
Study on the effect of color space in deep multitask learning neural networks for road 

segmentation 
 

 

Jere Raninen, Lingli Zhu, Emilia Hattula 

 

National Land Survey of Finland (NLS) -jere.raninen@nls.fi, lingli.zhu@nls.fi, emilia.hattula@nls.fi 

 

 

 

Keywords: Road Segmentation, Aerial Imagery, Color Space, Deep Learning, Neural Network. 

 

 

Abstract 

 

Precise road segmentation is an essential part of many applications related to road information extraction from remote sensing data. 

The effect of color space on road detection has rarely been studied. In this paper, the effects of different color spaces of aerial images 

and multitask learning methods were experimented on road segmentation using three deep convolutional neural networks, UNet, 

DenseU-Net, and RoadVecNet. The color spaces included RGB, HSV, LAB, YCbCr, and YUV.  The multitask learning methods 

adopted in this study involved utilizing multiple inputs, and multiple outputs. Multiple inputs were aerial images from the same area 

with different color spaces, and multiple outputs were road segmentation and road outline segmentation. As remote sensing data, 

National Land Survey of Finland’s true orthophotos (from 2020), Massachusetts road imagery dataset, and Ottawa dataset were 

applied. Segmentation masks for National Land Survey of Finland’s true orthophotos were extracted from Digiroad vectors with road 

width information. Road outline masks were generated from the segmentation masks. The studied neural networks were trained with 

the same data, learning rate, loss function, and optimizer for each color space, and pairs of color spaces. Multiple outputs were 

experimented with RGB color space. The comparative analysis assessed the performance of various neural networks across different 

color spaces using the F1-score metric. The experimental findings indicate that the choice of color space has little influence on the 

results of neural networks Deep learning methods can adapt to different color spaces well. In addition, the use of sharpening and 

edge enhancement augmentations had a slight effect on the results. 

 

 

1. Introduction 

Accurate road segmentation has applications, such as road 

navigation, urban infrastructure development, and geographic 

information collection. Although there have been many studies 

(Bastani, 2018; Liu, 2018; Mnih, 2013) on road segmentation, 

the challenge remains due to noise in the datasets, complex 

image background, and occlusions from structures, such as 

buildings, trees, vehicles, and shadows. 

Deep convolutional neural networks have emerged as an 

effective approach for image analysis and detail extraction 

tasks, including road segmentation (Abdollahi, 2021). Notably, 

encoder-decoder networks based on UNet-architecture have 

proven useful in addressing these challenges (Abdollahi, 2021; 

Dong, 2019; Henry, 2021; Ronneberger, 2015).  

This study extends the findings presented in (Raninen, 2022), 

where different color spaces were explored for neural network-

based road segmentation. In this study, we incorporate 

additional datasets and data augmentation methods to assess the 

efficiency of different color spaces in road segmentation tasks 

using deep learning neural networks. The study explores various 

color spaces across different neural network architectures, 

conducting tests on three distinct datasets. The performance of 

UNet (Ronneberger, 2015), DenseU-Net (Dong, 2019), and 

RoadVecNet (Abdollahi, 2021) are experimented with different 

color spaces.  The color spaces include RGB, HSV, LAB, 

YCbCr, and YUV. Additionally, the effect of edge enhancing 

and sharpening operations are tested on each color space to see 

the effect of those operations with different color spaces. The 

experiments include training each model with aerial images of 

each color space and each pair of these color spaces. The 

models are trained for road segmentation tasks. Additionally, 

RGB color space is experimented with additional output, 

making the model produce both road surface segmentation and 

road outline segmentation simultaneously. Additional inputs are 

tested by adding an encoder and skip-connections to the 

network, and additional outputs are tested by adding a smaller 

encoder-decoder pair at the end of the original model, feeding it 

the concatenation of original input and the output of the first 

encoder-decoder pair. The results are compared with F1-score, 

and conclusions are drawn. 

This paper aims to answer what kind of neural networks can be 

used for efficient and accurate road segmentations, can the 

choice of color space of the input images affect the performance 

of the neural network? Can edge enhancement and sharpening 

operations improve the results on each color space? And can 

multitask learning methods improve the performance of neural 

networks in road segmentation? 

 

2. Related work 

The basic idea of CNN was introduced by (Fukushima & 

Miyake, 1982) as a neural network model for visual recognition 

tasks. (LeCun, 1989) were able to successfully use CNN in 

hand-written digit recognition tasks.  

