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Abstract

Our studies aim at modelling and simulating urban expansion scenarios for Brussels capital region, Brabant of Flanders and Wal-
lonia. Thereby we use a non-ordered multinomial logistic regression (MLR) coupled with cellular automata. Our model helps to
study the probability for built-up development based on a) impact of different causative factors on expansion process and b) effect
of the neighbouring cells on future built-up development. In our study, we have used 100×100 m raster data representing cadastral
built-up of our study area. The model is then calibrated using the maps for years 2000-2010 and to simulate 2020. Thereto, sim-
ulated 2020 maps has been validated with observed 2020 built-up maps using fuzzy set theory. Our results show that all through
our study, zoning or land use policies play an important role for expansion along all the built-up density classes. Besides, slope
distance to highways and major cities encourages new urban development commonly known as ‘Urban sprawls’. Distance to main
roads, employment opportunities aids to further development from low density to medium density areas. While most of the factors
impact negatively to further high density development showing that our area is highly governed by the zoning status in case of
densification.

1. Introduction

Urban expansion, defined as land being changed into built-up
areas, is a major driver of changes in land use that has very far
reaching consequences on the environment, natural resources
and human health (Zhang et al., 2011). Unchecked sprawl
of urban development’s poses challenges to sustainable urban
planning and it calls for effective modelling techniques for un-
derstanding and managing its impacts. While existing models
are mainly based on raster with low resolution, there is a grow-
ing recognition for higher resolutions so as to understand the
complexity of urban landscapes (Han and Jia, 2017; Liao et al.,
2014). In the quest for improved urban expansion modelling,
scholars have ventured into innovative methodologies and di-
verse spatial scales. Larger grid dimensions, such as 100×100
m provide a balance between intricate details and processing
load (Poelmans and Rompaey, 2010). However, they often blur
the diversity of land use within each cell. On the other hand,
smaller scales down to 10×10 m offer enhanced details but re-
quire abundant computational power, particularly when analys-
ing large geographical areas (Mustafa et al., 2014; Chakraborty
et al., 2022). Examining several built-up densities rather than
using a binary categorization (i.e., non-built-up/built-up) is one
way to handle the trade-off between heterogeneity and coarse
regular cell spaces.

Cellular Automata (CA) are widely used to simulate patterns
of urban growth; yet, precisely calibrating their transition rules
is still a difficult task that depends on both spatial character-
istics and causative factors. Traditional approaches depended
on trial and error, but more recently, automated techniques like
statistical analysis and machine learning have been adopted.
Additional challenges arise in the validation of CA models, as
traditional pixel-by-pixel techniques are unable to discriminate
between various kinds of errors (Mustafa et al., 2018a). Spa-
tial metrics may be misleading, prompting exploration of fuzzy

set theory for more nuanced validation approaches (Ahmed et
al., 2013). Comprehensive surveys emphasize the importance
of robust validation methods for ensuring the reliability of CA
models (Vliet et al., 2016).

The study presents a novel approach to model built-up expan-
sion in the Brussels Development area using an integrated ap-
proach of multinomial logistic regression (MLR) and CA. The
model accounts for transition of non-built-up areas to various
built-up density class. Calibration and validation of the model
are done using Belgian cadastral data for 2000, 2010 and 2020,
with four built-up classes defined: non-built-up, low-density,
medium-density, and high-density. Three maps can define
one calibration interval (2000-2010) and one validation interval
(2010–2020). The model considers a comprehensive set of 12
static causative factors encompassing accessibility, geophysical
features, policies, socio-economic factors, and neighbourhood
interactions, recognizing urbanization as a self-organizing sys-
tem (Chakraborty et al., 2023).

