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Abstract

Automatizing the extraction of different objects from remote sensing data with deep learning methods has been a popular research
topic. Buildings have been one of those popular objects to be extracted. Not only does the selection of neural network affect the
results and accuracy of extracted buildings, but also the selection of different types of data for the task. Digital surface models
(DSMs) are increasingly used in remote sensing and their demand has increased. Retrieving height information from surface
models has proved helpful for accurate extraction of buildings. In this study was investigated, if the use of light detection and
ranging (LiDAR) DSMs and DEMs with 25 cm pixel resolution will lead to more accurate building extraction results in comparison
to the use of aerial DSMs. Results with UNet models trained with building vector labels, DSMs, DEMs and true orthophotos from
multiple areas of Finland, were produced with different data combinations from two Finnish cities, Savonlinna and Pudasjérvi,
to see, which combination would lead to the most accurate building detection results. Results were evaluated partly by visual
inspection, and partly by quantitative assessment. Based on the tests carried out, combining the information from true orthophotos
with LIDAR DSMs and 25 cm DEMs provided the most accurate results. In forest area, using LiDAR data increased the accuracy
of building detection. However, in urban area, due to missing buildings from LiDAR data, its advantages were compromised. We

suggest that the use of both imagery and LiDAR data should be the optimal solution.

1. Introduction

The use of artificial intelligence (AI) has been increasing fast
during the last years and automatizing the extraction of dif-
ferent objects from remote sensing data with deep learning
methods for reducing the amount of manual labour needed has
been a popular research topic (Luo et al., 2021, Romero et al.,
2016). Studying the extraction of buildings with the help of
deep learning and convolutional neural networks (CNN), which
have proved to be successful in different extraction tasks (Yang
et al., 2018, Shao et al., 2020), has been one of these popular
topics to investigate in the field of remote sensing. Not only
does the selection of neural network affect the results and ac-
curacy of extracted buildings, but also the selection of differ-
ent types of data for the task. Digital surface models (DSMs)
are increasingly used in remote sensing and their demand has
increased, as there is an expanding market for their applica-
tions (Cornelis Stal and Goossens, 2013). Retrieving height
information from DSMs and digital elevation models (DEMs)
has proved helpful for accurate extraction of buildings (Guan et
al., 2013, Maltezos et al., 2017, Gilani et al., 2016).

In this study has been investigated, if the use of light detec-
tion and ranging (LiDAR) DSMs and DEMs having originally
25 cm pixel resolution will lead to more accurate building ex-
traction results in comparison to the use of aerial DSMs and 2 m
DEM resampled into the 25 cm pixel resolution. Results with
UNet models trained with building vector labels, DSMs, DEMs
and true orthophotos from multiple areas of Finland, were pro-
duced with different data combinations to see, which data com-
bination would lead to the best results. UNet is a neural network
developed in 2015 by Ronneberger et al. (Ronneberger et al.,
2015). The performance on the different DSM and DEM types
were tested in 2 Finnish cities, Savonlinna and Pudasjirvi. Res-
ults were evaluated mainly by visual inspection, but in the forest
areas also quantitative assessment was used.

2. Material

Data from multiple areas and types of Finland collected by the
National Land Survey of Finland (NLS) were exploited in this
study. True orthophotos had the pixel resolution of either 30 cm
or 25 cm depending on the test area. Similarly, the aerial DSM
was of the pixel resolution of either 30 cm or 25 cm, as well
as the LiDAR DSM. The creation method for the LIDAR DSM
was the last and only pulse and it was produced from five points
per m ? laser scanning data. The aerial DSM was produced to-
gether with the true orthophotos and five points per m ? laser
scanning data was used as help if there were problems in the
coverage of the aerial images. There were two types of DEMs
tested, both produced from LiDAR data: originally 2 m pixel
resolution resampled into 30 cm or 25 cm pixel resolution de-
pending on the test area used, and DEM originally of 25 cm
pixel resolution. 2 m DEMs were based on LiDAR data with a
density of half points per m 2. Tt is publicly available from the
NLS. 25 cm DEMs were made from five points per m 2 LiDAR
data and were produced according to the needs or request. All
of the data types were utilized in the format of GeoTIFF, with
the coordinate system of ETRS89-TM35FIN. The true ortho-
photo data contained the information x, y, R, G, B and Near
Infrared (NIR) that was not utilized.