 Deep Convolutional Neural Networks were pioneered by 

(Krizhevsky, 2012). Deep CNNs were originally used for image 

classification tasks, being effective in extracting deep features 

from images, but Deep CNNs still had problems in semantic 

segmentation tasks. (Long, 2015) introduced fully convolutional 

neural networks (FCN) which achieved better results in image 

segmentation tasks. (Ronneberger, 2015) developed the UNet 

model for medical image segmentation. (Bastani, 2018) 

proposed RoadTracer to construct roads from aerial images. 

They used a CNN-based decision function to process the output 

of CNN. (Dong, 2019) proposed the DenseU-Net model. It is an 
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end-to-end FCN that is based on the UNet. DenseU-Net uses 

cascade operations to combine the CNN features (Dong, 2019). 

(Abdollahi 2021) introduced RoadVecNet which uses two 

interlinked UNet-based networks to do both road segmentation 

and road vectorization tasks with a single model. The first UNet 

does the segmentation task and the second UNet uses the output 

of the first UNet to produce the road vectors. (Xu, 2022) 

proposed transformer-based network RNGDet to generate road 

network graph using aerial images. (Ozturk, 2023) used feature-

wise fusion with neural network to combine optical images and 

point clouds, improving the road segmentation performance of 

the model. In our previous study (Raninen, 2022), different 

color spaces were evaluated for their effectiveness in road 

segmentation tasks using UNet, DenseU-net, and RoadVecNet 

architectures. The findings indicated minor benefits when using 

certain color spaces. This foundational work provided basis for 

the current study, which aims to further explore the impact of 

color spaces by incorporating additional datasets and employing 

sharpening and edge enhancement. 

(Caruana, 1997) coined the term multitask learning in his paper 

“Multitask learning”. In the paper, Caruana explained multitask 

learning as an inductive transfer mechanism which aims to 

improve the generalization of a neural network by using the 

domain-specific information contained in the training signals of 

related tasks as an inductive bias by learning tasks in parallel 

while using a shared representation. In other words, multitask 

learning uses additional, related tasks to help the model learn 

the main task better (Caruana, 1997). (Saito, 2016) Introduced a 

method to produce multiple predictions and use multiple labels 

to train CNNs. (Jha, 2020) integrated semantic image 

segmentation and depth estimation as different tasks during 

training, thereby enhancing the overall performance of the 

network by jointly capturing both scene semantics and 

geometry.  

(Jurio, 2010) compared different color spaces in clustering-

based image segmentation. 

 

3. Data 

Three datasets are used in this paper for road segmentation, one 

produced by the National Land Survey of Finland (NLS), 

Massachusetts road imagery dataset (Mnih, 2013), and Ottawa 

dataset (Liu, 2018). NLS dataset includes orthophotos and road 

labels, Massachusetts dataset include aerial images and road 

labels, while Ottawa dataset includes google earth images and 

road labels. Different color spaces were generated from the 

RGB-images of the datasets and labels for road outline 

segmentation were generated from the road surface labels.  

 

3.1 NLS dataset 

The NLS dataset includes orthophotos from different regions of 

Finland and corresponding road centerline vectors. The 

Orthophotos were produced from aerial images and Digital 

Elevation Model (DEM). Orthophotos removed the image 

distortions, including radiometric and geometric distortions. 

NLS Dataset used in this paper were produced by National Land 

Survey of Finland. The Data has been collected by NLS by 

flying over the whole area of Finland over multiple years while 

taking aerial images and aerial lidar (National Land Survey of 

Finland, 2021). The aerial images are accessible on the website 

of National Land Survey of Finland.  

NLS Orthophotos used in this study contains orthophotos 

covering different regions of Finland, including areas of Central 

Finland, Kainuu, North Ostrobothnia, Southern Ostrobothnia, 

Ostrobothnia, Pirkanmaa, Päijät-Häme, Southwest Finland, and 

Uusimaa. 24 areas were chosen from these regions covering 

about 36km2 each. In our case, the aerial images were acquired 

from the year 2020. The spatial resolution, which is the physical 

dimension that represents a pixel of the image, of NLS 

orthophotos is 50cm (National Land Survey of Finland, 2021). 

Orthophoto contains x, y, R, G, and B information. The 

orthophotos have a size of 12000 x 12000px, that is, 6000m x 

6000m. The orthophotos are in the form of GeoTiff, with the 

coordinate system of ETRS89-TM35FIN (National Land 

Survey of Finland, 2021). 

In the experiments the orthophotos were cropped to 1000 x 

1000 pixels without any overlapping, and before using the 

images as input, the images were randomly cropped further to 

512 x 512 pixels. 

Road labels were from the Digiroad (Väylävirasto, 2021) 

road vectors, which included the road centerline vector with 

width information on most of the roads. For roads without 

width, smallest width from the dataset was used. The labels 

contain both road surface and road outline segmentation masks. 

