
Dynamic Geospatial Data Integration: A Case Study of Moving Objects in Munakata City, 
Japan Using OGC API Moving Features and Sensorthings API

Thunyathep Santhanavanich1,2∗, Rushikesh Padsala1,3, Matthias Betz1, Volker Coors1

1 Center for Geodesy and Geoinformatics, Stuttgart University of Applied Sciences
Schellingstrasse 24, 70174 Stuttgart, Germany

(thunyathep.santhanavanich, rushikesh.padsala, matthias.betz@hft-stuttgart.de, volker.coors)@hft-stuttgart.de
2 Faculty of Environmental Sciences Technical University Dresden, 01062 Dresden, Germany

3 Department of Building, Civil, and Environmental Engineering, Concordia University
1515 St. Catherine St. West Montreal, QC, H3G 2W1 Canada

KEY WORDS: Open Geospatial Consortium, Moving Features, SensorThings API, Intelligent Transportation Systems, Smart 
Cities

ABSTRACT:

The effective tracking and analysis of moving objects within urban environments presents a complex challenge that necessitates 
robust geospatial data integration. Open Geospatial Consortium (OGC) APIs offer standardized approaches to managing dynamic 
geospatial information. This paper presents a case study of real-time moving object tracking including buses and trains in the city of 
Munakata, Japan, utilizing two prominent OGC APIs: OGC API Moving Features and OGC SensorThings API. The study explores 
the implementation of both APIs, examining their strengths and limitations in handling real-time location updates and associated 
sensor data generated by moving buses. The research provides insights into the practical suitability of each API model for dynamic 
object tracking, offering valuable guidance for practitioners seeking to optimize geospatial data integration within smart cities and 
intelligent transportation systems.

1. INTRODUCTION

The emergence of smart cities and intelligent transportation sys-
tems (ITS) underscores the critical need for efficient manage-
ment and analysis of dynamic geospatial data in tracking mov-
ing objects such as vehicles and pedestrians within urban en-
vironments. This demand entails real-time location updates
alongside the integration of various sensor data to fully har-
ness the capabilities of applications designed for disaster man-
agement, traffic services, security, navigation (robotic, aviation,
maritime), and wildlife conservation (Richter et al., 2020, Asa-
hara et al., 2015a). Acknowledging these requirements, the
Open Geospatial Consortium (OGC), a leading entity in devel-
oping open geospatial standards, acknowledged the need to for-
mulate open standards for incorporating dynamic geo-datasets
and web-based frameworks, thus enhancing the precision of
spatial decision-making procedures. Consequently, for a long
time, OGC has provided a standardized and refined framework
for a variety of web services, including the Catalogue Service,
Web Feature Service (WFS), Web Coverage Service (WCS),
Web Mapping Service (WMS), Web Processing Service (WPS)
(OGC, 2015) and the OGC Sensor Web Enablement initiat-
ive (SWE) (Reed et al., 2013). In 2017, the OGC released
the OGC API Whitepaper (Percivall et al., 2017), outlining the
need for APIs to be more web-oriented and accessible to non-
experts. A new paradigm emerged, emphasizing web-centricity,
developer-friendliness, lightweight specification development,
and a shift from service-oriented to resource-oriented models.
This transition involved modular specification development, in-
cluding core and extension specifications, facilitating easy im-
plementation and adoption for the mass market and the web,
marking the inception of the new generation of OGC API. The
∗ Corresponding author

new generation of OGC APIs are crafted to facilitate the ef-
fortless provision and utilization of geospatial data on the web,
enabling seamless integration with diverse types of informa-
tion. These standards extend the foundation laid by the OGC
Web Service Standards (such as WMS, WFS, WCS, WPS, etc.),
yet diverge by establishing resource-centric APIs that leverage
contemporary web development methodologies. Instead of ad-
hering to traditional service-oriented approaches, these stand-
ards embrace a modular ”building blocks” framework, allow-
ing for the creation of innovative APIs tailored for web-based
access to geospatial content. The objective is to streamline ac-
cessibility and foster adaptability in the utilization of geospa-
tial data across a wide spectrum of applications and contexts.
OGC APIs are evolving rapidly over time, and numerous OGC
APIs are already under development for example Styles, Maps,
Routes, Joins, 3D GeoVolumes, Processes, Features, Environ-
mental Data Retrieval and many others.

