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ABSTRACT:

In the efforts for safer roads, ensuring adequate vertical clearance above roadways is of great importance. Frequently, trees or
other vegetation is growing above the roads, blocking the sight of traffic signs and lights and posing danger to traffic participants.
Accurately estimating this space from simple images proves challenging due to a lack of depth information. This is where LiDAR
technology comes into play, a laser scanning sensor that reveals a three-dimensional perspective. Thus far, LiDAR point clouds
at the street level have mainly been used for applications in the field of autonomous driving. These scans, however, also open up
possibilities in urban management. In this paper, we present a new point cloud algorithm that can automatically detect those parts
of the trees that grow over the street and need to be trimmed. Our system uses semantic segmentation to filter relevant points and
downstream processing steps to create the required volume to be kept clear above the road. Challenges include obscured stretches
of road, the noisy unstructured nature of LiDAR point clouds, and the assessment of the road shape. The identified points of non-
compliant vegetation can be projected from the point cloud onto images, providing municipalities with a visual aid for dealing with
such occurrences. By automating this process, municipalities can address potential road space constraints, enhancing safety for all.
They may also save valuable time by carrying out the inspections more systematically. Our open-source code gives communities
inspiration on how to automate the process themselves.

1. INTRODUCTION

In the domain of urban planning and road infrastructure man-
agement, municipalities carry the responsibility of upholding
standards for road clearance and maintenance. Besides the im-
movable elements of urban infrastructure —such as bridges and
streetlights— vegetation assumes a particular role. Trees grow-
ing over the roadway can not only obscure drivers’ view of signs
and lanes but also cause damage to vehicles. Falling branches
may potentially inflict serious injuries on pedestrians or on bi-
cyclists (Way and Balogh, 2022).
The vertical clearance above roadways is subject to distinct reg-
ulatory frameworks across jurisdictions. Examples include Ger-
many’s four-meter standard and the U.S.’s 16-foot specification.
In Australia, it varies depending on the type of road. Typically,
vertical clearance ranges from four to six meters, constituting a
crucial factor in ensuring unhindered flow of traffic.
Hence, local governments have taken on the task of monitoring
the growth of roadside greenery. However, this effort is char-
acterized by its labor-intensive nature necessitating individual
assessments for each street. For example, in the municipality
of Leipzig, a mid-size German city with around 1,700 kilomet-
ers of street, ten workers are employed to regularly inspect the
overall road space. An automated approach could not only save
resources but also make the roads safer.
Simple cameras are unsuitable for this type of assessment as
the resulting images do not contain depth information. Light
Detection and Ranging, or LiDAR for short is a sensing tech-
nology that measures distances using lasers. With the ability to
create a three-dimensional point cloud representation of its en-
vironment, LiDAR emerges as the linchpin for this study.
Working with LiDAR point clouds poses different challenges as
also identified in the works of Li et al. (Li and Ibanez-Guzman,
2020) and Gargoum et al. (Gargoum and El-Basyouny, 2017).
A single point cloud only contains the points that are visible

from the location of the sensor, meaning that the LiDAR sensor
cannot detect points if there is an object in between. Also, the
range of the sensor is limited. We address this challenge by
aggregating multiple point clouds captured at regular intervals,
aiming to enhance scene comprehension while avoiding excess-
ively large point clouds that can hinder efficiency. The effi-
ciency problem persists with the semantic segmentation mod-
els which either take a long preprocessing or training time and
often require a huge amount of memory. We therefore decided
to use RandLANET which reduces computation time by using
a random sampling method (Hu et al., 2020).
To understand where the clearance regulations apply, the outer
edges of the road must be found. Finding contours has been
dealt with in different point cloud applications even though
there is no clear definition of contours in 3D space (Xia et al.,
2020). Previously proposed methods are based on local fea-
tures, segments, or gradients. We developed a new contour
algorithm for 2D planes in 3D space as the other approaches
seemed overly complex for our use case. This algorithm checks
the distribution of neighboring points around the point under
consideration and then decides whether this point is part of the
contour. Finally, the identified points of the trees that impair
the clear height regulations are difficult to locate in the “real”
world which is why we project those points back to the images.
The contributions of this paper are the following:

