as ship’s speed, relative wind speed and direction,
air temperature, and sea water temperature. The departure from
conventional methodologies and the successful application of
neural networks not only pave the way for more precise and
adaptable ship performance evaluations but also hold poten-
tial implications for assessing hull and propeller performance
in real-world scenarios.

3. Ships Description and Data

For the present study, we had the privilege to have some data
from a Greek shipping company, which should remain anonym-
ized for confidentiality purposes. The data refer to some clean-
hull VLCC (Very Large Crude Carrier) ships belonging to the
same class (Class A), which we will denote them as VLCC 1,
VLCC 2, VLCC 3, ..., VLCC 9. Table 1 refers to some charac-
teristics of the ships we used for our study.

Deadweight tonnage (DWT) 317,048.3
Year of built 2018
Country of Built Korea
Vessel Type Very Large Crude Carriers

Table 1. Characteristics of the 9 ships.

3.1 Available Data

The available features in our data are shown below and they are
collected mainly from on-board sensors.

ShaftPower : It refers to the actual power measured by the
torque meter. It is measured in kilowatts (kW).

LogCorrectedSpeed : It refers to the ship’s speed using a device
known as a log meter, which computes the ship’s velocity
through the water calibrated based on the possible error of the
sensor. It is measured in knots.

Draft : It refers to the vertical distance between the waterline
and the lowest point of the hull. It represents how much of the
ship is submerged in the water. It is measured in meters (m).

WaveRelativeDirection : It represents the direction from which
the waves approach relative to the ship’s heading. It is measured
in degrees.

WaveHeight : It refers to the vertical measurement of the waves
that the ship faces. It is measured in meters.
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WavePower : It expresses the power required by the ship due to
waves, as per empirical rules. It is measured in kilowatts (kW).

WindSpeed : It refers to the speed of the wind. It is measured in
knots.

WindPower : It expresses the power required by the ship due to
wind, as per empirical rules. It is measured in kilowatts (kW).

PowerModel : It refers to the power that the ship should gen-
erate when calm sea and very mild weather are applicable. It
comes from the shipyard and it is calculated from the draft and
the speed of the ship. It is measured in kilowatts (kW).

CorrectedPower : It is a percentage indicating the additional
power generated by the ship, based on the empirical rules for
weather. It often falls within the range of 80% to 130%. To
make it more clear it can be expressed as:

CorrectedPower =
ShaftPower

PowerModel + EmpiricalWeatherPower
· 100

(1)

where EmpiricalWeatherPower is the power that the ship would
require based on the empirical rules due to weather.

Figure 1. Histograms for each feature of our dataset.

3.2 Feature Engineering

Based on the data above, we create a new variable that will
serve as the target variable in the subsequent machine learning
algorithms. In particular, the new feature is as follows:

MeasuredWeatherPower = ShaftPower − PowerModel (2)

Since we are working on clean-hull ships, MeasuredWeather-
Power refers to the actual power due to weather conditions
which is the subtraction of the power that the ship should de-
mand in perfect weather conditions from the overall observed
power demand.

Moreover, we can calculate the power demand predicted by em-
pirical rules due to weather as:

EmpiricalWeatherPower = WindPower + WavePower (3)

3.3 Handling Outliers

In the process of data preprocessing, addressing outliers is a
common and essential practice. We cannot take for granted
that the data are perfect and can be used immediately. We em-
ploy two methods in order to make our dataset as reliable as
possible. The first method, renowned for its effectiveness, is
the well-known Interquartile Range (IQR). The second one in-
volves some domain knowledge setting suitable ranges for each
feature. In particular, we utilize a feature from the dataset called
”Visible” since this column tells us whether a row has success-
fully passed certain checks and can be utilized in our task.

3.3.1 Interquartile Range method: It involves looking at
the spread of data within a dataset. It is calculated as the differ-
ence between the third quartile (Q3) and the first quartile (Q1)
in a dataset. Any data points that fall outside a certain range,
calculated using the IQR, are considered outliers. To make our
data more reliable, we removed such values. We have only nu-
meric columns and thus, we calculate the Interquartile Range
(IQR) for each numeric column. Then we determine lower and
upper bounds based on Equations 4 and 5 respectively.

lower bound = Q1 − k · IQR, k = 1.5 (4)

upper bound = Q3 + k · IQR, k = 1.5 (5)

where Q1 = first quartile
Q3 = third quartile
k = a constant determining the range of values
considered as outliers
IQR = Q3−Q1