This paper focuses on the dynamic geospatial data integration
utilizing two such OGC API standards – OGC API Moving Fea-
tures and OGC SensorThings API – to explore their suitabil-
ity for tracking moving features: buses in the city of Fukuoka,
Japan. A comparative analysis of the implementation process
will highlight the advantages and potential drawbacks of each
API for handling dynamic geospatial data. The ultimate goal of
this paper is to exploit and optimize the potential of these next-
generation OGC APIs, by facilitating the integration of moving
feature data from a multitude of sources, promoting data ex-
change initiatives that are essential for broadening the market
and enhancing the applications of geospatial information and
analysis extensively.

The rest of this paper is organized as follows. Section 2 provides
an overview of the research background, focusing on the two

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W4-2024 
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W4-2024-209-2024 | © Author(s) 2024. CC BY 4.0 License.

 
209



OGC API standards. Section 3 details the implementation of
both standards for our specific use cases in the city of Mun-
akata, Japan. Subsequently, in section 4, a discussion on the
implications and findings of the implemented standards will be
presented. Finally, section 5 summarizes the research outcomes
and provides insights for future research directions.

2. BACKGROUND

2.1 OGC API Moving Features

The OGC Moving Features standards (Hayashi et al., 2017) of-
fers a rigorous framework for encoding, accessing, and man-
aging dynamic geospatial data with a focus on moving objects.
Moving features are defined by their time-dependent geomet-
ries and potentially time-varying non-spatial attributes. This
standard supports point (0-dimensional), linear (1-dimensional),
areal (2-dimensional), and volumetric (3-dimensional) repres-
entations, enabling the modeling of object trajectories and in-
terpolated positions. Researchers (Asahara et al., 2015a) also
found that the OGC Moving Features model can be effectively
used to integrate many types of location data and applications.
It facilitates sophisticated analysis of movement patterns, with
the flexibility to incorporate both location- and time-based quer-
ies.

Figure 1. OGC Moving Features - Foliation model describing
trajectories of moving objects (Asahara et al., 2015a).

The foliation data model in the OGC Moving Features has been
illustrated in Figure 1, derived from ISO19141:2008. It depicts
the trajectories of three points (A, B, and C) over time, where
the horizontal axis represents time and three spatial planes cap-
ture temporal snapshots. Each trajectory links two such snap-
shots and is defined by a start and an end time. Initially, at t=0,
points A and C begin their movements, while B remains station-
ary. By t=1, A alters its course, and B commences its move-
ment. The model records the trajectories of A and B across
different intervals, and C’s continuous movement until t=2, in-
cluding instances where no movement occurs, like B’s initial
stationarity. This approach ensures all state changes, includ-
ing position, velocity, and other attributes, are captured and se-
quenced by time, allowing for partial data loading while still
understanding all feature states up to that point.

The OGC Moving Features API built upon a foundational data
model, offers various encoding mechanisms for their represent-
ation. These include XML/GML (Asahara et al., 2019) and
JSON (Kim and Ishimaru, 2020) for comprehensive encoding,
and simpler CSV (Asahara et al., 2015b). While these encod-
ings share the same standard and data model, they exhibit not-