1. concatenation of multiple point clouds

2. semantic segmentation for the Pandaset

3. a new algorithm for detecting the contours of a plane using
nearest neighbors

4. cropping a sub-point cloud using contours

5. projecting points from a point cloud onto images
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The organization of this study is outlined as follows: Chapter
2 surveys existing research in the domains of applications of
LiDAR point clouds, and models for semantic segmentation of
point clouds. Subsequently, we dive into the chosen dataset and
the details of our implementation in Chapter 3. In Chapter 4,
we present the results of different experiments we conducted to
find the best parameter settings. Chapter 5 critically engages
with and interprets our approach, describing the practical ap-
plications and inherent constraints. Finally, we summarize the
key findings and conclusions in Chapter 6.
The code is available at github.com/miriamcarnot/clear_
height_pandaset.

2. RELATED WORK

To develop an approach for the automatic evaluation of the
clearance height, we have a look at other applications of LiDAR
technology, especially for other clearance problems. We will
also briefly discuss semantic segmentation and contour detec-
tion in point clouds.

2.1 LiDAR applications

In the Earth and Geosciences, LiDAR point clouds are mainly
taken from the air (remote sensing) to provide an overview of
vegetation, its distribution, altitude, etc. (Guo et al., 2017).
From an aerial perspective, it proves challenging to evaluate the
clearance above the road which requires data from the ground.
LiDAR point clouds captured at street level are primarily recor-
ded for autonomous driving purposes. Autonomous cars should
be able to detect objects and estimate distances using LiDAR
sensors (Li and Ibanez-Guzman, 2020). Beyond driving applic-
ations, this data can be used to draw conclusions about roadside
vegetation and overall road safety considerations.
Yet other studies have also dealt with three-dimensional LiDAR
data with regard to traffic and road safety.
Gargoum et al. (Gargoum and El-Basyouny, 2017) summarize
applications of LiDAR point clouds in the traffic sector. They
report that most of the work in the area to date has been lim-
ited to traffic signs and road markings. Yet some studies have
already dealt with distance estimates in the context of roads,
most of them concerning bridges and tunnels (Watson et al.,
2012) (Puente et al., 2016) (Liu et al., 2012). Gouda et al.
(Gouda et al., 2021) developed a novel system for highways
that uses raycasting to estimate, among other things, the ho-
rizontal roadside clearance, e.g. distances to obstacles or em-
bankments. The work of Gargoum et al. focuses on calculating
the minimal clearance above highways (Gargoum et al., 2018).
They aimed to find out whether over-sized trucks could pass on
the selected roads. This is necessary to plan appropriate routes
for this kind of transportation. They used LiDAR sensors to
detect all objects above three different highway segments. For
each trajectory point the algorithm checks if there are any points
directly above it. Consecutive points are clustered to determine
if the object is a bridge or not. The approach makes sense for
the given goal but is not suitable for finding parts of vegetation
that need to be trimmed because it only covers the points that
are directly above the vehicle. The work of Chen et al. (Chen
et al., 2019) focuses on the tree inventory along the road. They
built a system for identifying individual trees and their specific-
ations using LiDAR sensors. They tested four different initial
segmentation approaches including detecting tree clusters but
none of them make use of Deep Learning. Most of the Ma-
chine Learning models for point clouds were developed in re-
cent years after the publication of this work.

2.2 Semantic Segmentation of Point Clouds

The semantic segmentation of point clouds using Deep Learn-
ing is an active field of research with new models every year.
Just like for images where each pixel is assigned a class, for
point clouds, each point is given a class. In the context of
streetscapes, these classes can be pedestrian, car, building,
traffic sign, sidewalk, etc.