Road outlines were used as an additional output in the 

experiments with multitask learning networks.  

Both the road surface and road outline segmentation masks 

were generated using Python library OpenCV. The masks were 

generated by drawing the road vectors and buffering the vectors 

with the corresponding width attribute, or smallest width in the 

cases where the width attribute was missing. The road outlines 

were generated from these surface segmentation labels by 

dilating the road surface masks once with 3x3 dilation and 

subtracting the original image array from the dilated image 

resulting in the outlines of the roads.  
The final dataset consists of orthophotos from NLS (2020), 

segmentation masks of roads, and road outline masks. The 

dataset also contains images in different color spaces, including 

RGB, HSV, LAB, YCbCr, and YUV. The different color spaces 

were generated from RGB images with OpenCV Python library. 

The dataset contains 1583 1000x1000px aerial images that were 

randomly split into train, test, and validation sets. Train set 

contains 75%, test set 15%, and validation set 10% of all the 

images. There was no overlapping between the images, and thus 

the training set, test set, and validation set all have unique 

images.  

NLS dataset contains both urban and rural areas. The roads in 

the dataset have occlusions by buildings, vehicles, trees, and 

shadows as well as different surfaces and widths, overpasses, 

underpasses, bridges, parking lots, and roundabouts, making it a 

difficult dataset for road segmentation. Example images and 

labels of NLS dataset can be seen in Figure 1.  
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Producing high-quality pixel-level labels is costly, and even 

manually produced labels often contain topological errors. This 

dataset is no exception, containing similar inaccuracies in labels 

that (Henry, 2021) describes in their paper, including omission 

noise, registration noise, and over-simplification of the labels. 

These errors are dealt with by choosing a noise-aware loss as 

the loss function of the neural network. In our case, the 

combination of soft-bootstrapped binary cross-entropy loss and 

Dice-coefficient loss (Henry, 2021) was chosen. 

Omission noise means that the annotator misses some objects 

of interest (roads in this case). Registration noise, on the other 

hand, means that the label is not exactly where it is supposed to 

be, missing the target object partially or offsetting it by some 

amount. Finally, the over-simplification of the labels means that 

the labels are overly simple, for example, the thickness of the 

road is annotated with fixed thickness per road and the 

centerline of the road is not exact.  

Label noise affects the training of the network, making it 

harder to train, while making the benchmark less reliable, since 

good predictions can be penalized because of the faulty ground-

truths. (Henry, 2021) recommends using noise-aware losses as 

one solution to these problems. Noise-aware losses re-balance 

the confidence granted to the ground-truth in favor of the 

predictions (Henry, 2021). 

 
3.2 Massachusetts road imagery dataset 

Massachusetts road imagery dataset (Mnih, 2013) contains 

aerial images with 0.5 m spatial resolution and road labels. 

Aerial images have roads with different widths and complex 

backgrounds. Dataset covers an area of over 2600 square 

kilometres, containing urban, suburban, and rural regions.  

 The dataset was randomly split into training, test, and 

validation sets. Training set consists of 1171 1500x1500px 

aerial images, while validation set consists of 14 images and test 

set 49 images of the same size. Some of the training images 

contained large white areas with pixels of zero-value. From 

these, images with over 40% zero-pixels were removed 

resulting in 962 training images. 

Each image has a road surface segmentation label. Road outline 

labels were generated from these road surface segmentation 

labels. Example images and labels of Massachusetts road 

imagery dataset (Mnih, 2013) can be seen in Figure 2. 

Original images were RGB-images, and like NLS dataset, 

images with different color space were generated from these. 

Color spaces include RGB, HSV, LAB, YCbCr, and YUV. 

 

3.3 Ottawa dataset 

 

Ottawa Dataset (Liu, 2018) contains several urban areas of 

Ottawa, Canada. The images are Google Earth images with 

spatial resolution of 0,21m covering 21 regions of about 8km2. 

The dataset is split into training, test, and validation sets based 

on these regions. Training set contains 14 regions, validation set 

contains one region, and test set contains six regions The dataset 

contains manually annotated road surfaces, road edges, and road 

centerlines for each image. There are roads of different width, 

from 10px to 80px, and the roads in the images contain 

occlusions because of, for example, shadows cars and trees 

(Liu, 2018). Example images and labels of Ottawa dataset (Liu, 

2018) can be seen in Figure 3. 

As with the other datasets, different color spaces were also 

generated from the Ottawa RGB images, including HSV, LAB, 

YCbCr, and YUV. 

 

. 

4. Methods 

First, we describe the neural networks UNet, DenseU-Net, 

and RoadVecNet. Finally, the training process is described. The 

neural networks were implemented using TensorFlow Keras 

version 2.8.0 on Python programming language (version 3.7).  