able discrepancies that significantly impact the types of inform-
ation that can be modeled. Each of these formats has its unique
strengths and limitations. First, CSV encoding is beneficial for
its support of temporal gaps in observations. However, it is
verbose, with redundant information such as start and end time
and location for each segment. It only supports linear inter-
polation and handles moving points exclusively. Furthermore,
its usability in GIS is limited due to the missed opportunity to
use WKT for geometry representation. Next, XML Encoding
shares CSV’s advantage of supporting temporal gaps in obser-
vations and extends this by handling complex geometries. It
also supports static or non-temporal descriptive object prop-
erties. Despite these advantages, XML encoding is verbose,
similar to CSV, and requires synchronization between temporal
geometry and attributes. It also applies the same interpolation
for geometry and all attributes. Finally, the JSON encoding
provides the most compact representation and can handle com-
plex geometries. It models timestamps of location and attrib-
ute changes independently, eliminating the need for synchron-
ization. It allows for individual specification of interpolation
modes for each attribute and supports non-temporal descript-
ive attributes. However, JSON encoding presents multiple op-
tions for encoding the same situation, leading to potential con-
fusion regarding the bounds of time periods. Additionally, it
does not support temporal gaps in observations which could be
overcome and handled directly at the application level. Overall,
while each encoding format has its advantages, it also comes
with inherent limitations. The choice of encoding format should
be guided by the specific requirements of the task at hand. In
this research, we will be focusing on using the OGC Moving
Features API in JSON encoding which is the most light-weight
format and has the fewest limitations.

Regarding the open-source implementation of the OGC Mov-
ing Feature, MobilityDB1 is an open-source database manage-
ment system that extends PostgreSQL and its spatial extension,
PostGIS, to manage and analyze temporal and spatiotemporal
objects. It is designed to efficiently process complex queries
on moving object trajectories, providing significant functional-
ities for OGC Moving Features. In the past, it has been used in
various fields including transportation, urban planning, envir-
onmental monitoring, and location-based services (Sakr et al.,
2023, Brandoli et al., 2022, Godfrid et al., 2022).

2.2 OGC SensorThings API

OGC SensorThings API provides a unified, geospatial-enabled
way to interconnect Internet of Things (IoT) devices, data, and
applications over the HTTP protocol (Liang et al., 2016). The
SensorThings API is emerging as a pivotal integrator between
urban infrastructures and pervasive sensor networks (Kotsev et
al., 2018). This API architecture is based on the foundation of
the RESTful principles, aiming to foster interoperability among
Internet of Things (IoT) devices and geospatial data platforms,
ergo catalyzing the amalgamation of IoT with smart city frame-
works (Liang et al., 2016). Central to its utility in smart urban
ecosystems is its capability for standardizing data management,
facilitating the seamless interplay of geospatial information, en-
abling real-time data processing, and bolstering urban planning
and management processes. The API’s architectural design fa-
cilitates the dynamic linkage of a diverse array of sensor data
with urban data systems, proving instrumental in a spectrum of
municipal functionalities including, but not limited to, envir-
onmental surveillance, traffic orchestration, and public welfare
1 https://mobilitydb.com/

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W4-2024 
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W4-2024-209-2024 | © Author(s) 2024. CC BY 4.0 License.

 
210



Figure 2. OGC SensorThings API (V1.1): Sensing Entities UML data model (Liang et al., 2021).

systems (van Der Schaaf et al., 2020). Such integration em-
powers urban administrators with augmented analytics, leading
to more sagacious decision-making paradigms and efficacious
urban governance (Liang et al., 2016).

The SensorThings interface is designed to enable easy access to
dynamic sensor data in a standardized manner. It is crucial for
this interface to be effectively promoted and well-documented
in order to address the complexity of the model. Several or-
ganizations and projects in Europe, including IoT Sensors in
Hamburg2, beAware3, Heracles4, and the European Environ-
ment Agency’s air quality data management system5, have already
adopted SensorThings as their data access layer (van Der Schaaf
et al., 2020). Additionally, organizations such as SensorUps6

and FraunhoferIOSB7 have publicly provided comprehensive
documentation and best practice guidelines for using the Sensor-
Things API, covering everything from the first step to imple-
mentation within an organization. Distinguished from conven-
tional time-series databases, SensorThings excels by offering
expansive support for metadata encapsulation alongside the dy-
namic orchestration of 8 entities including Things, Sensors, Data-
streams, Locations, HistoricalLocations, Observations, Features-
OfInterest, and ObservedProperties as shown in Figure 2. This
dynamic ensemble is crucial for the meticulous monitoring and

2 https://iot.hamburg.de/v1.0
3 https://beaware-project.eu/
4 http://www.heracles-project.eu/
5 https://airquality-frost.docker01.ilt-dmz.iosb.fraunhofer.de/v1.1
6 https://developers.sensorup.com/docs
7 https://www.iosb.fraunhofer.de

documentation of temporal and spatial variations in phenomena
or environmental metrics (van Der Schaaf et al., 2020, Santhanavanich
et al., 2018, Zhang et al., 2023). Contrary to the limited focus
on time-stamped data points prevalent in traditional databases,
the SensorThings API enriches data interpretation by incorpor-
ating extensive metadata, thereby facilitating a comprehensive
analytical perspective where each data instance is augmented
with pertinent metadata, enhancing the depth and comprehen-
sion of the dataset.