The first test area for LIDAR DSM was the Savonlinna area.
Data for the Savonlinna area had a pixel resolution of 30 cm.
True orthophotos for the area were collected during the year
2021. Total of 25,72 km? data was used for testing the LIDAR
DSM for the area. For different kinds of tests, the area was
divided into 8.08 km? training area, 0.72 km? validation area,
and 2.16 km? test area, as well as two forest test areas of size
5.76km 2 and 9km 2, which are seen in Figure 1. For the Savon-
linna area tests, only 2 m DEM resampled into 30 cm pixel
resolution was used, as well as true orthophotos, LIDAR DSM
and aerial DSM. More accurate, originally 30 cm DEM was not
available for the test area.
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Figure 1. Two forest test areas from Savonlinna. (a) Forest test
area 1 of size 5.76 km?. (b) Forest test area 2 of size 9 km?.

Figure 2. Pudasjirvi area for testing LiDAR and aerial DSM
data, as well as DEM originally of 25 cm pixel resolution and
2 m DEM resampled into 25 cm pixel resolution.

The second test area was the Pudasjirvi area. The data had a
pixel resolution of 25 cm. This area used also the originally
25 cm DEM for the tests. The Pudasjdrvi test area included
mapsheets S4333, as well as S5111A and B, covering total of
360 km?. The data for Pudasjirvi area were collected during
the year 2022. The Pudasjérvi test area is seen in Figure 2.

For testing the different DSM and DEM types in the Savonlinna
and Pudasjérvi area, UNet models trained with data from Fin-
land were used for extracting buildings. The model used to test
Pudasjirvi area was trained with both 30 cm and 25 cm pixel
resolution data. First training datasets given to the model had
30 cm pixel resolution and later the model had been finetuned
with new, 25 cm pixel resolution datasets. All of the training
datasets used 2 m DEM resampled into either 30 cm or 25 cm
pixel resolution depending on the training dataset. The mod-
els used for producing outputs for Savonlinna area were trained
with less datasets only having the pixel resolution of 30 cm, as
25 cm pixel resolution data hadn’t been available for training at
the time. Summary of the different datasets is seen in Table 1.

3. Methods

Building extraction results with UNet models trained with dif-
ferent datasets of Finland were produced from test areas with
LiDAR DSMs and aerial DSMs for evaluating which DSM type
would lead to most accurate building detection results. In ad-
dition, more accurate 25 cm pixel resolution DEM was tested
and compared with 2 m pixel resolution DEM resampled into
25 cm pixel resolution in Pudasjirvi area. The architecture of
the UNets trained is seen in Figure 3.

3.1 Savonlinna LiDAR DSM test 1

2 UNet models were trained with Savonlinna data. Training
set covered an area of 8.08 km? of Savonlinna, validation set

Pixel
Res-
olu-
tion(s)
30 cm

Dataset | Location(s) | Area(s) Purpose

D1 Finland, 2.16 km?
Savon-
linna,
urban city
area

D2 Finland,
Savon-
linna,
forest area
D3 Finland,
Savon-
linna,
forest area
D4 Finland,
Savon-
linna,
urban city
area

D5 Finland,
Savon-
linna,
urban city
area

D6 Finland,
Pudasjirvi,
rural area

Testing

5.76km? | 30cm | Testing

9 km? 30 cm Testing

8.08km? | 30 cm Training

0.72km? | 30 cm Validation

25.38km? 25cm Testing

Table 1. Datasets used for testing LiDAR and aerial DSMs, and
also 25 cm DEM and 2 m DEM resampled into 25 cm pixel
resolution in the Pudasjérvi area.