 

 
Figure 3: Ottawa dataset example images, road surface 

segmentation masks, and road edge masks 

 

 
Figure 1: NLS dataset example images, road surface 

segmentation masks, and road edge masks 

 

 

 
Figure 2: Massachusetts road imagery dataset example 

images, road surface segmentation masks, and road edge 

masks 
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4.1 UNet 

UNet was introduced by (Ronneberger, 2015) for medical 

image segmentation. The UNet (Ronneberger, 2015) used in 

these experiments was modified from the original paper by 

adding padding to each convolution to keep the resolution of the 

output same as the resolution of the input. Also, the bottleneck, 

which is the layer between encoder and decoder, used dropout 

with the rate of 0.5 to help the model in avoiding overfitting. 

 The UNet (Ronneberger, 2015) contains input layer, with 

input size of (512, 512, 3) since the input images are 512x512px 

and contain three color channels. The encoder consists of four 

convolution blocks, each having a 3x3 convolution layer, 

ReLU-activation (rectified linear unit), 3x3 convolution layer, 

ReLU-activation, and finally a MaxPooling layer with 2x2 pool 

size. Outputs of the last ReLU-activations from each 

convolution block were used in the skip-connections. The 

decoder part, on the other hand, consists of an upsampling of 

the feature map, 2x2 convolution that halves the number of 

feature channels, concatenation layer which combines the 

feature map with the corresponding feature map from the 

encoder(s) via skip-connections, and two 3x3 convolution 

layers, both followed by a ReLU-activation. The final layer is a 

1x1 convolutional layer with SoftMax-activation that produces 

the final segmentation (Ronneberger, 2015). 

 

4.2 DenseU-Net 

DenseU-Net was introduced by (Dong, 2019). It is an end-to-

end FCN that is based on the UNet (Ronneberger, 2015). 

DenseU-Net uses cascade operations to combine the CNN 

features (Dong, 2019). The structure is composed of multiple 

DownBlocks (down-sampling block) and UpBlocks (up-

sampling block). The context information is generated with the 

DownBlocks, and the features are restored back to the original 

image resolution with UpBlocks. Like UNet (Ronneberger, 

2015), DenseU-Net also consists of encoder and decoder, and 

skip connections are used to connect the shallow encoder layers 

with the deeper decoder layers (Dong, 2019).  

The encoder consists of five consecutive DownBlocks. After 

each DownBlock, the number of feature dimensions double. 

Each DownBlock gets D-dimensional Height x Width feature 

maps as input. The input goes through two sets of convolutions, 

batch normalization (BN) (Ioffe & Szegedy, 2015), ReLU-

activation, and concatenation. The convolutional layers both use 

D-dimensional kernels with a filter size of three and a stride of 

one. The concatenation layers combine the input and all the 

previous results inside the DownBlock together. Next the result 

goes through another convolutional layer, batch normalization 

(Ioffe & Szegedy, 2015) and ReLU-activation, but this time the 

convolutional layer has a filter size of one. This result is both 

shared with the corresponding UpBlock via the skip connection 

and used as an input for the final layer of the DownBlock, a 

MaxPooling layer.  

The decoder, on the other hand, consists of five consecutive 

UpBlocks. After each UpBlock, the number of feature 

dimensions halves. There are also skip connections that connect 

the corresponding DownBlock to UpBlock with identical 

resolution. Each UpBlock takes similar input to DownBlocks, 

D-dimensional height x width feature map. The UpBlock 

consists of a transposed convolutional layer, concatenation 

layer, and four convolutional layers. First, the input feature 

maps are upsampled with transposed convolutional layer with a 

stride of two doubling the height and width of the feature maps. 

Then the upsampled feature maps are concatenated with the 

feature maps from the corresponding DownBlock that have 

same resolution to the upsampled feature maps via skip-

connection. Then the feature maps are reduced back to D-

dimensions with a D-dimensional convolutional layer with a 

filter size of one. Next, the feature maps go through two 

convolutional layers with D-dimensional kernels, filter size of 

three, and stride of one. The output of the first convolutional 

layer is combined with the input of the first convolutional layer 

and the output of the second convolutional layer is combined 

with the input and output of the first convolutional layer via 

concatenation layers. Finally, the output feature maps go 

through a final convolutional layer with a D-dimensional kernel 

and a filter size of one. This way the output is reduced back to 

D-dimensional after the concatenation. ReLU-activation and a 

batch normalization layer (Ioffe & Szegedy, 2015) come after 

each convolutional layer and transposed convolutional layer in 

the UpBlock. The final layer is a SoftMax layer that is used for 

predicting the output segmentation. In this study, DenseU-Net 

(Dong, 2019) and UNet (Ronneberger, 2015) were trained with 

initial filter size of 64.  