The model parameters undergo calibration through a combin-
ation of logistic regression and genetic algorithm techniques.
More specifically, the neighbourhood interactions are dynamic-
ally adjusted by means of a multi-objective genetic algorithm
(MOGA). Transitions between distinct built-up classes are rep-
resented by the dependant variable in the logistic regression
model. The Relative Operating Characteristic (ROC) approach
is used to validate the results of the logistic regression. Across
all built-up classes, the MOGA’s goal function seeks to optim-
ize allocation accuracy rates (Mustafa et al., 2018a). A fuzzy
membership function with an exponential decay that uses a
neighbourhood window of four cells and a halving distance of
two cells determines this accuracy rate. Furthermore, the accur-
acy rate function is used to validate the model.
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2. Materials and Study Area

2.1 Study Area

In this section, we discuss our area of area of interest. Our
model was carried at a provincial level of Belgium - one of
the urbanised country of Europe. More specifically, it in-
cludes Brussels Capital Region (BRC) with a population of
1,241,175 inhabitants, Brabant of Flanders (FB) to the north
having 1,187,483 inhabitants and Brabant of Wallonia (WB) to
the south with 412,934 inhabitants as shown in Figure 1. The
population shows a variation in them proving that this study rep-
resents an interesting cross border scenario. This is why, there
are several densities that can be observed in the built-up where
denser built-up can be noticed in the FB and BRC and sparse or
low density is commonly found in WB.

Figure 1. Study area.

Table 1 gives us the built-up transition for the year 2000-2010
which has been further used for calibrating our model. It shows
in a top-down approach the class to class change between four
density levels, where class-0 represents non built-up, class-1
represent low density built-up, class-2 represent medium dens-
ity and class-3 shows high density built-up. It can be observed
that in our study area, development from non built-up to low
and medium density is predominant which is why this research
the focus of calibrating and simulating urban expansion along
multi-density classes.

2000-2010 Class-0 Class- 1 Class-2 Class-3

Class-0 - - - -

Class-1 1469(0.70%) - - -

Class-2 1147(0.54%) 2419(8.10%) - -

Class-3 416(0.20%) 170(0.50%) 3363(5.06%) 30260

Table 1. Class (column) to class (row) changes (% of the
reference class).

2.2 Materials

This section of the paper discusses the different types and
sources of data used for our modelling. In this study, the ras-
ter built-up maps for years 2000, 2010 and 2020 have been

created using Belgian cadastral data provided by the Land re-
gistry administration of Belgium. These are vector data where
each polygon represent a cadastral building. Hence, in order to
minimise the heavy computation time, we rasterised the data in
2×2m cell resolution. This data was aggregated into 100×100
m ( Mustafa et al., 2018b; Chakraborty et al., 2023; Tannier
and Thomas, 2013) raster for creating density classes. All cell
values < 25m2 are considered non built-up because an aver-
age residential building of Belgium corresponds to values ≥
25m2, represented by a cell size of 100m2 in our aggregated
data. Since our data distribution was positively skewed, hence
a geometric interval classification method was used to define
the density classes.

This built-up maps are used as our response variable for MLR
model. As shown in Table 1, the causative factors of our model
includes digital elevation model (DEM) of 1m resolution pro-
cured from geospatial data repository of regional development
authorities. Elevation and Slope were both calculated using the
DEM data. We then created Euclidean distance maps for Road1
(Highways), Roads2 (main roads), Roads3 (secondary roads)
and Roads4 (local roads) from open street maps (OSM), using
geospatial software. The major railways stations have been ob-
tained from the OSM database as well, and a sophisticated cost
distance method has been obtained for the same, instead of Eu-
clidean distance. Distance to main cities which comes under
our study area was taken from Atlas of Belgium. This com-
prises of the geophysical and accessibility factors respectively.
However, our model includes dynamic socio-economic factors
like number of jobs - which was used to calculate jobs density
per 100m2. Another important socio-economic factor taken into
account was the average household income which has a causal
relationship with built-up development. Along with these two,
the total number of population was also considered and sourced
from National Statistical authority of Belgium (Statbel).