3.3.2 Domain Knowledge method: Applying domain
knowledge in such problems is crucial and can help a lot in
achieving better results. Comments and annotations from
operators and naval engineers can help us retain reliable data
excluding outlier values. Operators from shipping companies
can provide valuable information on how ships behave in vari-
ous conditions, such as different weather conditions, speeds,
and loading/unloading conditions. Thankfully, domain experts
have set some filters when retrieving data from company’s
database and therefore there is a column named ”Visible”
which indicates whether each row can be used in our analysis
or not. If a row is not reliable, the reason is listed under the
”Visible” column. If a row is reliable, TRUE is listed under
the ”Visible” column. It is noteworthy to mention that the
vast majority of the rows do have TRUE under the ”Visible”
column (∼ 93% of the rows have TRUE). By doing so, we have
a reliable dataset that we can rely on in order to extrapolate
their behavior to other data as well.

4. Methodology

4.1 Domain Knowledge

To make the main idea more comprehensible, it would be help-
ful to analyze some specific cases. Generally speaking, the
power that a ship requires when it sails can be expressed with
the following equation:

Power = PowerModel+WeatherPower+HullFoulPower (6)

where WeatherPower is the additional power due to weather
conditions and HullFoulPower is the additional power due to
hull fouling.
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Based on the above relationship (Equation 6), it is evident that
when a ship has a clean hull the required power is:

Power = PowerModel + WeatherPower (7)

since there is no resistance due to hull fouling. discrepancy

Figure 2. The influence of the discrepancy between the actual
power demand due to weather and the power demand predicted
by empirical rules in CorrectedPower for VLCC 1 (clean-hull).

between the empirical and the actual WeatherPower

Figure 3. The influence of the discrepancy between the actual
power demand due to weather and the power demand predicted
by empirical rules in CorrectedPower for VLCC 2 (clean-hull).

Unitl now, the WeatherPower is calculated based on some em-
pirical naval rules. These rules are functions that are based on
some weather data (i.e., WaveHeight, WindSpeed etc.), and they
compute the amount of power (kW) needed due to weather.
However, as shown in Figure 2 and Figure 3, there is a dis-
crepancy between the actual power demand due to weather and
the power demand predicted by empirical rules due to weather.
Machine learning algorithms, and especially supervised learn-
ing algorithms, are able to learn patterns on historical data and
solve this problem. We aim to replace the empirical rules em-
ploying such algorithms.

It is evident that based on Equation 2, when a ship has a clean-
hull along with calm sea and good weather conditions then
the ShaftPower equals the PowerModel and MeasuredWeather-
Power equals zero. This occurs because, in such cases, ships
encounter no resistance due to weather conditions. Obviously,
having a perfect way to compute the additional power due to
weather for clean-hull ships would result in the following rela-
tionship:

ShaftPower
PowerModel + accurateWeatherPower

≈ 1 (8)

where accurateWeatherPower is the exact amount of power
(kW) required due to weather conditions.

4.2 Issues with Current Approaches

In case that the power demand as per empirical rules (Em-
piricalWeatherPower), as represented in Equation 1, closely
aligns with the actual power demand due to weather, only in
the context of clean-hull ships, the CorrectedPower (Equation
1) should be very close to 100%. It has to be around 100%
because when the EmpiricalWeatherPower is accurate enough
then the ShaftPower is almost equal to the sum PowerModel +
EmpiricalWeatherPower, leading to CorrectedPower ≈ 100%.
Following the discrepancy between the actual and the predicted
by empirical rules power demand as demonstrated in previous
figures (Figure 2 and Figure 3); the issue becomes more obvi-
ous in the subsequent figures below.

Figure 4. CorrectedPower for VLCC 1 (clean-hull).

Figure 5. CorrectedPower for VLCC 2 (clean-hull).

Figure 4 and 5 clearly show that the empirical rules are not
aligning with expectations. Specifically, the variable Correc-
tedPower, anticipated to be around 100 in ships with clean hulls
but it diverges significantly from this expected value. This dis-
crepancy points to potential inaccuracies of the empirical rules.