 

4.3 RoadVecNet 

(Abdollahi, 2021) introduced RoadVecNet that uses two 

interlinked UNet-based networks to do both road surface 

segmentation and road vectorization with one model. The first 

UNet does the segmentation task and the second UNet uses the 

input and output of the first UNet to produce the road outlines.  

The segmentation model uses pre-trained VGG-19 (Visual 

Geometry Group) (Simonyan & Zisserman, 2014) as the 

encoder. Between the encoder and decoder RoadVecNet has a 

dense dilated spatial pyramid pooling (DDSPP) module (Yang, 

2018). It helps in extracting high-resolution feature maps and 

capture contextual information (Abdollahi, 2021). DDSPP 

module (Yang, 2018) consists of several dilated convolutional 

layers followed by concatenation layer that combines the input 

and all the previous outputs produced inside the DDSPP 

together. Four dilated convolutional layers and four 

concatenation layers were used in this study. The dilation rate of 

each layer from first to last were 2, 4, 8, and 12 (Abdollahi, 

2021).  

The segmentation decoder consists of four decoder blocks. 

Each decoder block contains upsampling layer, concatenation 

layer that concatenates the output of the upsampling layer with 

the corresponding skip connection, then two 3x3 convolutional 

layers, batch normalization (Ioffe & Szegedy, 2015), ReLU-

activation, and finally a squeeze-and-excite (SE) module (Hu, 

2018). The upsampling layer is a 2x2 bilinear upsampling layer 

that is used to double the dimensions of the input feature map. 

The BN is used to stabilize the network. It standardizes the 

inputs to a layer in the network and can increase the training 

speed of a network (Abdollahi, 2021). The SE module is used to 

pass more relevant data and reduce redundant ones (Abdollahi, 

2021). After the decoder comes the output-block, which 

consists of 1x1 convolutional layer with the number of filters 

equal to the number of segmentation classes, and finally a 

SoftMax activation layer that produces the segmentation mask. 

 

4.4 Training 

The models were trained for 60 epochs with a learning rate of 

1e-4 with the Adam optimizer (Kingma & Ba, 2014). Batch size 

of 2 is used, and images are normalized between values 0-1. 

Data augmentations used in the experiments include random 

horizontal and vertical flipping, and random cropping to 

512x512px. Additionally, edge enhancement and sharpening 

operations are experimented with each color space with 

RoadVecNet model (Abdollahi, 2021).  

Experiments include 1) Each model is trained with each color 
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space for both datasets, 2) RoadVecNet is additionally trained 

twice with each color space, first with edge enhancement and 

second with sharpening for each dataset, 3) each model is 

trained with a pair of color spaces for each dataset, 4) each 

model is trained in each dataset in RGB color space with two 

outputs: road surface segmentation, and road outline 

segmentation.  

With two inputs, the network was trained with two encoders, 

one for each input, and one decoder, which got the concatenated 

outputs of each encoder as its input and combined the skip-

connections from each encoder.  

With multiple outputs, smaller version of the model, with 1 

block less in the encoder and in the decoder compared to the 

original model, was added at the end of the model to produce 

the road outline segmentation. This was done in a similar 

manner as described in (Abdollahi, 2021). The second network 

gets a concatenation of the original input and the output of the 

first network as its input, finally producing the road outlines.   

The different neural networks, UNet (Ronneberger, 2015), 

DenseU-Net (Dong, 2019), and RoadVecNet (Abdollahi, 2021), 

were trained to perform road surface segmentation from aerial 

images. The networks were trained on five different color 

spaces, including RGB, HSV, LAB, YCbCr, and YUV. Color 

spaces were used as a single-input and as multi-input, meaning 

two different color spaces simultaneously. The networks were 

also trained to produce both a single output and multiple 

outputs. Road surface segmentation was used as a single output, 

and both road surface segmentation and road outline 

segmentation were used as multiple simultaneous outputs. The 

models with multiple outputs were trained in the RGB color 

space. The results between different models, color spaces, and 

tasks are compared to see the effect of additional outputs on the 

performance of the networks. 

 Additionally, RoadVecNet (Abdollahi, 2021) is trained with 

additional augmentations, edge enhancement and sharpening, in 

different color spaces to see if color space affects the 

performance of these augmentations and if these augmentations 

can be used to improve the model accuracy in road 

segmentation. Edge enhancement and sharpening are applied 

with Pillow Python image processing library. Sharpening 

sharpens the image along edges, and edge enhancement 

enhances the contours of the image (Taylor & Nitschke, 2018). 