Factor Name Unit Source

X1 Slope percent
Calculated from Digital
Elevation Model from
ALOS DEM

X2 Euclidean distance to
Motorways meters Open Street Maps

X3 Euclidean distance to
Primary Roads meters Open Street Maps

X4 Euclidean distance to
Secondary Roads meters Open Street Maps

X5 Euclidean distance to
Local Roads meters Open Street Maps

X6 Euclidean distance to
Residential Roads meters Open Street Maps

X7 Cost Distance to Rail-
ways Stations meters Atlas of Belgium

X8 Euclidean distance to
Major Cities meters Open Street Maps

X9 Jobs density Num/100m2
Self Calculation based
on Belgian Statistical
Institute

X10 Average household in-
come C

Self Calculation based
on Belgian Statistical
Institute

X11 Total number of Popu-
lation Inhabitant/km2

Self Calculation based
on Belgian Statistical
Institute

X12 Zoning status Binary
Self Calculation based
on Belgian Statistical
Institute

Table 2. List of selected causative factors.
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3. Methods

In this section, we discuss an integrated approach of MLR and
CA model. The model considers the expansion process that is
transition from class-0 as the reference class to class-1, class-2
and class-3. The map of 2000-2010 has been used for calibra-
tion while validation has been done using the 2010-2020 map to
simulate the actual quantity of new built-up divided for a span
of 10 years.

3.1 Defining transition rules

The transition rules have been set using two main compon-
ents. The first component concerns coefficients derived from
our MLR model, while the second involves neighbourhood in-
teractions. Equation 1, below, gives the transition of a cell state
from non built-up to any of the built-up class in a specific time
step.

Pij =
√

(Pc)ij × (Pn)
σ
ij (1)

Where (Pc)ij is the built-up probability based on the causative
factors derived from the MLR model and (Pn)

σ
ij is the neigh-

bourhood cell effect of ij, where σ expresses the relative im-
portance of the same.

3.2 Defining Causative factor calibration

In the MLR model, we study the empirical relationship between
a multi density dependent variable and its causative factors.
Equation 2 given below is the generalized form of a non-ordered
logistic regression:

log(k1) = αk1 + βk11X1 + βk12X2 + · · ·+ βk1νXν

...
log(kn) = αkn + βkn1X1 + βkn2X2 + · · ·+ βknνXν

(2)

where log(kn) is the natural logarithm of class kn versus
the reference class k0, X is a set of explanatory variables
(X1, X2, . . . , Xν), αkn is the intercept term for class kn versus
the reference class and β is the slopes for the classes (the coeffi-
cient vector). Thus, Equation 3 gives the probabilities for each
class.

(Pc)ij , Y = k0

=
1

1 + exp(log(k1)) + exp(log(k2)) + · · ·+ exp(log(kn))

(Pc)ij , Y = k1

=
exp(log(k1))

1 + exp(log(k1)) + exp(log(k2)) + · · ·+ exp(log(kn))

...
(Pc)ij , Y = kn

=
exp(log(kn))

1 + exp(log(k1)) + exp(log(k2)) + · · ·+ exp(log(kn))
(3)

where (Pc)ij , Y = kn is the probability of change from the
reference class to class kn occurring in cell ij (Mustafa et al.,
2015; Chakraborty et al., 2022). Our MLR model uses a max-
imum likelihood estimation method to achieve the best set of
coefficients for each X variable. The outcomes or the set of
coefficients that describe the impact of each causative factors on
the expansion process and thereby generate a probability map
using the same coefficients.

An ROC method commonly used for understanding the good-
ness of fit of the model has been used to check the accuracy. It is
considered to be a high quality method that can predict the oc-
currence of an event by comparing the probability map with the
actual changes (Hu and Lo, 2007). ROC closer to the value of 1
is considered to be a perfect fit. All causative factors data were
resampled to the same resolution of 100×100 m using nearest
neighborhood. Since, our data was available at different units
it was imperative to standardize all the continuous variables.
However, zoning was kept as binary (0,1) showing allowance
of built-up development.

Henceforth, variation inflation factor (VIF), a commonly used
method was employed to examine the multicollinearity between
the causative factors, to ensure there is no bias in model’s out-
put. It is recommended by Montgomery and Runger, 2010 that
VIF values exceeding 4 should not be taken into consideration
for modelling. The selection of samples excludes the other
existing class than the reference class, example – in our case,
class-0 sampling process considers new transitions from class-
0 to classes 1, 2, and 3.