2.3 Contour detection in 3D point clouds

In their review, Xia et al. (Xia et al., 2020) differentiate
between three fundamental categories of contour detection al-
gorithms: local-feature-based, segment-based, and gradient-
based algorithms. The work of Hackel et al. (Hackel et al.,
2016) is based on several different neighborhood features for
each point which they use to train a classifier. Neither the model
nor the code is available. They labeled contour points to train
the network making re-implementation very time-consuming.
Segment-based methods try to separate the point cloud in differ-
ent areas like planes or triangles and then consider intersection
lines as contours. Gradient-based methods usually project the
points onto an image or a plane, some of those methods also use
voxelization. Xia et al. (Xia and Wang, 2017) first detect edges
based on geometric centroids, then find candidates by analyz-
ing neighborhood eigenvalues. Finally, they smooth the edges
in a linking step with a graph-snapping algorithm. Since there
is no clear definition for a contour in 3D space, it is difficult to
compare different methods quantitatively.

3. METHODOLOGY

In this work, we employ point cloud data to identify vegetation
encroachment within the vertical clearance above roadways.
The system is not limited to trees, but includes all types of
roadside vegetation, e.g. also bushes and shrubs. To begin
with, we briefly introduce the dataset used. We then detail each
step of the system. Figure 1 shows the overall workflow.
The first step of the system involves the segmentation of the
cloud into semantic classes. Then, we filter the points that
belong to the road and approximate the outer road borders by
finding the contours of the road plane. The resulting polygon
is used for finding vegetation points that lay inside of the
vertical clearance height. Finally, the vegetation parts that have
grown into the clearance of the road can be projected from
the point cloud into the simultaneously acquired images. This
not only expedites the process but also helps municipalities
to proactively ensure road safety through targeted vegetation
management.

Figure 1. The principal steps of the proposed workflow.

3.1 The dataset

Our investigation is conducted utilizing PandaSet (Xiao et al.,
2021). The dataset originally included 6,080 frames in urban
street scenes for semantic segmentation. The setup includes
two LiDAR sensors (360-degree and front-facing) and six cam-
eras taking images simultaneously with the point clouds.
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We have chosen this dataset due to multiple reasons. Firstly,
the developers provide a development kit with tutorials which
makes it easy to get started.1 Further, the company Hesai
providing the dataset also produces the sensors themselves.
They are amongst the most affordable on the market and gained
popularity in recent years. We are currently planning our own
setup with such a sensor and wanted to do a first proof of
concept on similar data. The dataset is currently only available
in a shortened form on Kaggle. 2

3.2 Semantic Segmentation

The point clouds have to be segmented into semantic classes to
find which points of the point cloud belong to vegetation (trees,
bushes, etc.) and which points are part of the street. This in-
formation is necessary to understand where the height clear-
ance applies at all. As only those two labels are relevant for this
work, we trained the RandLANet model on three classes: the
two above-mentioned and other objects. The shortened dataset
includes semantic labels for 30 sequences of point clouds, each
depicting a different scene. We decided to train a RandLANet
model as it is often referred to as a baseline and keeps the initial
preprocessing at a minimum by using random down sampling.
The authors have shown in their paper that more sophisticated
sampling methods do not yield big advantages and are time-
consuming compared to the random approach.
We trained the model on 24 sequences for 75 epochs, four were
left for testing and two for validation. For training and visualiz-
ation, we use Open3D-ML, a machine learning library built on
top of the 3D data processing library Open3D (Open3D-ML,
2020)(Zhou et al., 2018). It offers ready pipelines for different
tasks such as semantic segmentation and unifies the definition
of datasets, configurations, and models.

3.3 Concatenation of Point Clouds

One point cloud is only showing one recording moment where
many objects can be blocked by other objects. Therefore, we
concatenate multiple point clouds of one sequence to have a
better overview of the entire street scene. To not work with too
many points which enlarges the execution time we take every i-
th point cloud of a sequence. The decision of the concatenation
step i will be discussed in Section 4.1. As is shown in Figure 2
more detail of the street scene can be observed when concaten-
ating several recordings, here with a step of 10. In the Figure,
the street scene is observed from above.

(a) (b)

Figure 2. Single (a) and concatenated (b) point clouds of
sequence 003.

