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Abstract 

 

Sustainable forest and emergency management require comprehensive data on the forest road network and its condition. This paper 

presents the final framework of the INFOROAD project (https://inforoad.karteco.gr/), which integrates cutting-edge remote sensing 

and machine learning technologies for automated periodic extraction and monitoring of the forest road network. The framework 

includes gravel road extraction, road graph extraction, and gravel road condition monitoring, with a focus on the periurban forest in 

Thessaloniki. The road extraction employs the U-TAE network architecture, with a proposed modification using inverted residual 

blocks for improved accuracy. Road graph extraction involves creating a graph from road segmentation output or OSM data, 

enabling efficient road segment analysis. Gravel-road width calculation utilizes road segmentation results and a series of image 

processing steps, while road condition monitoring employs ML/AI classification algorithms. Worldview 3 high-resolution satellite 

images and various auxiliary data sources (e.g. DEM) are used as input, including field measurements for the training of 

classification algorithms. Results showcase the effectiveness of the proposed framework, with gravel road extraction accuracy 

improved by the modified U-TAE model. Regarding gravel road condition monitoring, algorithms achieving satisfactory results are 

identified, despite the challenges that arise, due to the significant surface and texture variations in forest and agricultural roads. A 

WebGIS platform facilitates information presentation, user interaction, and management of geospatial information, supporting 

various functionalities such as layer management and spatial data visualization. The INFOROAD project represents a significant 

advancement in leveraging technology for sustainable forest road management and emergency preparedness. Future steps may 

involve further enhancements and adaptations for improvement of results. 

 

1. Introduction 

Comprehensive data on the forest/rural road network and its 

condition is crucial for sustainable forest and emergency 

management. Timely spatial information covering the entire 

network, including issues like potholes, bumps, and erosion, is 

vital to the public and regulatory bodies for monitoring and 

maintenance tasks. This information also facilitates an access to 

the road network and contributes to the protection of valuable 

resources in case of emergencies. Consequently, there is a 

demand for the development of reliable tools and 

methodologies supporting quantitative measurements of specific 

indicators related to the forest and rural road network's state at a 

given time. 

 

Various approaches have been proposed to collect information 

regarding forest/rural road-network, including remote sensing 

observations (via satellite systems and aerial drones) and field 

measurements. The automated analysis of satellite images by 

powerful Machine Learning/Artificial Intelligence (ML/AI) 

algorithms, can offer significant advantages, including increased 

spatial coverage as well as avoidance of labor-intensive field 

measurements. In this way, the time and cost associated with 

recording, mapping, and monitoring the forest and rural road 

network can be significantly reduced. 

 

The primary contribution of the INFOROAD project (Kelesakis 

et al., 2023) lies in integrating cutting-edge remote sensing and 

machine learning technologies for the automated periodic 

extraction and monitoring of the forest road network. In this 

paper, the final framework designed and developed within the 

project is presented and evaluated for the Seich-Sou forest in 

Thessaloniki, Greece. More specifically, this framework 

includes: a) gravel road extraction approach based on deep 

semantic segmentation of high-resolution multispectral satellite 

sequences, b) road graph extraction combining road masks 

obtained by (a) as well as the available OSM data, and c) gravel 

road condition monitoring by using AI/ML models for 

classification based on the available high-resolution satellite 

data, which are trained by associated field measurements.  

 

Furthermore, the presentation, dissemination, and management 

of this information by the different managing authorities and/or 

the general public are facilitated through an online Geographic 

Information System (WebGIS). 

 

2. Related Work 

In recent times, propelled by advancements in deep learning and 

artificial intelligence, substantial research has been dedicated to 

road detection from satellite imagery, particularly focusing on 

urban asphalt roads. A comprehensive review of automated road 

extraction from various aerial sources, including satellite images 

(optical or SAR) and 3-D Lidar point clouds, has been 

conducted (Ferraz et al., 2016). Most studies frame the problem 

as a two-class semantic segmentation task, aiming to distinguish 
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roads from the background. Leading semantic segmentation 

algorithms, such as DeepLab (Xia et al., 2018), U-NET (Zao & 

Shi, 2021), and others, leverage deep Convolutional Neural 

Networks for this purpose. In specific cases, researchers have 

combined Convolutional Neural Networks (CNN) with Graph 

Neural Networks (GNN) to enhance performance. Yan et al. 

(2022) integrated a CNN for extracting semantic features and a 

GNN for reasoning on these features to produce the final road 

map. 