3.3 Defining neighborhood calibration

Since MLR models are not temporally explicit, and as a result
of which cannot exhibit a trend dependent self organized devel-
opment scenario typical for expansion (Hu and Lo, 2007; Ver-
burg et al., 2004). This is why it is important to calibrate neigh-
borhood interaction independently as a dynamic phenomenon
using CA modelling. In our study, we have considered a 3×3
neighborhood window for understanding this interaction. This
is typically based on the study by Chen et al., 2014 and Poel-
mans and Rompaey, 2009, where they extensively worked on
several neighborhood window sizes and concluded 3×3 win-
dows as the best fit. This can also differ based on spatial resolu-
tion and area of study. However, currently that does not involve
our scope of study. The (Pn)

σ
ij is calculated based on the pro-

posed method by White et al., 2012:

(Pn)ij =
∑
k

∑
x

∑
d

wkxd · Ikxd (4)

where wkxd is the weighing parameter assigned to one of the
built-up class for position x at a distance d, and Ikxd will be 1
if a cell in distance d is allocated by class k or else 0.

The aim of our study is also to define an accurate parameter
for CA to achieve the best allocation accuracy rate for the ex-
pansion process. In order to calibrate this, we used a MOGA
method. This method is a trade off among multiple conflicting
objectives and all of them at once (Al-Ahmadi et al., 2009). It is
to be noted that MOGA is one of the most effective algorithms
for solving both constrained and unconstrained scenarios of op-
timization.

The MOGA uses a stochastic operator to generate new genes
from random initial population based on a fitness function. This
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fitness function is used to evaluate next generations based on a
relative fitness score. After multiple iterations it produces the
optimum fitness value, where we propose that a new generation
is obtained depending on the best combination of crossover op-
erator. Initially, the MOGA started with a random population
and a large number of generations evolved to obtain the best
possible solution. However, each individual solution is highly
computationally draining (on an Intel core i-9 processor), and
takes a timespan of 6 hours for one optimization run. In or-
der to minimize that iteratively, we have reached a set of values
where 100 generations with 30 parameters were selected to cal-
ibrate expansion process. This calibration function was valid-
ated based on a fuzzy membership function as discussed below.

3.4 Validation

We validated the accuracy of our optimization process by com-
paring the simulated map of 2020 with the observed map of
2020. This only considered the new built-up between 2010 and
2020. As discussed earlier, the fuzziness of a cell depends on
the cell itself and its neighboring cell. As multiple authors pro-
posed (Ahmed et al., 2013; Hagen, 2003; Loibl and Tötzer,
2003), we have considered an exponential decay function with a
halving distance of two cells and a neighborhood of four cell ra-
dius to understand the influence of neighborhood cells on fuzzy
index (Equation 5).

Ak =

∑
xk∈Xk,sim|Ixk0·( 1

2 )
0
2 ,Ixk1·( 1

2 )
1
2 ,...,Ixkd·( 1

2 )
d
2 |max

Xk,actual

(5)

Where we compute the average fuzziness index depending on
the cell in simulated map in a neighborhood is identical to a
cell in actual map within halving distance. We thus employ re-
curring weightage to them depending on its location where per-
fectly allocated is 1 and allocated away from four neighboring
cells is 0.

4. Results and Discussion

Our study area is an amalgamation of two main urban cores of
Brussels in BCR and Leuven in FB. Though there are certain
urban cores in WB, they are predominantly scattered in nature.
This pattern is familiar to many built-up development in the
world. We, in our study, employed an MLR model where all
the causative factors were less than VIF value 4, with highest
value of 2.86. Hence, they were all considered for modelling
inputs. In Figure 2, we demonstrated the MLR parameters used
to calibrate for year 2000-2010.

The result shows a steady positive trend for zoning impact
across all the density classes. This means that high density de-
velopment is permitted following the legal plan to avoid any
administrative risk. However, for new built-up in suburbs, it
does not strictly abide by the same pattern. This is in line with
Mustafa et al., 2018a. It is also interesting to see that for higher
density classes, slope has a negative impact as it appears to be
a hindrance for its adverse effects on land use. Furthermore, it
should be noted that new development is slope dependent for
the ease of construction. Distance to road also shows a negative
impact for expansion except for the fact that medium density
can get encouraged by existence of local roads connecting to

highways. The job density has a positive impact on new de-
velopment and expansion to medium density that leads to sub-
urbanization. This could have a relationship with income abil-
ity. This implies that people with middle to high income can
well settle in low to medium density. This is also be backed by
the positive impact of average household income which is pos-
itive for all the three density classes. Population however has
a negative impact showing that inhabitants are avoiding staying
at the urban core with already crowded areas and preferring to
stay at the peripheral of cores. This brings us to the point where
we can see a similar kind of negative impact of distance to ma-
jor cities. This is in line with study by Poelmans and Rompaey,
2010, who reported that development occurs around the city
center but not exactly in it.