3. METHODOLOGY

As a part of the project UDigit4iCity8, we implemented two
OGC API interfaces: the OGC API - Moving Features and the
OGC SensorThings API to facilitate access to moving object
data in Munakata city. Our objective is to examine and contrast
the viability of both standards as potential standardized access
portals for moving objects such as buses and trains within the
city. In order to achieve this, the overall workflow had been
structured as shown in Figure 3

3.1 Data Inputs

In the present study, a diverse array of GIS and sensor data
within Munakata City, Japan, is utilized, and sourced from pro-
ject PLATEAU9. This dataset encompasses a range of data types,

8 https://www.hft-stuttgart.de/forschung/projekte/aktuell/icity-2-
udigit4icity

9 https://www.mlit.go.jp/plateau

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W4-2024 
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W4-2024-209-2024 | © Author(s) 2024. CC BY 4.0 License.

 
211



Figure 3. Interoperable Geospatial System Architecture with OGC Web Services.

including static sensor data (e.g., open-source environmental
datasets), dynamic mobility data (e.g., sensor data from buses
and trains), and varied GIS data both in 2D (e.g., roads, land
use patterns) and 3D formats (3D building models available in
CityGML and 3D Tiles formats and building types).

3.2 Web Services

To deliver the data to the application client, the OGC API web
services had been developed and deployed at our university’s
server and are available to be accessed publicly. To better handle
multiple instances and secure the server a nginx reverse proxy
is employed to handle different URLs for different services or
instances. The non-http(s) access is also restricted to avoid hos-
tile takeover events and restrict database access to local services
only. The web services include:

OGC SensorThings API In this work, the OGC SensorThings
API Part 1: Sensing Version 1.1 (Liang et al., 2021) implement-
ation from the Fraunhofer Opensource SensorThings-Server10

(FROST) had been deployed. This offers a standardized way
to manage and retrieve time series of moving objects and their
associated metadata. After the deployment of the STA service,
the data source needs to be mapped to the STA model (Fig-
ure 2), and the observation data cannot be published directly
to the STA without proper registration of Datastream, Sensor,
ObservedProperty, Thing, and initial Location, except for the
FeatureOfInterest which is the optional entity and will point to
the Location entity by default. For example, Table 1 illustrates
how to map the moving bus to the SensorThings entity model.

GET

<STA_Root_URL>/<Version>/<SensorThings_Entity_Name>

HTTP/1.1

↪→

↪→

Listing 1. Example SensorThings Endpoint URL

After the initial registration of the SensorThings entities, the
data collected from the moving sensors can be transmitted to the
SensorThings server using either MQTT or HTTP protocols. In
the current configuration, the data is transmitted through HTTP
POST requests, which are managed by the sensor aggregator
middleware provided by the sensor provider. When a change
in the geolocation of a moving object is detected by the sensor,
a request is triggered to update the Location entity endpoint,
as illustrated in Listing 2. In this scenario, the Location entity

10 https://github.com/FraunhoferIOSB/FROST-Server

SensorThings
Entity

Encoded data

Thing Metadata of the bus

Location The latest geo-Locations of the Bus

HistoryLocation Historical time-series of the bus’s
geo-Locations

Sensor Metadata of Sensor model

Observed-
Property

The observed properties from the
sensor model such as Speed, Temper-
ature

FeatureOf-
Interested

The feature geospatial data
[point/line/polygon] of the phe-
nomenon captured by the sensor. In
most cases, it is the bus itself.

Datastream Bus datastreams measured from the
Sensor

Observation Time-series of the bus’s Datastream
over time

Table 1. Example mapping of SensorThings Entities for moving
object: bus.