5. Machine Learning Experimentation

5.1 Machine Learning Introduction

The main challenge is the high variance around 100 in Figures
4 and 5. Data points in this kind of plots have to be as close
to 100% as possible. Therefore, we propose a new variable
instead of CorrectedPower based on the same formula as the
original CorrectedPower (Equation 1) with a small modifica-
tion. To achieve this, we introduce a new method using machine
learning to compute the additional power due to weather con-
ditions and we replace EmpiricalWeatherPower with our pre-
dicted number. Therefore, Equation 1 is converted to:

ML CorrectedPower =
ShaftPower

PowerModel + MLWeatherPower
· 100

(9)
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where MLWeatherPower is the predicted power due to weather
conditions. Similarly, Equation 9 refers to clean-hull data.

Specifically, we calculate the MLWeatherPower based on the
actual data from on-board sensors. Since we possess weather-
related data, such as wave and wind information, and can very
easily compute the additionally required power due to weather
(Equation 2), it ends up to be a regression problem. Supervised
learning algorithms are very effective for tasks where the goal
is to predict a continuous outcome variable, in our case this
variable is the MLWeatherPower, also known as a dependent or
target variable. In regression problems, such algorithms learn
a relationship between input features and a continuous output,
allowing it to make predictions for unseen data. (Choudhary
and Gianey, 2017).

5.2 Regression Problem Dataset

Variable ML scope

ShaftPower Feature
LogCorrectedSpeed Feature
Draft Feature
WindSpeed Feature
WaveRelativeDirection Feature
WaveHeight Feature
MeasuredWeatherPower Target

Table 2. Machine learning dataset.

Table 2 presents the dataset used, including both the features
and the target variable, to train and validate some machine
learning algorithms. We do include ShaftPower in our dataset
as a feature because the target variable is measured in kiloWatts
and we need to perform nondimensionalization of this. Our
problem is a multiple regression one since we attempt to ex-
plain a target (dependent) variable using more than one feature
(independent) variable.

The target variable in Table 2 (i.e., MeasuredWeatherPower)
comes from Equation 2 because we are based on the actual data
and not on empirical rules (Equation 3). In this manner, we take
into consideration only the weather dynamics since the experi-
ment refers to clean-hull ships. Table 3 demonstrates descript-
ive statistics for our dataset.

5.3 Machine Learning Methodology

We experiment with various machine learning algorithms and
consequently select the best one based on some performance
metrics. In order to train the machine learning models, we
merged the data from clean-hull ships and tried to find an ac-
curate relationship between the features (weather data) and the
power demand. It is noteworthy to mention that we were able to
merge all available data because the data refer to sister ships. A
sister ship is basically a ship that is almost exactly the same as

another one. They look identical, have similar sizes, and share
the same design features, including the layout of their hull and
superstructure

Figure 6. Suggested methodology for our task. Dataset
explained in Table 2.

In Figure 6, we present an overview of how we apply machine
learning. As mentioned earlier, we aim to identify the most ac-
curate relationship between the features and the target variable,
relying on actual (real-world) data.

5.4 Validation and Performance metrics

Having the data ready for machine learning training, we em-
ployed K-fold cross-validation (k=10) to validate each al-
gorithm, based on Mean Squared Error and Coefficient of De-
termination.

5.4.1 K-fold Cross Validation (KCV): This is a technique
used to assess the performance of a machine learning model
by dividing the dataset into k subsets or ”folds.” The model is
trained and evaluated k times, each time using a different fold
as the testing set and the remaining k-1 folds for training. This
process helps ensure a more robust evaluation of the model’s
performance, as it considers multiple combinations of training
and testing data. In our case, the final performance metric is
an average of the metrics computed in each iteration, providing
a more reliable estimate of the model’s generalization ability
(Anguita et al., 2012).

5.4.2 Mean Squared Error (MSE): This a common met-
ric used in machine learning to measure the average squared
difference between the actual and predicted values and it is par-
ticularly useful for regression problems. The formula for Mean
Squared Error is given by:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (10)

where n = number of data points
yi = actual value for the i-th input data
ŷi = predicted value for the i-th input data.