1 https://github.com/scaleapi/pandaset-devkit
2 https://www.kaggle.com/datasets/usharengaraju/pandaset-

dataset?resource=download

3.4 Edge Detection of the Road Plane

Based on the entire point cloud of the street scene with vehicles,
people, etc., only those points are used in the subsequent steps
that have been classified either as vegetation or as road. Figure
3 shows an example of the filtered points.

Figure 3. Points belonging to the classes road (grey) or
vegetation (green) in sequence 011. Other points are discarded.

The next step is to find out where exactly the road ends, there-
fore, we have to find the contour of the road. The road points
roughly form a plane thus making the task less complex as the
third dimension can be left out. Other reviewed research pro-
jects try to detect edges and contours in true three-dimensional
objects such as buildings. These methods seem to be overly
sophisticated for our use case as they often require extensive
calculations or the training of models. We thus developed a
new basic approach to check if a point belongs to the contour.
The execution of this algorithm for each road point requires a
considerable amount of computing power. In a preprocessing
step, we therefore use Poisson Sampling to reduce the road
points to a smaller number of sampling points as representa-
tion. For a given point cloud, points are gradually eliminated
to ensure that the distances between the points are as uniform
as possible. We execute the later program for each point of the
down-sampled cloud in parallel to speed up the process.
Figure 4 shows the main idea of our developed algorithm to
find out whether a point belongs to the contour. Our algorithm
checks every sampling point of the road.

(a) (b)

Figure 4. The green point in a) is considered a contour point
because one angle exceeds 135° (shown in red). The green point

in b) is not a contour point.
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(a) (b) (c)

Figure 5. All the road points (a), the sampled road points (b),
and the detected contour points in blue.

For each sampling point P we calculate all the neighboring
street points within a radius r. Let N be the set of all neigh-
boring street points, defined as:

N = {Ni | distance(P,Ni) ≤ r} (1)

If there are no other points nearby, P is not considered a con-
tour point. If there is only one neighbor, P is automatically
accepted.
For each neighboring point Ni, we calculate a vector Vi

between P and Ni ignoring the z-coordinate as the street is con-
sidered a plane. The remaining two coordinates of the points are
x and y.

Vi =

[
Ni,x − Px

Ni,y − Py

]
(2)

Then, we start at any vector Vi and calculate the clock-wise
angle to every other vector Vj and choose the smallest one:

θmin = min
i,j∈N

(
atan2

([
Vi,x

Vi,y

]
,

[
Vj,x

Vj,y

]))
(3)

We continue from the vector Vj that had the smallest angle with
Vi and continue this procedure until all of the vectors have been
checked and the sum of the smallest angles adds up to 360°.
In the case that the neighboring points N are well distributed
around P , none of those angles will be of significant size and
exceed the threshold as can be seen in figure 4 b). The point
P is not considered a contour point in this case. If one of
the angles is very large, then P is added to the list of contour
points. A more detailed analysis of the determination of the
angle threshold value follows in Section 4.4.

Contour Point =

{
1 if min angle > threshold

0 otherwise

Figure 5 shows an example of the contour-finding process us-
ing sequence 027 of the dataset. Figure 5 a) includes all points
that belong to the road class after removing the statistical out-
liers, in total 299,599. The following step samples the points to
1,000 representing points, shown in b). Finally, we check for
each point if it is part of the contour. Contour points are shown
in blue, others remain red as can be seen in c).

3.5 Spanning the Clearance Gauge

Having the contour points, we can connect all of them to a poly-
gon. For this purpose, we sort the contour points according to
their distance from each other. We start at any random contour
point and look for the closest point. We continue this procedure
until we have sorted all the contour points. We then form a line
set that includes all the lines connecting neighboring contour
points representing the polygon.
Using this line set, we can create a volume that ranges from
the street level up to four meters which is the height clearance
regulation in Germany. The created volume is used to filter
out points from the vegetation class that lay inside this volume.
These are the points of the trees that need to be trimmed. In
Figure 6 these points are marked in red.
For working with and visualizing the point clouds, we use the
library Open3D (Zhou et al., 2018), which makes working with
3D data an interactive experience.