Because the labels are noisy, we decided to follow (Henry, 

2021) and use a combination of soft-bootstrapped binary cross-

entropy loss and Dice-coefficient loss to reduce the negative 

effects of the noise in the labels. In the experiments, F1-score 

was used to evaluate the performance of the models. F1-score 

measures the closeness of the predicted mask to the ground 

truth mask. Mathematically, F1-score is calculated using the 

formula in equation 1, 

 

             (1) 

 

             (2) 

 

                            (3) 

 
 

where precision and recall are introduced in equations 2 and 

3. Precision means the ratio of correctly predicted true positives 

from the total number of positives predicted, and recall means 

the ratio between correctly predicted positives against the total 

number of actual positives. TP stands for true positives, 

meaning the pixels that are correctly classified as positive, FP 

stands for false positives, that is pixels incorrectly classified as 

positive, and FN stands for false negatives, which mean pixels 

that were incorrectly classified as negative. 
  

5. Results 

5.1 Single color space 

The results of UNet, DenseU-Net, and RoadVecNet trained on 

each color space with NLS dataset can be seen in Table 1, with 

Massachusetts dataset in Table 2, and with Ottawa dataset in 

Table 3. Generally, RGB color space had the best performance. 

Every model performed worst with NLS and Ottawa dataset in 

YUV color space. 

 

 UNet DenseUNet RoadVecNet 

RGB 68,4 69,7 71 

HSV 68,5 69,2 69,8 

LAB 68,3 69,4 70,1 

YCbCr 68,4 69,4 70,4 

YUV 68 69,2 69,8 

Table 1: F1-scores in different color spaces with NLS dataset. 

 

 UNet DenseUNet RoadVecNet 

RGB 77,05 79,14 80,4 

HSV 62,29 77,58 80,48 

LAB 49,13 78,07 77,21 

YCbCr 77,18 78,38 76,82 

YUV 74,5 78,09 77,41 

Table 2: F1-scores in different color spaces with Massachusetts 

dataset. 

 

 UNet DenseUNet RoadVecNet 

RGB 93,9 95,4 95,9 

HSV 93,5 95,5 95,2 

LAB 93 95,5 95 

YCbCr 82,2 95,5 95,7 

YUV 82 95,4 94,7 

Table 3: F1-scores in different color spaces with Ottawa dataset. 

 

 DenseU-Net performed very similarly with each color space. 

The difference between the best (0.955 F1-score with Ottawa 

dataset, and 0.697 F1-score with NLS dataset) and the worst 

(0.954 F1-score with Ottawa dataset, and 0.692 F1-score with 

NLS dataset) performance with DenseU-Net is 0.001 F1-score 

with Ottawa dataset and 0.005 F1-score with NLS dataset. 

Even though RoadVecNet used encoder that was pretrained in 

RGB color space with ImageNet (Deng, 2009), it achieved 

almost as good performance with YCbCr color space, and 

slightly better F1-score in Massachusetts dataset with HSV 

color space. 

UNet got stuck in local minima with Ottawa dataset in YCbCr 

and YUV color spaces and with Massachusetts dataset in HSV 

and LAB color spaces, achieving much worse results compared 

to the other results in Ottawa dataset or Massachusetts dataset. 

This could be due to the use of dropout layer with 0.5 dropout 

rate. With NLS dataset, UNet achieved very similar results with 

each color space. Worst performance was with YUV color 

space (0.68 F1-score), and best performance was with HSV 

color space (0.685). 

All things considered; the choice of color space doesn’t affect 

the performance of road segmentation much. RGB color space 

is a good choice.  

 

(1) 

 

 

(2) 

 

 

(3) 
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5.2 Additional augmentations 

The results of RoadVecNet trained in different color spaces 

without sharpening or edge enhancement, with sharpening, and 

with edge enhancement on NLS dataset can be seen in Table 4, 

with Massachusetts dataset in Table 5, and with Ottawa dataset 

in Table 6. Generally, the results show that sharpening and edge 

enhancement improve the performance of road surface 

segmentation with some color spaces on each dataset, and edge 

enhancement performs slightly better than sharpening. Edges 

and contours are important visual cues for road segmentation 

from aerial images and sharpening and enhancing them to be 

more visible can affect the results.  

 

 Original Sharpen Edge 

Enhance 

RGB 71 71,3 70,9 

HSV 69,8 70 70,5 

LAB 70,1 70,3 70,7 

YCbCr 70,4 70,6 70,8 

YUV 69,8 70,6 70,6 

Table 4: F1-scores without additional augmentations, with 

sharpening, and with edge enhance in different color spaces 

with NLS dataset. 