Merged Dataset 5 sister ships
Descriptive Statistics Shaftpower (kW) Draft (m) LogCorrSpeed (kn) WaveHeight (m) WaveRelativeDirection (degrees) WindSpeed (kn) MeasuredWeatherPower (kW)
Count 18774 18774 18774 18774 18774 18774 18774
Mean 8584.7622 14.2726 12.1939 1.6721 190.3164 11.2554 1114.5076
Standard Deviation 3144.8256 5.1419 1.3318 0.7638 94.3524 5.1930 1004.3292
Minimum 2042.3228 8.4136 8.5249 0.0000 0.0064 0.0583 -2281.8985
25th Percentile (Q1) 6077.8076 9.7013 11.4863 1.1300 116.9662 7.3089 323.6064
Median (50th Percentile, Q2) 9000.5775 9.9318 12.3965 1.6500 191.0864 10.9050 969.1811
75th Percentile (Q3) 11139.5839 19.9023 13.0471 2.1600 269.3881 15.0259 1751.9017
Maximum 16822.0893 21.6322 15.6923 3.8100 359.9936 26.6501 5907.4973

Table 3. Descriptive statistics for our dataset
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5.4.3 Coefficient of Determination (R2): This is another
commonly used metric in regression analysis and problems. It
represents the proportion of the variance in the dependent vari-
able that is predictable from the independent variables. The
formula for R2 is as follows:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(11)

where n = number of data points
yi = actual value for the i-th input data
ŷi = predicted value for the i-th input data.
ȳ = the mean of the actual values.

5.5 Machine Learning Models.

Model Description

Linear Regression Ordinary least squares linear regres-
sion

Lasso Linear regression with L1 regulariza-
tion

ElasticNet Linear regression with a combination
of L1 and L2 regularization

KNN Regressor K-nearest neighbors regression

Decision Tree Re-
gressor

Decision tree-based regression

Random Forest
Regressor

Ensemble of decision trees for regres-
sion

Gradient Boosting
Regressor

Boosted ensemble of decision trees

MLP Regressor Multi-layer perceptron neural net-
work for regression

XGB Regressor Extreme Gradient Boosting regres-
sion

AdaBoost Re-
gressor

Boosted ensemble using adaptive
boosting

Support Vector
Regressor (SVR)

Support vector machine for regression

Table 4. Regression Models and Descriptions

We apply K-Fold cross validation (KCV) on 11 machine learn-
ing algorithms. Table 4 provides a list of the regression mod-
els we employed along with their descriptions. Our models
include ordinary least squares linear regression, L1 regulariz-
ation, a combination of L1 and L2 regularization, K-nearest
neighbors regression, decision tree-based regression, and en-
semble methods such as random forests and gradient boosting.
Additionally, we employ neural network-based approaches like
multi-layer perceptron (MLP), as well as models like Extreme
Gradient Boosting (XGBoost) regression, AdaBoost, and Sup-
port Vector Machine for regression (SVR). It is very important
to understand that these metrics do not reflect the whole per-
formance of the models since we want to extrapolate the know-
ledge from clean-hull ships and evaluate the fouling on other
ships (unseen data) which are probably fouled. By saying that,
we want to mention that the performance itself will be evalu-
ated later on unseen data. However, evaluating the models with

training/testing datasets based on some performance metrics is
a good way to select one among all the others.

5.6 Results

The subsequent results refer to our merged dataset, which in-
cludes five sister ships. Figure 7 and Table 5 demonstrate how
different regression methods perform. Overall, the selection
of an appropriate regression model should consider a balance
between low MSE and high R2, while also accounting for the
dataset’s complexity and the model’s generalization capabilit-
ies. Therefore, we firmly believe that the best models to con-
tinue with are MLPRegressor, XGBRegressor and Random-
ForestRegressor. Despite the fact that MLPRegressor is an ar-
tificial neural network we did not perform any optimization on
its hyperparameters and we used the default ones (Python Doc-
umentation, n.d.). For simplicity, we will continue with ML-
PRegressor because it is the best one it terms of performance
metrics (Fig. 7) but there is no significant difference with the
other two well-performed algorithms and the results are the
same whichever we selected for the next step of evaluation.

Figure 7. MSE and R2 to evaluate their performance in testing
(20%) dataset.

Model MSE R-squared
Linear Regression 174835.86 0.827
Lasso 174887.27 0.827
ElasticNet 577025.15 0.431
KNeighbors Regressor 83697.47 0.917
Decision Tree Regressor 63607.87 0.937
Random Forest Regressor 25530.58 0.975
Gradient Boosting Regressor 103247.62 0.898
MLP Regressor 8836.20 0.991
XGB Regressor 15213.56 0.985
AdaBoost Regressor 334610.47 0.670
SVR 646131.17 0.362