0.72 km? and test set 2.16 km?. Model 1 used DSM produced
from laser scanning data for training, validation, and testing.
Model 2 used DSM made from aerial images for training, val-
idation, and testing.

3.2 Savonlinna LiDAR DSM test 2

ATMU UNet model, at the time trained with 21 different train-
ing sets of Finland (30 cm pixel resolution true orthophotos,
aerial DSM and 2 m DEM resampled into 30 cm pixel resol-
ution), was used to produce outputs for Savonlinna test area.
Two different outputs were produced; for the first output, the
aerial DSM was used, and for the second output, LIDAR DSM.
The results were compared.

3.3 Savonlinna LiDAR DSM test 3

ATMU UNet model, as well as model 1 and model 2 from
Savonlinna DSM test 1 were tested with two forest test areas
from Savonlinna, covering areas of 5.76 km? and 9 km?. Model
1 produced outputs with LiDAR DSM, model 2 with aerial
DSM, and the ATMU UNet model produced outputs with both
LiDAR and aerial DSM. These four outputs were then com-
pared.

3.4 Savonlinna LiDAR DSM test 4

In the fourth Savonlinna LiDAR DSM test, some LiDAR DSM
data was added to the ATMU model’s training data. The model
originally had two Savonlinna training areas, their aerial DSM
was replaced with LIDAR DSM, which was total of 8.08 km?
of training data. Other training datasets still used aerial DSM.
This new model was then used for producing outputs for the
two Savonlinna forest test areas, both with LIDAR DSM and
aerial DSM, and the final results were compared.
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Figure 3. Implemented UNet structure used for model training
(Hattula et al., 2023). Original UNet was developed by
Ronneberger et al. in 2015 (Ronneberger et al., 2015).

3.5 Pudasjirvi LIDAR DSM test 1

For Pudasjarvi LIDAR test, ATMU model trained with 31 areas
was used. Three different outputs were produced and compared
for the Pudasjérvi test area. First output was produced with aer-
ial DSM and 2 m DEM resampled into 25 cm pixel resolution.
The second output was produced with LIDAR DSM and DSM
originally of 25 cm pixel resolution. The last output was pro-
duced with LIDAR DSM and 2 m DEM resampled into 25 cm
pixel resolution. This was done for finding out which combina-
tion of data would result in best building detection performance.

3.6 Pudasjirvi LIDAR DSM test 2

Pudasjiarvi test area received a new version of LiDAR DSM,
where some water areas with incorrect heights were completely
removed. This DSM was tested with the ATMU model together
with 25 cm pixel resolution DEM and compared to the previous
results from the Pudasjidrvi LIDAR DSM test 1 produced with
the previous LIDAR DSM and 25 cm DEM.

3.7 Evaluation

Different kinds of evaluation methods were used in the differ-
ent tests. In Savonlinna LIDAR DSM test 1 and 4 where model
training was conducted, the main evaluation metric for the train-
ing and validation used was F1-score. The F1-score emphas-
izes the effect of correctly labeled building pixels and is defined
through precision and recall, as seen in Equation (1).

Fl— 2 x Precision * Recall

(1

Precision + Recall

For observing the model performance differences with the
LiDAR DSM and aerial DSM, visual inspection was used in
all of the tests. For Savonlinna LiDAR DSM tests 3 and 4, also
the number of correctly detected, falsely detected, and missed
buildings were counted and inspected.

4. Results

Some buildings were missing from the LiDAR data from both
Savonlinna and Pudasjérvi areas, most likely due to rooftop
materials and reflections, which led them being almost always
missed from the building detection results with the LiDAR
DSM. In addition, in Savonlinna area, LIDAR DSM and true
orthophotos were from different years, which in some cases

X
X

(b) (©

Figure 4. Using LiDAR DSM for prediction often produced
more accurate building shape. (a) A building in Savonlinna area.
(b) Building detection result with aerial DSM. (¢) Building
detection result with LIDAR DSM.