 

In the case of forest road and rural road extraction, research 

faces significant challenges due to their heterogeneous 

appearance, due to diverse road materials, different illumination 

conditions, shadows, and occluding vegetation. The complexity 

of these environments leads to limited research outcomes on 

targeted export models and a lack of corresponding datasets. 

Current research in this domain is predominantly represented by 

the work of Kearney et al. (2020), who classified pixels of 

satellite images into forest/rural roads and non-roads using a 

CNN and training data obtained from vehicle monitoring in the 

area. Additionally, Jiang et al. (Jiang et al., 2022) developed the 

Roadformer, employing a pyramidal architecture of a 

deformable vision transformer for road network extraction from 

satellite images. The deformable vision transformer consistently 

attends to the most important semantic features, significantly 

improving performance. Zhang et al. (Zhang et al., 2022) 

contributed to the field by creating the "Road Datasets in 

Complex Mountain Environments (RDCME)" dataset, 

proposing the Light Roadformer model for forest road 

extraction, which utilizes a transformer based on self-attention 

units. Post-processing techniques are applied to reduce errors, 

resulting in a mIoU of 89.5% for RDCME. 

 

Addressing the challenge of automatic extraction of road 

network graphs from satellite images, existing algorithms 

typically involve pixel-level image segmentation followed by 

vectorization. Bahl et al. (2022) introduced a method that 

directly outputs the final road graph in a single pass, 

significantly outperforming other algorithms in terms of speed. 

This method combines a Fully Convolutional Neural Network 

(FCN) for identifying key points, such as junctions, with a 

Graph Neural Network (GNN) predicting links between these 

points. Sat2Graph (He et al., 2020), based on Graph Tensor 

Encoding (GTE), represents another method that encodes the 

road graph into a tensor representation, allowing the generation 

of road graphs in a single step. This non-iterative approach 

captures global information more effectively and simplifies the 

training process. 

 

The periodic monitoring of gravel-road conditions, which is 

essential for road maintenance, is an expensive and labour-

intensive process, highlighting the need for the developing new, 

automated, and cost-effective methodologies. Evaluating the 

condition of each segment of forest or rural roads on a scale of 

1 to 5 is valuable for providing users with accessibility 

information (Kolkos et all.2023). The International Roughness 

Index (IRI) is a globally utilized indicator for characterizing the 

longitudinal roughness of roads (Sayers, 1995). This specific 

index can be computed using a mobile phone appropriately 

fitted to a car, which traces the road's trajectory for assessment 

(Cadamuro et al., 2019). Various convolutional neural network 

(CNN) architectures, including AlexNet, SqueezeNet, and 

Visual Geometry Group (VGG), are compared to appraise road 

section conditions on a 1-5 scale based on their quality, 

utilizing satellite images. The initial labeling of the dataset, 

encompassing roads totaling 1,150 km in Kenya, involves 

leveraging georeferenced measurements of the IRI index from 

passing vehicles. A similar methodology is employed in another 

study (Kalpoma et al., 2022) using Vgg16 and ResNet50 for 

training, while a different study (Thegeya et al., 2022) utilizes 

IRI measurement data from the Philippines, Sentinel-2 satellite 

imagery, and a custom architecture, including ResNet-34 CNN, 

to categorize road quality into four classes. Additionally, a 

transfer learning approach is suggested in a different study 

(Brewer et al., 2021), where a CNN neural network is initially 

trained on a large road quality dataset from the United States 

and subsequently fine-tuned on an independent, smaller dataset 

collected from Nigeria.  

 

3. Methodology 

The project aims at exploiting satellite data both for forest/rural 

road network detection as well as road condition monitoring. 

Since, forest road width can be as small as 5m, it was decided to 

use Worldview 3 high-resolution satellite image with a 

resolution of 0.3m for the panchromatic image and a resolution 

of 1.2m for each of the eight multispectral channels. Auxiliary 

data from other sources were also used after any required pre-

processing procedures, such as a) OpenStreetMap (OSM) data 

(OpenStreetMap contributors, 2017), b) a Digital Elevation 

Models (DEM), c) field measurements, and d) data from 

available forest maps, which can be used to extract additional 

information such as road width, roadside slope or aspect. 

 

 
Figure 1: The proposed methodology for road network detection  

  

The basic methodology for road network detection is shown in 

Figure 1. Initially, information from available forest maps is 

digitised to create binary road masks. If such forest maps are not 

available, OSM vector data can be used instead, taking into 

account specific assumptions regarding each road width. In both 

cases, these binary roads masks are used as ground truth to train 

a road extraction algorithm using the available satellite image. 