Table 5. Regression Model Performance Metrics

Figure 7 and Table 5 demonstrate how different regression
methods perform. Overall, the selection of an appropriate re-
gression model should consider a balance between low MSE
and high R2, while also accounting for the dataset’s complex-
ity and the model’s generalization capabilities. Therefore, we
firmly believe that the best models to continue with are ML-
PRegressor, XGBRegressor and RandomForestRegressor.
Despite the fact that MLPRegressor is an artificial neural net-
work we did not perform any optimization on its hyperpara-
meters and we used the default ones (Python Documentation,
n.d.). For simplicity, we will continue with MLPRegressor be-
cause it is the best one it terms of performance metrics (Fig. 7
and Tab. 5) but there is no significant difference with the other
two well-performed algorithms and the results are the same
whichever we selected for the next step of evaluation.
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5.7 Extrapolate Machine Learning Knowledge

After evaluating various performance metrics, we opt for the
MLP Regressor. Having the trained model ready, we can test its
effectiveness on unseen data. Some operators from the shipping
company has detected the hull fouling on a similar ship (sister
ship). Thus, we do know that this dataset refers to a fouled ship
and we want to evaluate and observe the performance of our
model in such cases which are the cases that we need the most.

Figure 8 shows us the issues with current approaches
(empirical-based) on fouled ships. In particular, it is more evid-
ent in Figure 8 where the sharp edges are circled in red. Sharp
edges should be absent because it is assumed that the vari-
able CorrectedPower encapsulates the weather dynamics, and
any sudden changes in weather conditions should be integrated
within the variable. Please note, once again, that the Correc-
tedPower is not the power demand. Therefore, sharp edges
exhibit that current approaches are not very effective in estim-
ating hull fouling.

Figure 8. The sharp edges in the empirical-based
CorrectedPower for fouled ships.

Having a dataset that refers to a fouled VLCC such as the one
presented in Table 2 we will evaluate the effectiveness of our
machine learning framework to estimate the fouling based on
the new CorrectedPower that we will calculate (ML Corrected-
Power as presented in Equation 9). Figure 9 demonstrates the
result of our new machine learning-based CorrectedPower (i.e.,
ML CorrectedPower). It is clear that the most sharp edges are
now absent or have been decreased and it is closer to a straight
line comparing to empirical based CorrectedPower.

Figure 9. The sharp edges are mainly absent in the machine
learning-based CorrectedPower for fouled ships.

Figure 10. Comparison between the empirical and the machine
learning based CorrectedPower for estimating hull fouling.

It is important to underline that the machine learning approach
tells us that since the CorrectedPower is around 120, then ship’s
power demand is 20% greater than it should be (when clear)
and further investigation is needed because it is probably fouled
(dirty hull). It is evident that the new CorrectedPower is almost
never around 100 and this behavior is alarming itself. There-
fore, by replacing the old CorrectedPower (empirical-based)
with our new one (machine learing based) shipping companies
would be able to detect hull fouling timely and better monitor-
ing the (extra) power demand.

6. Conclusions

Our data-driven approach for replacing empirical rules with ma-
chine learning algorithms yielded very good results. Perform-
ance metrics such as R2 and MSE exhibited that the best ma-
chine learning algorithms to predict the actual power demand
because of weather, in accordance with real-world data, are the
ensemble methods and ANNs. MLP Regressor, Random Forest
Regressor (bagging) and XGB Regressor (boosting) outperform
other algorithms showing that combining different models is a
powerful approach. Having a better estimation of the required
power due to weather we can predict the hull condition and pos-
sible fouling based on the overall power demand. It is expected
to employ a substantial amount of data when training machine
learning models. For training, we used data from 5 clean-hull
sister ships but it is recommended to use as many as possible.
By incorporating various weather data, the models can better
grasp different scenarios, resulting in more accurate predictions
for each specific case.

7. Future work

While the present study has provided valuable insights, there
are avenues for further exploration and improvement. We firmly
believe that handling outliers is very important for such prob-
lems and therefore we believe that if there is a way to filter out
outliers we could also use simple methods, such as Linear Re-
gression, providing great interpretability. Furthermore, it would
be very interesting to examine the use of date information and
employ time series analysis and forecasting. Taking into con-
sideration the date can significantly improve the results because
hull fouling is strongly correlated with time. Beyond doubt,
domain knowledge plays a crucial role in significantly improv-
ing the performance of machine learning models through better
data pre-processing and feature engineering. Integrating spe-
cialized expertise can lead to more accurate and contextually
relevant outcomes.
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L., Gagné, S., Takahashi, C., Karjalainen, P., Rönkkö,
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