POST <STA_Root_URL>/V1.1/Locations HTTP/1.1

Accept: application/json, */*

Content-Type: application/json

{

"name": "Bus - 101",

"description": "Updated BUS-101 locations",

"encodingType": "application/vnd.geo+json",

"location": {

"type": "Point",

"coordinates": [130.5410, 33.8055]

}

}

Listing 2. HTTP POST request to SensorThings’s Location
entity.

represents the most recent location of the objects, while the pre-
vious geolocations will automatically be transferred to store in
the HistoricalLocations entity as time-series data.

For other types of sensor data, such as environmental data re-
lated to the bus, the data is posted to the Observations entity
in relation to the Datastreams. For instance, Listing 3 demon-
strates an example of an HTTP POST request to update the tem-
perature in Celsius for Datastream ID 5, with a reported value

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W4-2024 
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W4-2024-209-2024 | © Author(s) 2024. CC BY 4.0 License.

 
212



POST <STA_Root_URL>/v1.1/Datastreams(5)/Observations

HTTP/1.1↪→

Accept: application/json, */*

Content-Type: application/json

{

"phenomenonTime": "2024-02-01T10:00:00.000Z",

"resultTime" : "2024-02-01T10:00:00.000Z",

"result" : 25

}

Listing 3. HTTP POST request to SensorThings’s Location
entity.

of 25 at the timestamp of 2024-02-01T10:00:00.000Z.

OGC API – Moving Features designed for accessing dy-
namic moving objects, has been developed at our university.
Data is accessible in JSON format. In contrast to the Sensor-
Things API, the Moving Features service aligns directly with
the OGC APIs standard featuring an Open API interface that en-
ables effortless exploration and retrieval of dataset collections
and their associated metadata by both machines and humans via
HTTP request as shown in listing 4. With various implementa-
tions of the Open API interface utilizing HTML templates (Qiu,
2017), it is feasible to present HTML catalog responses to cli-
ents when exploring data through a web browser (as shown in
Figure 4) and to deliver data in JSON format when accessed by
machines.

To incorporate a new object with dynamic data into the system,
its Moving Feature collection and associated metadata must
first be registered on the server by the HTTP POST request to
the server with a payload as in Listing 5. This contrasts with the
SensorThings API, where multiple entities (Datastream, Sensor,
Thing, Location, ObservedProperty) must be created prior to
data submission. After the collection is established, moving
feature data can be submitted as a time series as shown in a
JSON payload shown in Listing 6. The Moving Feature ser-
vice accommodates both temporal geometries, which track the
evolution of geometric attributes (e.g., location, orientation),
and temporal properties, which represent other attributes (e.g.,
sensor readings, speed). Interpolation types (’Discrete’, ’Step’,
’Linear’, ’Regression’) are stored alongside both temporal geo-
metries and properties.

GET <OGC_Moving_Feature_landing>/collections HTTP/1.1

Listing 4. HTTP GET request to OGC API Moving Features
collection.

OGC API – 3D GeoVolumes for accessing and transferring
3D geospatial content over the internet. It enables users to dis-
cover and access a variety of 3D content from different pro-
viders, available in multiple 3D formats (e.g., 3D Tiles, I3S).
This service has been deployed as a central service that can be
consumed by multiple research projects.

3.3 Data Visualization and interoperablities

In this study, the moving feature object data from both OGC
SensorThings API and OGC API Moving Features are visual-
ized on the web client which is developed with the CesiumJS-
based 3D web client as illustrated in Figure 5. The data from
both APIs can be easily loaded and viewed on the client by

{

"links": [

{

"rel": "self",

"href": "{root}/collections/bus_1",

"type": "application/json",

"title": "OGC API - Moving Features collections

of bus_1"↪→

}

],

"collections": [

{

"id": "bus_1",

"title": "Bus Route 1",

"description": "Bus Route Collection...",

"itemType": "movingfeature",

"updateFrequency": 1000,

"extent": {

"spatial": {

"bbox": [

[

130.5089055259,

33.7766570373,

130.586648516,

33.8137539159

]

],

"crs": "..."