 

 Original Sharpen Edge 

Enhance 

RGB 80,4 80,65 79,59 

HSV 80,48 78,12 78,28 

LAB 77,21 79,15 79,24 

YCbCr 76,82 77,19 78,72 

YUV 77,41 77,82 79,01 

Table 5: F1-scores without additional augmentations, with 

sharpening, and with edge enhance in different color spaces 

with Massachusetts dataset. 
 

 Original Sharpen Edge 

Enhance 

RGB 95,9 96,3 95,5 

HSV 95,2 95,2 95,5 

LAB 95 95,4 96 

YCbCr 95,7 95,2 95,6 

YUV 94,7 94,8 95,6 

Table 6: F1-scores without additional augmentations, with 

sharpening, and with edge enhance in different color spaces 

with Ottawa dataset. 

 

The results show that edge enhancement improves the results 

more than sharpening in all color spaces except for two cases; 

RGB and YCbCr color space. In RGB color space, sharpening 

yields the best result. In YCbCr color space, the Ottawa dataset 

has the best result without sharpening or edge enhancement, but 

with both NLS dataset and Massachusetts dataset results with 

sharpening and edge enhancement have better F1-score than 

without additional augmentation.  

In RGB color space, sharpening performs better on each dataset. 

YCbCr has differing results with Ottawa dataset, where 

sharpening and edge enhancement performed slightly worse 

compared to the performance without additional augmentations. 

Since the models were trained only once, these results could be 

due to randomness. The F1-scores are still close to the original 

values and the effect of these augmentations is small. 

 

5.3 Multiple inputs 

The results of UNet, DenseU-Net, and RoadVecNet trained on 

each color space pair with NLS dataset can be seen in Table 7, 

with Massahusetts dataset in Table 8, and with Ottawa dataset 

in Table 9. Generally, the results were very similar to the results 

of training with a single encoder and color space. Furthermore, 

additional color space and encoder increases the number of 

parameters in the model. Considering the number of parameters 

and the results, adding different color space as an additional 

input doesn’t improve the performance of the model. 

 

 UNet DenseUNet RoadVecNet 

RGB + HSV 69 69,4 70,7 

RGB + LAB 69 69,6 71 

RGB + YCbCr 69,4 69,5 71,1 

RGB + YUV 49 69,7 70,8 

HSV + LAB 68,3 69,5 70,6 

HSV + YCbCr 68,7 69,5 70,4 

HSV + YUV 49 69,6 70,1 

LAB + YCbCr 68,7 70 70,3 

LAB + YUV 49 69,5 70,5 

YCbCr + YUV 49 69,5 70,2 

Table 7: F1-scores of UNet, DenseU-Net, and RoadVecNet in 

different color space pairs with NLS dataset. 

 

 

 

 UNet DenseUNet RoadVecNet 

RGB + HSV 79,3 80,4 78,6 

RGB + LAB 76,6 80,6 77,7 

RGB + YCbCr 78,7 80,8 77,9 

RGB + YUV 77,9 81,6 78,8 

HSV + LAB 49,1 76,9 80 

HSV+YCbCr 77,2 77,5 80,2 

HSV + YUV 78,3 76,8 77,3 

LAB+YCbCr 77,6 77,2 77,4 

LAB + YUV 76,5 78,9 78,4 

YCbCr + YUV 77,9 77,3 77,5 

Table 8: F1-scores of UNet, DenseU-Net, and RoadVecNet in 

different color space pairs with Massachusetts dataset. 

 

 UNet DenseUNet RoadVecNet 

RGB + HSV 94,5 96,1 94,6 

RGB + LAB 93,7 95,5 94,4 

RGB + YCbCr 93,3 94,5 95,5 

RGB + YUV 82,8 95,5 95,4 

HSV + LAB 75,7 95,6 95,7 

HSV + YCbCr 94,4 95,9 94,1 

HSV + YUV 94,3 95,6 96 

LAB + YCbCr 81,5 96 95,3 

LAB + YUV 93,6 95,6 93,2 

YCbCr + YUV 94 95,8 95 

Table 9: F1-scores of UNet, DenseU-Net, and RoadVecNet in 

different color space pairs with Ottawa dataset. 

 

RoadVecNet and DenseU-Net performed similarly with Ottawa 

dataset, while UNet performed slightly worse. With NLS 

dataset, however, RoadVecNet had the best performance and 

UNet the worst.  

DenseU-Net had little variance in performance with different 

color space pairs with Ottawa dataset. Worst F1-score was with 

RGB + YCbCr color space pair, and best F1-score was with 

RGB + HSV. With NLS dataset, DenseU-Net had best 
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performance with LAB + YCbCr color space pair and similar 

performance with the other color space pairs.  