Figure 6. The detected points are shown in red (sequence 019).

3.6 Projection onto Images

Besides the LiDAR sensor, the car recording the Pandaset was
equipped with six cameras in different directions. The points
that compromise the clear height above the road can be pro-
jected onto those images using the information about the posi-
tion of the car when the images were taken. The result of this
projection for three different steps (rows) and the six cameras
(columns) are presented in Figure 7.

4. RESULTS

The following section describes the conduct and results of sev-
eral experiments. The aim is to identify good default values
for the parameters taking into account the execution time, the
quality of the contours, and the number of points on trees to
be trimmed. As already mentioned in Section 2, there are to
our best knowledge no other algorithms with the same object-
ive. This is why we cannot directly compare the implemented
system to others. Instead, we decided to test the setting of the
following parameters:

• point cloud concatenation step

• number of sampling points

• neighborhood radius for the contour algorithm

• angle threshold for the contour algorithm

We compare the qualitative results in the form of images and
the computing time required, when appropriate.
Finally, we will compare the annotated labels with the predic-
tions from the semantic segmentation model.
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Figure 7. Images from three different time steps including the projected points (sequence 001).

4.1 Point Cloud Concatenation Step

To ensure a comprehensive depiction of the scene, we select
every i-th point cloud of a sequence (which consists of 80 point
clouds in total) and concatenate them. The objective of the ex-
periment is to determine the optimal parameter for i. Concaten-
ation steps 1, 5, 10, 20, and 40 are employed for this purpose.
The experiment is repeated for each sequence, and the averages
of the obtained values are utilized for fair comparison.
Table 1 presents the outcomes of the experiment. Naturally, a
reduced concatenation step leads to a greater number of point
clouds and a proportionally higher number of points. Addition-
ally, the concatenation process time exhibits no significant es-
calation with smaller concatenation steps. However, the overall
program execution time markedly increases when employing a
smaller concatenation step due to the inclusion of more frames.
With a higher total number of points, the number of vegetation
points within the clear height also increases, thereby offering
enhanced detail in areas requiring tree pruning. Upon careful
consideration, we have adopted the use of every 10th frame as
the default, as it creates a balanced relationship between the ex-
ecution time and the level of detail achieved.

4.2 Number of Sampling Points

Similar to the previous parameter, setting of the number of
sampling points involves a balance between precision and
runtime considerations. We systematically examined the values
of 100, 250, 500, 1000, and 2000, conducting each experiment
for every sequence and subsequently computing the average.
Table 2 displays the outcomes, illustrating that the sampling
process significantly contributes to the overall execution time.
This is especially the case for low numbers of sampling points
like 100 or 250, where the sampling process takes up about 90%
of the execution time of the entire program. With increasing
numbers of sampling points, most time is needed for the edge
detection of the road.
As anticipated, the quantity of vegetation points within the clear
height exhibits an upward trend with an increasing number of
sampling points, attributed to the heightened detail captured in
the contours. The high number of sampling points facilitates a
more accurate determination of the road’s shape, ensuring com-
prehensive coverage without omission of any sections.

Figure 8. Time in seconds for sampling the road points (blue)
and executing the entire program (orange).

Table 2. The table shows for different numbers of sampling
points how many vegetation points lay inside the clear height

and how much time in seconds it takes to sample the road points
and execute the entire program.

# Sampling Avg Vegetation Sampling Execution
Points Inliers Time in s Time in s

100 27,903 7.298 8.041
250 25,459 7.308 8.042
500 21,307 7.338 8.403
1000 17,359 7.498 10.864
2000 24,642 7.828 32.503

The corresponding plot in Figure 8 depicts the execution times,
revealing that the time for sampling points exhibits minimal
variation, while the overall program execution time experiences
a pronounced surge with a greater count of sampling points.
This is a consequence of checking individually for each sample
point whether it is part of the contour.
Figure 9 graphically depicts the implications of varying the
number of sampling points. It illustrates that an increased num-
ber of points used as samples enhances the fidelity of the rep-
resentation of the original point cloud. In this example, the road
point cloud comprises 316,574 points after the removal of stat-
istical outliers (depicted in Figure 8a). As a default, we decided
on 1,000 sampling points. However, the complexity of the street
scene should be considered when setting this parameter.
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Table 1. The table shows the tested values for the concatenation steps, the resulting number of point clouds that are being
concatenated, and the total number of points. Further, we calculate the average number of vegetation points that lay inside the clear

height, and the average time it takes to concatenate the frames and execute the entire program in seconds.