},

"temporal": {

"interval": [

"2023-11-12T12:22:11Z",

"2023-11-24T12:32:43Z"

],

"trs": "..."

}

},

"children": [],

"links": [

{

"title": "Bus Route 1 - Collection",

"href": "{root}/collections/bus_1",

"rel": "self",

"type": "application/json"

},

{

"title": "Bus Route 1 - Moving Features",

"rel": "items",

"href": "{root}/collections/bus_1/items",

"type": "application/json"

}

]

}

]

}

Listing 5. OGC API Moving Features collection in JSON.

making an HTTP GET request that returns JSON responses, as
depicted in Listing 6 (Moving Features) and Listing 3 (Sensor-
Things).

Along with the moving geospatial data, the 3D city model is
also loaded to the client via the OGC API - 3D GeoVolumes.

4. DISCUSSION

4.1 API Implementation

In terms of real-world implementation, the SensorThings API
currently offers greater accessibility and support. Existing open-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W4-2024 
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W4-2024-209-2024 | © Author(s) 2024. CC BY 4.0 License.

 
213



POST <MF_root>/collections/bus_1/items HTTP/1.1

Accept: application/json, */*

Content-Type: application/geo+json

{

"type": "Feature",

"id": "mf_1",

"properties": "...",

"temporalGeometry": {

"type": "MovingPoint",

"datetimes":[

"2023-11-12T12:22:11Z",

"..."

],

"orientations":[

{"scales": [1,1,1],"angles": [0,0,0]},

"..."

],

"interpolation": "Linear",

},

"temporalProperties": [

{

"datetimes":[

"2023-11-12T12:22:11Z",

"..."

],

"temperature": {

"type": "Measure",

"values": [25, "..."],

"interpolation": "Linear"

}

}

]

}

Listing 6. Example JSON payload for the moving item with
integrated temperature temporal data in OGC API - Moving

Features.

Figure 4. OGC API - Moving Features’s collections in HTML
encoded shown by default when accessed by humans via web

browsers

source server implementations like FROST-Server and GOST11,
along with online learning resources12, provide organizations
with a smoother adoption process. In contrast, the OGC API

11 https://github.com/gost/server
12 https://developers.sensorup.com/docs

Figure 5. 3D Munakata City Model with Dynamic Bus Route
Visualization, built with Cesium-JS library.

- Moving Features lacks readily available open-source imple-
mentations and dedicated learning resources. Organizations con-
sidering its use would likely need to undertake in-house devel-
opment. Nonetheless, the Moving Features standard’s founda-
tion in OpenAPI suggests potential future integration with open-
source OGC API implementations like PyGeoAPI13.

Adopting either standard effectively necessitates a learning curve
for developers and GIS professionals. This investment can be
significant, especially when experience with similar standards
is limited. The nascent stage of OGC API - Moving Features
adoption further compounds this challenge, as fewer public im-
plementations and learning resources are available compared to
the SensorThings API. Organizations should consider provid-
ing training and support to facilitate successful implementation.

4.2 Data Accessibility

Both the OGC SensorThings API and OGC API - Moving Fea-
tures support spatial (bounding box) and temporal (date/time)
filtering of data. However, the SensorThings API offers more
granular filtering capabilities, allowing queries focused on spe-
cific observed properties, sensors, and things. This precision
provides greater flexibility in data retrieval but might increase
query complexity for developers unfamiliar with the Sensor-
Things structure. In contrast, Moving Features prioritizes ease
of access and filtering. Additionally, SensorThings’ reliance on
separate datastreams for each observed property can necessitate
multiple requests for comprehensive data. The Multidatastream
extension can simplify this process. Moving Features, on the
other hand, delivers both geometric and all temporal data within
a single request by default.

In terms of data discovery and developer experience, the OGC
API - Moving Features holds an advantage by leveraging the
OpenAPI specification. This provides standardized API defini-
tions with JSON and HTML responses, along with readily avail-
able open-source interface implementations, as an example shown
in figure 4. These tools make it easier for developers to explore
and understand the API structure. In contrast, SensorThings
API lacks server built-in interfaces, often requiring developers
to either directly navigate JSON data or create custom inter-
faces for data exploration. The modular design principles pro-
moted by OGC API standards further enhance developer exper-
ience by enabling flexible implementation and potential exten-
sions to the Moving Features API.
13 https://pygeoapi.io/

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W4-2024 
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W4-2024-209-2024 | © Author(s) 2024. CC BY 4.0 License.