Figure 5. Using LiDAR DSM for prediction helped in the
detection of buildings partly covered by trees. (a) A couple
buildings in Savonlinna area. (b) Building detection result with
aerial DSM. (c) Building detection result with LiDAR DSM.

can also explain the missing buildings, if they have been de-
molished or build between the years. In an ideal case, the data
should be from the same year. Also, both areas had some false
heights in the water areas leading to false detections, for which
those water areas were tested to be removed completely from
the LIDAR DSM in Pudasjirvi LIDAR DSM test 2.

4.1 Savonlinna LiDAR DSM test 1

Model 1 achieved validation F1-score of 0.89998, and model 2
validation F1-score of 0.90390. With the DSM produced from
laser scanning data, the model 1 produced less false detections
with bridges and shore areas. With the LIDAR DSM also the
detected building edges were cleaner and more accurate. An
example is seen in Figure 4. Buildings partly covered by shad-
ows and near trees were better detected with the help of LiDAR
DSM in the Savonlinna city area. An example is seen in Fig-
ure 5. Some buildings missing from the LIDAR DSM were not
detected. An example of a results with both DSM types in har-
bour/bridge area is seen in Figure 6.

4.2 Savonlinna LiDAR DSM test 2

Less false detections in the harbor areas were produced with
LiDAR DSM. Some buildings missing from the LIDAR DSM
were not detected. Building outlines were a bit clearer when us-
ing LIDAR DSM. In addition, trees and shadows did not impact
the building detection result with the LIDAR DSM as much as
it did with the aerial DSM. In one case, window in the roof of
a building had led to a hole in the building in the LIDAR DSM,
leading to a false hole in the detected building. This situation is
seen in Figure 7.

4.3 Savonlinna LiDAR DSM test 3

The forest area in Savonlinna had some false heights in the lakes
of the LiDAR DSM, causing false detections in the water. An
example of this kind of situation is seen in Figure 8. Some
hay bales were falsely detected as buildings with the LiDAR
DSM, as in the data they looked quite similar with the build-
ings. There were some cases, where the Savonlinna test model
trained with LiDAR DSM was the only model detecting the
buildings covered by some shadows and trees with the help of
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Figure 6. Savonlinna bridge and harbor area. (a) Aerial DSM.
(b) LiDAR DSM. (c) Building detection result with the aerial
DSM. There’s many false detections in the harbor area and the
bridge. (d) Building detection result with the LIDAR DSM.
Notably less false detections in the harbor area and the bridge.

(d)

Figure 7. A building from Savonlinna area with glass
construction on the rooftop. (a) True orthophoto of the building.
(b) LiDAR DSM. (c) Building detection results with the LIDAR

DSM and aerial DSM. Purple polygon represents the detection
result with the LIDAR DSM and the orange polygon the result
with the aerial DSM. A hole can be noted in the purple polygon
in the location of the glass construction on the rooftop. (d)
Aerial DSM.

the LIiDAR DSM. In some cases, only the ATMU model found
certain buildings when using the LIDAR DSM. The test model
trained with Savonlinna area and LiDAR DSM performed the

best in this test. Results are seen in Table 2.

Model Test area Number of | False De-
Detections | tections

Model 1 Savonlinna, | 158 5
forest area
1

Model 2 Savonlinna, | 155 4
forest area
1

ATMU Savonlinna, | 147 1

model with | forest area

LiDAR 1

DSM

ATMU Savonlinna, | 152 3

model with | forest area

aerial DSM | 1

Model 1 Savonlinna, | 75 3
forest area
2

Model 2 Savonlinna, | 72 2
forest area

ATMU Savonlinna, | 73 1

model with | forest area

LiDAR 2

DSM

ATMU Savonlinna, | 72 0

model with | forest area

aerial DSM | 2

Table 2. The detected buildings and false detections of each
model used in the two Savonlinna forest test areas.