Figure 2. MLR coefficient for expansion for 2000-2010.

The ROC values for our MLR model are 0.84, 0.86 and 0.91
for class-0 to class-1, class-0 to class-2, and class-0 to class-3,
respectively. As seen in the study by Cammerer et al., 2013,
ROC values greater than 0.70 are a reasonable fit and can be
used for further analysis. This is also seen below in Figure 3.

Figure 3. Density class wise ROC value.

After 256 iterations, the average change in the Pareto solu-
tion spread for MOGA optimization was less than 0.000001.
The calibration shows that the likelihood of low-density expan-
sion highly increases with increase in the number of existing
low density and medium density lands, and decreases with the
decrement in high density lands. This is also correlated to the
similar kind of neighborhood pattern. This says that a similar
kind of density pattern can be seen depending on the neigh-
borhood expansion type. A low to medium density transition
is highly probable where there is non built-up, low and me-
dium density built-up. Whereas over the time of calibration and
validation, we can see that there is a tendency of high density
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built-up towards the centrality creating the urban cores denser
and the peripheral as it is. This finding suggests that in a cross-
border situation like our study a few existing high density cores
might have a possibility to cover the leftover places showing a
trend of densification, while places experiencing low built-up
pattern will restrict densification. This heterogeneity produces
a rural-urban (rurban) scenarios.

Considering the fuzzy accuracy index, the calibration and val-
idation for allocation accuracy have been done. The simulated
map has been compared with actual map for 2020 as given in
Figure 4 for Nivelles, a city in Wallon Brabant. For our study,
the σ for MOGA optimization converges after iteration 26. The
fuzzy accuracy index shows that the calibration has a higher
accuracy rate than the validation. This is possible because of
underlying uncertainty which was also the case for the study by
Mustafa et al., 2018a. Stochastic perturbation techniques can
be used as a plausible solution in the further research for this. It
also highly depends on the data sources, parameters differenti-
ation and needs a more exhaustive framework to address.

Figure 4. 2020 actual and simulated built-up expansion pattern
of Nivelles.

5. Conclusions

Our study addresses some limitations of existing studies where
urban expansion models consider the process as simple as a
new development over a vacate land parcel. It is imperative
- for having a global applicability to see this process through
the multi-label lens. Our findings produce rare and interesting
scenarios of cross border planning where the expansion process
is not only heterogeneous but is also governed by different ad-
ministrative bodies. While the urban cores show a slow expan-
sion process in existing built-up areas, the rural areas still have

a long way to cover and hinder such dense growth. In order
to validate the model, we calibrated our model for 2000-2010,
which shows a fuzzy accuracy of 0.26, 0.55, 0.48 for class-0 to
class-1, class-0 to class-2, and class-0 to class-3, respectively.
We then simulated it for 2020 and observed it with respect to
an actual 2020 map. Here we derived the fuzzy accuracy rate
of 0.20, 0.50 and 0.41 for same class transitions, which can be
seen in Figure 5.

Figure 5. The average fuzzy similarity rates for calibration and
validation.

However, in further studies we can imbibe uncertainty factors
to address such differences in accuracy rates. Thus, our study
identifies the important causative factors amongst many of
which are applicable to global south scenarios. The amalgama-
tion of a sophisticated optimization process like MOGA brings
out a temporally effective way to map the expansion process in
the study. We can conclude the work with the fact that expan-
sion in different density level is an outcome of different factors
and can vary with space and time. Having said that and work-
ing upon the limitations on its way, this study can be a pioneer
towards mapping land use, understanding planning intricacies
and a step to zero net land take.
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