 
214



4.3 Dynamic data handling

The OGC API - Moving Features specification offers built-in
mechanisms for representing detailed movement characterist-
ics that are not natively supported by the SensorThings API.
This includes the ability to specify interpolation types (discrete,
linear, or potentially more advanced methods) to define how
movement is represented between observed positions. Addi-
tionally, Moving Features allows encoding the state of a moving
object (e.g., start, stop, or custom states like ”accelerating”). It
can even capture the orientation data (roll, pitch, yaw) of the
moving object. While similar information could be included
in the SensorThings API, this would necessitate adding custom
properties to entities like Observations or registering them as
extra ObservedProperties. This alternative approach likely res-
ults in a less standardized and more complex implementation
compared to the dedicated constructs provided by the OGC API
- Moving Features specification.

One potential limitation of the OGC API - Moving Features
lies in its handling of real-time data streams. While technically
feasible to update moving feature data, the current specifica-
tion typically requires re-posting the entirety of an item’s data
via HTTP POST requests whenever a change occurs. This ap-
proach can lead to increased payload sizes, potentially hinder-
ing performance, especially in high-frequency, real-time scen-
arios where numerous updates occur rapidly. In contrast, the
SensorThings API offers a more efficient approach for real-time
data updates by natively supporting streaming protocols like
HTTP and MQTT. These protocols are specifically designed
for efficient data transfer, making them well-suited for real-time
data transmission and reducing the strain on network resources
compared to repeated full data re-posting via HTTP POST.

5. CONCLUSION

This study has found that both the OGC API - Moving Fea-
tures and OGC SensorThings API support the representation
and analysis of moving features, though they cater to differ-
ent use cases and present contrasting implementation consider-
ations. The OGC API - Moving Features excels with its special-
ized focus on moving objects, providing built-in constructs for
temporal geometry, state, and orientation. This focus stream-
lines the handling of complex movement data. Furthermore,
its adherence to the OpenAPI specification enhances developer
experience and ease of implementation. In contrast, the Sensor-
Things API takes a broader IoT perspective, accommodating
both stationary and moving sensor data alongside device task-
ing capabilities. While it offers the flexibility to model detailed
moving object characteristics, this customization requires more
effort and may lead to less standardization compared to the
Moving Features standard.

The most suitable choice between these APIs depends on the
specific application requirements. If the primary goal is the in-
depth tracking and analysis of moving objects, the OGC API
- Moving Features offers a more direct and standardized solu-
tion. When a broader IoT context necessitates diverse sensor
data integration, device tasking, and robust real-time stream-
ing capabilities, the SensorThings API presents a more versatile
framework.

ACKNOWLEDGEMENTS

The research was conducted at the Centre for Geodesy and Geoin-
formatics, HFT Stuttgart, within the framework of project UDi-

git4iCity (grant agreement No 13FH9I06IA) and project DiaOpt4iCity
(grant agreement No 13FH9I10IA). Funding for both projects
was provided by the German Federal Ministry of Education and
Research (BMBF). The geospatial dataset utilized in this study
was sourced from project PLATEAU14, supported by the Min-
istry of Land, Infrastructure, Transport and Tourism, Japan.

REFERENCES

Asahara, A., Hayashi, H., Ishimaru, N., Shibasaki, R., Kanas-
ugi, H., 2015a. International standard “ogc moving features” to
address “4vs” on locational bigdata. 2015 IEEE International
Conference on Big Data (Big Data), IEEE, 1958–1966.

Asahara, A., Shibasaki, R., Ishimaru, N., Burggraf, D., 2015b.
OGC® Moving Features Encoding Extension: Simple Comma
Separated Values (CSV).

Asahara, A., Shibasaki, R., Ishimaru, N., Burggraf, D., 2019.
OGC® Moving Features Encoding Part I: XML Core.