An efficient supervised deep semantic segmentation algorithm 

is used for this task, which may also identify additional (e.g. 

new) road segments that may not be present at the original 

forest/OSM maps. This road extraction step can be omitted, if 

the available annotation (e.g. from digitised forest maps) is 

accurate enough.  

 

Following road extraction, a road graph extraction procedure 

based on skeletonization converts the binary segmentation 

output into a graph with nodes and edges (road segments). 

Then, long graph edges are further split into smaller edges to 

ensure that the maximum edge length is no more than 100 
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meters. In this way, big road segments are avoided, making road 

segment status monitoring more efficient. This final graph 

version is then used for extracting specific features, such as 

average road width, junctions, dead ends and junctions. 

Similarly, the road slope can be calculated based on digital 

elevation data from a Digital Elevation Model (DEM). A high 

resolution (5m) DEM provided to Aristotle University by the 

Hellenic Cadastre, namely "Digital Elevation Model - DEM - 

LSO(5m)", was used. Finally, the roadside aspect and slope can 

also be calculated based on the available digital elevation data, 

by defining appropriate (e.g. 10m width) “roadside” buffer areas 

at the two sides of each edge.  

 

Regarding road condition monitoring, Figure 2 presents the 

proposed methodology based on the texture classification of 

each road segment texture using ML/AI algorithms. 

Specifically, the satellite image data within each buffered graph 

edge (defining the area of each road segment) are used as input 

to an ML/AI classification algorithm that is trained using 

specific field measurements (e.g. 1-5 rating scale surveys). 

Different classification algorithms are tested for this task, 

including optimised versions of Pixel-Set-Encoder (PSE, 

Garnot 2020), ResNet, CNN, kNN. After training, the algorithm 

is used to provide a classification output in a scale of 1 to 5 for 

any road segment. Τhe outputs of the algorithms are finally 

saved in shapefile or geojson format and are presented through 

the WebGIS that was developed. 

 

Figure 2: Road quality monitoring methodology 

 

3.1 Gravel Road Extraction 

For the road extraction task, the U-TAE (U-Net with Temporal 

Attention Encoder) network architecture (Garnot, 2021) is 

employed. This architecture has proven to be highly effective 

for semantic segmentation utilizing multi-temporal satellite 

data. The applied training procedure involves using the U-TAE 

model with a custom training dataset derived from the Seich-

Sou forest in Greece, in the greater region of Thessaloniki. The 

image contains eight bands for a single temporal instance. The 

dataset was split into five folds, as in (Garnot, 2021), so as to be 

able to apply cross-validation. The ground truth masks are 

obtained by exploiting the OSM and forest map information.  

 

In order to further improve the accuracy of the model, some 

modifications were introduced to the U-TAE model. 

Specifically, the architecture was modified by replacing the first 

and last convolutional layers with a series of expressive and 

powerful convolutional blocks, namely inverted residual blocks 

(Sandler et al., 2018), which are able to offer a less time 

consuming alternative to residual blocks (He et al., 2016).  

 

More specifically, residual blocks are comprised of successive 

convolutional layers with a wide -> narrow -> wide structure, 

with respect to the number of their channels. This means that 

the input has a high number of channels, which are then 

compressed using a 1x1 convolution. In the end, the number of 

channels is increased again, in order to match the input and 

output. Inverted residual blocks have the opposite structure, i.e. 

narrow -> wide -> narrow. This means that the number of the 

channels is increased; therefore, the feature maps become wider 

using a 1x1 convolution. A 3x3 depth-wise convolution is then 

utilized, which decreases greatly the number of parameters. 

Finally, a 1x1 convolution decreases the number of channels in 

order to match input and output.  

 

Figure 3 illustrates the structure of the respective blocks. 

Inverted residual blocks are used in order to replace in the 

structure of the architecture of the first and last convolutional 

layers in U-TAE.  Inverted residual blocks can offer greater 

expressivity in comparison to the standard convolutional layers 

of the original U-TAE, while also avoiding the increase in 

parameters that would be incurred if residual blocks are used 

instead.  

 
 

Figure 3: (a) Residual block, (b) Inverted residual block 
 

3.2 Road Graph Extraction 

This task is responsible for the creation of a graph 

representation of the road network. This graph can be obtained 

in two ways. The first method is the automatic creation of a 

graph using the output raster of the road segmentation process. 

It has the advantage of up-to-date road information extracted 

directly from the satellite image but it may face issues, such as 

low road connectivity, roads covered by vegetation, etc. that 

may require further post-processing. The second method entails 

creating the graph directly from OSM data, by converting OSM 

vector data into a standard graph format. This method has the 

advantage of better road connectivity, but data may not always 

be up-to-date, as OSM depends on voluntary contributions.  