Concatenation Step # Point Clouds # Points Vegetation Inliers Concatenation Time in s Execution Time in s
1 80 13,823,260 129,281 0.572 100.911
5 16 2,764,037 40,266 0.242 19.700

10 8 1,383,692 12,421 0.205 10.636
20 4 693,050 9,238 0.186 6.649
40 2 346,436 9,184 0.187 5.703

(a) (b) (c)

(d) (e) (f)

Figure 9. Road point cloud after removing outliers (a) and
sampled road point cloud with 100 (b), 250 (c), 500 (d), 1,000

(e), and 2,000 (f) points, using sequence 003.

Table 3. The execution time of the contour algorithm and the
entire program in seconds for different sizes of the neighborhood

radius.

Radius Time to Find Execution
Contours in s Time in s

2 0.284 8.800
4 0.593 8.625
6 2.054 10.130
8 6.208 14.304

10 12.723 20.837

4.3 Neighborhood Radius

To determine whether a point qualifies as a contour point, an ex-
amination of its neighborhood is conducted, defined by a desig-
nated neighborhood radius. A smaller radius accelerates execu-
tion by considering fewer neighbors; however, there is a risk of
omitting crucial neighbor points, leading to potential misclassi-
fication. The experiment assesses radius settings of 2, 4, 6, 8,
and 10, demonstrating in Table 3 the corresponding execution
times. For the contour algorithm as well as for the full program
the execution times rise with increasing radii. The impact of
varying radius sizes on the resulting neighborhood is exempli-
fied in Figure 10. The point in question is marked blue and its
neighbors in green.

(a) (b) (c)

(d) (e)

Figure 10. Neighborhood points (green) of the query point blue
with radius sizes 2 (a), 4 (b), 6 (c), 8 (d), 10 (e).

In this particular example, a radius of 2 yields 2 neighboring
points, whereas a radius of 4 encompasses 18, and a radius of
6 comprises 36 neighbors. Larger radii, such as 8 and 10, con-
sider 63 and 88 neighbors, respectively. Despite the rise in ex-
ecution time with increased neighbors, there is no correspond-
ing enhancement in the informative value of the neighborhood
concerning the contour. Only the closest neighbors are truly
relevant for the decision of whether the point is a contour. A
too-big radius might even have negative implications in com-
plex street environments with multiple sections. Therefore, a
radius of six was selected as the default size, offering a balance
between computational efficiency and the informative relevance
of the neighborhood in relation to the contour.

4.4 Angle Threshold

The angle threshold is another crucial parameter in discerning
whether a point is part of the contour. If it is set too small,
too many points will be considered as a contour point. If it is
too big, we do not find them all. We systematically examine
angle thresholds of 60°, 90°, 120°, and 150°, as demonstrated
in Figure 12, where the identified contour points are depicted
in blue and the remaining sampled road points in red. For
example, setting the angle threshold to 60° (Figure 10a) leads to
the classification of numerous points belonging to the “second”
row as contour points, an undesired outcome. Conversely,
a high angle threshold, such as 150° (Figure 10d), fails to
identify some genuine contour points. Striking a balance, we
propose 90°, as illustrated in sub-figure b, as an optimal value
and have adopted it as the default setting.
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4.5 Semantic Segmentation on the Pandaset

We trained the model according to the description in Section
3.2 reaching an average accuracy of 93.86%. In total, 320
point clouds (from four sequences) were tested. The single
accuracies range from 85% to 97%. As can be seen in Figure
11, the predictions are very close to the annotated labels. In
our opinion, a significant part of the accuracy loss is due to the
road markings not being considered as part of the road in the
dataset. Our model classifies these road marking points as road
points, which lowers the accuracy but is positive for our case.
This behavior is also visible in the Figure.