Brandoli, B., Raffaetà, A., Simeoni, M., Adibi, P., Bappee,
F. K., Pranovi, F., Rovinelli, G., Russo, E., Silvestri, C., Soares,
A. et al., 2022. From multiple aspect trajectories to predictive
analysis: a case study on fishing vessels in the Northern Adri-
atic sea. GeoInformatica, 26(4), 551–579.

Godfrid, J., Radnic, P., Vaisman, A., Zimányi, E., 2022. Ana-
lyzing public transport in the city of Buenos Aires with Mobil-
ityDB. Public Transport, 14(2), 287–321.

Hayashi, H., Asahara, A., Kim, K.-S., Shibasaki, R., Ishimaru,
N., 2017. OGC® Moving Features Access.

Kim, K.-S., Ishimaru, N., 2020. OGC® Moving Features En-
coding Extension - JSON.

Kotsev, A., Schleidt, K., Liang, S., Van der Schaaf, H., Khalaf-
beigi, T., Grellet, S., Lutz, M., Jirka, S., Beaufils, M., 2018.
Extending INSPIRE to the Internet of Things through Sensor-
Things API. Geosciences, 8(6), 221.

Liang, S., Huang, C.-Y., Khalafbeigi, T., 2016. OGC® Sensor-
Things API Part 1: Sensing, Version 1.0.

Liang, S., Khalafbeigi, T., van der Schaaf, H., 2021. OGC®

SensorThings API Part 1: Sensing, Version 1.1.

OGC, 2015. OGC® standards and supporting documents— ogc.

Percivall, G., Holmes, C., Wesloh, D., Heazel, C., Gale, G.,
Christl, A., Lieberman, J., Reed, C., Herring, J., Desruisseaux,
M., Blodgett, D., Simmons, S., de Lathower, B., 2017. OGC®

Open Geospatial APIs - White Paper.

Qiu, Y., 2017. The openness of open application programming
interfaces. Information, Communication & Society, 20(11),
1720–1736.

Reed, C., Botts, M., Percivall, G., Davidson, J., 2013. OGC®

sensor web enablement: Overview and high level architecture.

Richter, A., Löwner, M.-O., Ebendt, R., Scholz, M., 2020. To-
wards an integrated urban development considering novel in-
telligent transportation systems: Urban Development Consid-
ering Novel Transport. Technological Forecasting and Social
Change, 155, 119970.
14 https://www.mlit.go.jp/plateau

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W4-2024 
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W4-2024-209-2024 | © Author(s) 2024. CC BY 4.0 License.

 
215



Sakr, M., Zimányi, E., Vaisman, A., Bakli, M., 2023. User-
centered road network traffic analysis with MobilityDB. Trans-
actions in GIS, 27(2), 323–346.

Santhanavanich, T., Schneider, S., Rodrigues, P., Coors, V.,
2018. Integration and visualization of heterogeneous sensor
data and geospatial information. ISPRS Annals of the Photo-
grammetry, Remote Sensing and Spatial Information Sciences,
4, 115–122.

van Der Schaaf, H., Mossgraber, J., Grellet, S., Beaufils, M.,
Schleidt, K., Usländer, T., 2020. An environmental sensor data
suite using the OGC sensorthings api. Environmental Software
Systems. Data Science in Action: 13th IFIP WG 5.11 Interna-
tional Symposium, ISESS 2020, Wageningen, The Netherlands,
February 5–7, 2020, Proceedings 13, Springer, 228–241.

Zhang, M., Yue, P., Hu, L., Wu, H., Zhang, F., 2023. An in-
teroperable and service-oriented approach for real-time envir-
onmental simulation by coupling OGC WPS and SensorThings
API. Environmental Modelling & Software, 165, 105722.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W4-2024 
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W4-2024-209-2024 | © Author(s) 2024. CC BY 4.0 License.

 
216


	Introduction
	Background
	OGC API Moving Features
	OGC SensorThings API

	Methodology
	Data Inputs
	Web Services
	Data Visualization and interoperablities

	Discussion
	API Implementation
	Data Accessibility
	Dynamic data handling

	Conclusion