RoadVecNet had worst F1-score with LAB + YUV color space 

pair, and best with HSV + YUV with Ottawa dataset, and worst 

F1-score with HSV + YUV color space pair and best with RGB 

+ YCbCr color space pair with NLS dataset. 

UNet got stuck in local minima with three color spaces on 

Ottawa dataset, with four color spaces on NLS dataset, and with 

one color space on Massachusetts dataset. The best F1-score 

was achieved with RGB + HSV color space pair with Ottawa 

dataset, and RGB + YCbCr color space with NLS dataset, and 

RGB + YUV with Massachusetts dataset. Additional input with 

different color space improved the performance of DenseU-Net 

the most.  

 

5.4 Multiple outputs 

The results of UNet, DenseU-Net, and RoadVecNet trained in 

different color spaces without sharpening or edge enhancement, 

with sharpening, and with edge enhancement with NLS dataset 

can be seen in Table 10, with Massachusetts dataset in Table 

11, and with Ottawa dataset in Table 12. 

 

 UNet DenseUNet RoadVecNet 

Surface 69,3 69,8 71,54 

Edge 55,2 55,2 55,57 

Table 10: Road segmentation and road outline segmentation 

results from UNet, DenseU-Net, and RoadVecNet with two 

outputs in RGB color space with NLS dataset with F1-score 

 

 UNet DenseUNet RoadVecNet 

Surface 78,46 78,45 80,76 

Edge 61,4 61,25 68,85 

Table 11: Road segmentation and road outline segmentation 

results from UNet, DenseU-Net, and RoadVecNet with two 

outputs in RGB color space with Massachusetts dataset with F1-

score 

 

 UNet DenseUNet RoadVecNet 

Surface 95 96,7 96,8 

Edge 69,8 66,2 70,9 

Table 12: Road segmentation and road outline segmentation 

results from UNet, DenseU-Net, and RoadVecNet with two 

outputs in RGB color space with Ottawa dataset with F1-score 

 

Generally, road outline segmentation as an additional output 

improved the results compared to single-output road 

segmentation. However, additional encoder-decoder pair also 

increases the number of parameters of the model.  

RoadVecNet has the best performance with each dataset, while 

UNet has the worst performance. Road outline segmentation 

had worse F1-score with each model compared to their road 

segmentation F1-score. This is partly due to road outlines being 

much smaller compared to the road surface and thus having less 

example pixels for training, and road outlines are more likely to 

have errors in labels because it can be hard to determine where 

exactly the road edge is in the pixels. 

 

6. Conclusions 

In this paper, the effects of color space and multi-task learning 

methods were studied for road segmentation from aerial image 

data using UNet, DenseU-Net, and RoadVecNet architectures. 

Multi-task learning methods involved augmenting models with 

additional encoders and inputs as well as incorporating smaller 

encoder-decoder pairs for road outline segmentation. The 

experiments were conducted with NLS orthophotos, 

Massachusetts road imagery dataset, and Ottawa dataset. 

 This study builds upon our previous research by evaluating the 

effectiveness of different color spaces in road segmentation 

tasks using additional datasets, sharpening and edge 

enhancement. While our earlier work indicated minor 

improvements when using certain color spaces, the current 

findings suggest that such differences are minimal when broader 

datasets are employed.   

The results show that different color space had little effect on 

the performance of any of the neural networks with different 

datasets. RGB color space is a good choice for both road surface 

segmentation and road outline segmentation. Deep learning 

methods can adapt to different color spaces well and find 

similar features from each color space. 

Using additional encoder and an additional input with different 

color space had little effect on the results, while also increasing 

the number of parameters of the network. Adding a smaller 

encoder-decoder pair to the end of the network with road outline 

segmentation task as an additional output increased the 

performance of the model slightly, but also increased the 

number of parameters of the network.  

Furthermore, the experiments with sharpening and edge 

enhancement techniques did not significantly improve results. 

Performance comparison between the models indicated that 

DenseU-Net and RoadVecNet outperformed UNet in road 

segmentation tasks. Moreover, models achieved higher F1-

scores on the Ottawa dataset compared to the NLS dataset, 

attributed partly to occlusions and labelling errors in the latter. 

Notably, RoadVecNet demonstrated superior performance on 

the NLS dataset, suggesting its efficacy in handling occlusions, 

possibly due to its DDSPP module’s larger receptive field. 

 Lastly, the observed variations could be due to the inherent 

randomness in neural network training, which can cause slight 

fluctuations in performance outcomes. Thus, considerations 

such as dataset diversity, neural network architecture, loss 

functions, and augmentation techniques remain pivotal in 

enhancing neural network performance for road segmentation. 
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