(a) Annotation

(b) Prediction

Figure 11. Annotation and model prediction for a test point
cloud. Vegetation is shown in green, roads in grey, and other

classes in beige.

Table 4 shows how long it takes to execute the entire program
when simply using the annotations compared to using the pre-
dictions from the trained model. It is apparent that running the
inference for predicting the labels, reduces the speed drastic-
ally. For every of the four test sequences, the program takes
more than double the time to execute.

Table 4. The table shows the execution time in seconds for the
four test sequences when using the given annotations compared

to using the model predictions.

Execution Time in s Execution Time in s
seq With Annotations With Model Predictions
013 10.387 32.270
027 15.102 37.368
029 19.974 43.429
046 15.670 36.856

5. DISCUSSION

LiDAR point clouds offer substantial advantages for urban in-
formation retrieval, yet current research and processing capab-
ilities remain in the preliminary stages. Notably, the variability
in LiDAR point clouds, arising from differences in sensor char-
acteristics (e.g., channel count, resolution) and post-processing
methods, poses a challenge to the applicability of segmentation
models across diverse point cloud types. Moreover, the exist-
ing labeling tools are numerous but often exhibit only limited
functionality. Specifically, for addressing the clear height is-
sue, the labeling tool should be able to measure distances or at
least bounding box dimensions and have the ability to visualize
original labels for creating subgroups of the semantic classes,
in our case vegetation in need of trimming. None of the open-
source tools tested thus far provided us with both features.
With several separate road sections, for example, double lanes,
it can happen that the contour points cannot be connected cor-
rectly. The algorithm should be extended so that separate sec-
tions are automatically recognized and considered individually.
Although this was not the case in the dataset, it is quite conceiv-
able that the algorithm could run into problems if the gradient
of the road varies greatly in a road segment, as the road itself is
approximated as a flat surface. We are actively addressing these
challenges in our ongoing work for refinement.
To scale the algorithm to point clouds of an entire city, the
overall point cloud would have to be divided into segments,
which would then need to be analyzed separately. We can use
an example to approximate the computing time. Leipzig is a
medium-sized German city with just under 600,000 inhabitants
and around 1,700 kilometers of road. According to our calcula-
tions using the coordinates of the recording points, the Panda-
set sequences have a total length of approximately 2,192 meters
and can be evaluated within 10.5 minutes with the default set-
tings. If the entire city of Leipzig were to be recorded with the
setup used to create the Pandaset, the evaluation of the clearance
height would take about 136 hours with standard parameter set-
tings. In this respect, further efforts may be undertaken to re-
duce the processing time.

6. CONCLUSION

Roadside greenery can embellish the cityscape but frequently
need to be taken care of. In this work, we have shown the pos-
sibility of automating the process of detecting vegetation grow-
ing over the street and therefore penetrating clear height regula-
tions. We successfully show that parts in need of trimming can
be identified within 3D point clouds.
One drawback of LiDAR point clouds is their size, recordings
can easily become very large. We still believe that LiDAR
has a lot of potential in this context, especially with the rise
of autonomous driving using LiDAR sensors. Applications for
a smart city could be linked to such developments, for example
by detecting problems in the road space automatically in the
background and sending information to the officials.
The overall goal of our project is to equip garbage trucks that
regularly cover the entire road network in a city with LiDAR
sensors. Collected data can be used for automatic identification
of restrictions on clearance height.
We hope that our work can give inspiration to cities and com-
munities to save workforce and digitize our cities to pave the
way for the future.
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(a) 341 contour points (b) 246 contour points (c) 198 contour points (d) 142 contour points

Figure 12. Detected contours (blue) of the sampled road points (red) with angle thresholds 60° (a), 90° (b), 120° (c), 150° (d).
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