4.4 Savonlinna LiDAR DSM test 4

The ATMU model’s performance with the Savonlinna forest
areas and city area was inspected after replacing the model’s
Savonlinna training areas’ aerial DSM with LiDAR DSM and
retraining the model. After retraining, the model found some
buildings partly covered by trees with the LIDAR DSM, but not
with the aerial DSM. In general, the predictions with LiDAR
DSM were completer and more accurate in comparison to the
predictions with aerial DSM. False detections were produced
to the harbor areas with both types of data, but considerably
less with the LIDAR DSM. In some cases, with the aerial DSM
multiple buildings were detected as one building, while with
the LIDAR DSM they were detected as separate. An example
of this kind of case is seen in Figure 9. Results from the forest
areas with different models are seen in Table 3.

4.5 Pudasjirvi LIDAR DSM test 1

As in previous tests, it was noticed that also in Pudasjirvi area,
the model found the shape of buildings better when LiDAR
DSM was used. There were some false detections, when either
LiDAR DSM or the more accurate 25 cm pixel resolution DEM
were not used. An example where a couple buildings were de-
tected only with the combination of LiDAR DSM and 25 cm
DEM is seen in Figure 10b. False heights in the water areas in
the LIDAR DSM caused false detections (Figure 10a). Some
buildings were missed with the LIDAR DSM if they were miss-
ing from it (Figure 11). In some cases, the true orthophotos
helped the detection and even if the building was missing from
the LiDAR data, the building was detected. There were no-
ticeably less false detections in the forest areas of Pudasjirvi
when LiDAR DSM and 25 cm pixel resolution DEM was used,
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(b)

Figure 8. Some water areas in the LiDAR data had false heights
seeming higher than the ground surrounding them. (a) A lake in
the Savonlinna area seen in a true orthophoto. (b) The LiDAR
DSM of the lake.

b)

Figure 9. In some cases, making prediction with aerial DSM
produced one building for many buildings, while making
prediction with the LIDAR DSM produced separate buildings.
(a) Buildings in Savonlinna area. (b) Making prediction with
aerial DSM produced one building (yellow), while making
prediction with LIDAR DSM produced separate buildings
(purple).

DSM type used | Test area Number | False De-
for prediction of De- | tections
tections

LiDAR DSM Savonlinna, | 155 0
Forest area
1

Aerial DSM Savonlinna, | 158 2
forest area
1

LiDAR DSM Savonlinna, | 69 1*
forest area
2

Aerial DSM Savonlinna, | 67 0
forest area
2

Table 3. The detected buildings and false detections in the two
Savonlinna forest test areas after the model has been trained with
some LiDAR DSM data in addition to the old aerial DSM
datasets. *The false detection was due to faulty height in the
LiDAR DSM’s water area.

(a) (b)

Figure 10. Utilizing LIDAR DSM in Pudasjirvi area for building
extraction. (a) Some of the water areas in Pudasjérvi area had
faulty heights and seemed to be higher than the ground
surrounding them. This caused false detections in the water
areas, when LIDAR DSM was used. (b) Buildings detected only
if LIDAR DSM and 25 cm DEM were used. Green building
vectors from topographic database were used to help detecting
where buildings are located.

proving out to be the best combination of data for the building
detection task and the accuracy of detected building outlines.

4.6 Pudasjirvi LIDAR DSM test 2

The water areas having false height were completely removed
from the LiIDAR DSM, replaced with holes in the data. An ex-
ample is seen in Figure 12. This change in the LIDAR DSM re-
moved the false detections from the water and shore areas com-
pletely when using LIDAR DSM for building detection, prov-
ing out to be a considerable improvement that solved one of the
largest noticed problems with the use of LIDAR DSMs in these
tests.

5. Discussion

Based on the multiple tests conducted in this study, building ex-
traction results with UNet models trained with different datasets
led to the best results if LIDAR DSM was used instead of aerial
DSM. In addition, if 25 cm pixel resolution DEM was avail-
able for replacing the 2 m pixel resolution DEM resampled into
25 cm pixel resolution, it enhanced the building detection result
further. The most notable improvements that these data types
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(a)

Figure 11. Utilizing LiDAR and aerial DSM in Pudasjérvi area
for building extraction. (a) Some buildings were partly or
completely missing from the LIDAR DSM due to, for example,
rooftop material. (b) Some buildings were detected only with
aerial DSM due to missing building points in the LIDAR DSM.
Detected buildings using LIDAR DSM can be seen with blue
polygons, and detected buildings using aerial DSM can be seen
with white polygons. The buildings surrounded with red had
some points missing from the LIDAR DSM and were detected
only with aerial DSM.

Figure 12. Pudasjérvi water areas with faulty heights were
removed from the LiDAR DSM, which removed the false
detections from water areas when utilizing the LIDAR DSM.

provided was the decreased false detections in the forest, har-
bor, and bridge areas, as well as the enhanced detection of build-
ings partly covered by shadows or trees. The detected shape
of buildings was also enhanced in comparison to the ones pro-
duced with aerial DSM.

The biggest problems encountered with the use of the LIDAR
DSM instead of aerial DSM were the false heights of some wa-
ter areas leading to false detections, missing buildings from the
LiDAR data due to, for example, rooftop material, plants on
the roof, or reflections, and the availability of the LiDAR data,
as for some areas the LiDAR data was not available from the
same year as the true orthophotos. For the false heights in wa-
ter areas, removing the data from the areas turned out to be a
solution for the problem, and the false detections disappeared.
Not only counting on the LiDAR data for building detection, but
also on true orthophotos helps to some degree with the missing
buildings of the LiDAR data, as the deep learning model might
be able to still detect the buildings with the help of the true or-
thophotos. If only LiDAR data was used, those buildings would
always end up missing from the model prediction.

6. Conclusions

In this paper, several different remote data types were investig-
ated and it was evaluated, which data combination would lead
to the most accurate building extraction results with UNet deep
learning model for semantic segmentation. The model perform-
ance on LiDAR and aerial DSM data was evaluated on the
Savonlinna, urban and forest, and Pudasjirvi, rural, areas. In
addition, in the Pudasjirvi area, the effect of DEM originally of
25 cm pixel resolution was compared to DEM resampled from
2 m pixel resolution to 25 cm pixel resolution. The results were
mainly evaluated visually, but in the Savonlinna forest test areas
also quantitative assessment was used. It was noticed that the
use of LiDAR DSM together with 25 cm DEM, if available,
lead to less false detections in the forest, harbour, and bridge
areas, as well as to more accurate extracted building shapes.

The use of LIDAR DSM had some problems, including some
false heights in the data leading to false detections and missing
buildings due to, for example, rooftop material. In addition, the
availability of LIDAR data from the same year as the true ortho-
photos might be a problem in some cases, and should be taken
into account. The benefits from LiDAR data vary in different
environment. In forest area, using LiDAR data increased the ac-
curacy of building detection. However, in urban area, due to the
missing buildings from LiDAR data, its advantages were com-
promised. We suggest that the use of both imagery and LiDAR
data should be the optimal solution.

Though the use of LiDAR data turned out to be helpful and
leading to better predictions on forest areas, buildings covered
by trees remain problematic for the deep learning model, and
the topic should be investigated further. Moving towards the
use of 3-dimensional (3D) data in the future might offer insights
for the problem, as new solutions for 3D data are constantly
developed (Li et al., 2020, Bello et al., 2020).
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