 

The first method includes two steps: first, an image 

skeletonization procedure is used to the extracted binary road 

mask and then a road graph, consisting of nodes and edges, is 

created based on the sknw python library1, yielding graphs at 

the standard NetworkX format. 

 

The second method involves converting OSM vector data into 

graph format, e.g. by using the osmnx python library2. As 

opposed to the first method, where graph edges are line 

segments, in this case graph edges may be polylines. As the 

length of these polylines may be arbitrary large and smaller 

segments are required for road quality monitoring, a graph 

editing procedure is introduced to limit the maximum edge 

length size below a threshold (e.g. 100m).  

 

This procedure includes three steps for each edge: a) the total 

length of the edge (polyline), i.e. sum of its line segments is 

computed, b) if this length is higher than the threshold, the total 

number of segments is calculated by dividing each length with 

the threshold and selecting the next greater integer, c) the 

desirable edge length is calculated by dividing the edge length 

with this number of segments and d) the original edge is split 

according to this desirable edge length and additional nodes are 

                                                                 
1 https://github.com/Image-Py/sknw/ 
2 https://github.com/gboeing/osmnx 
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added to the graph. An example result of this procedure is 

shown in Figure 4, 

 

The road graph representation of the road network facilitates 

road segment analysis, such as identification of dead ends and 

junctions. Specifically, the degree D of each node, i.e. the 

number of edges (lines) connecting to the node is computed, 

indicating whether the node is a junction (if D > 2) or dead end3 

(if D = 1).  

   

Figure 4: OSM graph before graph editing (left) and after graph 

editing (right) (© OpenStreetMap Contributors) 

 

3.3 Gravel Road Width Calculation 

For each graph edge, the average road width is also estimated, 

taking into account the road segmentation results. First, the 

output of the road extraction module is processed to be used for 

road width estimation. A chamfer distance transform is applied, 

where the Euclidian distance of each road pixel from the nearest 

non-road pixel is calculated and stored to create a chamfer 

image. Thus, each pixel in this chamfer image that belongs to a 

road contains a value equal to the distance from the nearest 

edge of the road. In the center of the road, i.e. the central axis of 

the road, the specific values are maximized. These distances are 

typically multiples of pixel size, but can also be converted to 

meters by multiplying with the pixel size. By multiplying the 

chamfer image with the skeletonized mask of the extracted road 

network (see Section 3.2), distances of road centerline pixels 

from the roadside are extracted. 

 

Then, a rectangular buffer area is constructed around each edge 

of the graph, with a buffer width that is larger than the real road 

width, e.g. 20 meters. In this way, edges of the graph are 

transformed to polygon masks, labelled with the respective edge 

id. Then, for each graph edge, the corresponding rectangular 

buffer area is used to mask the road centreline. Finally, we can 

estimate the average distance d between the centreline and the 

roadside for the specific edge by calculating the mean of the 

corresponding non-zero values from the road centerline distance 

mask. The final width estimate (from one roadside to the 

corresponding opposite roadside) will then be 2*d. 

 

In order to assess the accuracy of the width estimation process, 

any available forest map data can be utilized. Road width from 

forestry map is calculated by using the same distance transform 

and then a similar mask is employed for each edge. In this way, 

the calculated road widths from the forestry map are matched to 

their corresponding edge ids. 

3.4 Gravel Road Condition Monitoring 

Gravel road condition monitoring is crucial to ensure safe 

transportation via forest and rural roads. For this reason, an 

                                                                 
3 After a dead end is detected, it is extended with additional 

edges. until the first junction is found. 

ML/AI model was constructed to estimate the road condition 

from satellite images. The input of the model consists of 

selected channels from a multispectral Worldview-3 satellite 

image (including a panchromatic channel), appropriate masks of 

the road areas and the corresponding road quality annotation 

that is used for training the model.   

 

OSM road data are retrieved to create appropriate road masks. 

Street data are either in geojson or shapefile format, with streets 

represented as lines and including additional attributes like 

street name and road type. A similar buffering process is 

implemented with a buffer width size of 10 metres and the 

corresponding rectangle buffers are created. Then, vector data 

are rasterized with the same resolution and extent as the satellite 

image. 

 

Annotation data, provided by specialists from the Forestry 

school, was used as input for the training and evaluation of the 

model. Specifically, annotation data was collected during two 

field visits at two main roads of the Seich Sou forest in 

Thessaloniki at dates close to the date that the satellite image 

was captured. Parts of the two main roads, namely A1T1 (10 

km) and A2T2 (12 km), were first divided into 100 meters long 

segments. Then, each of the resulting 220 segments was 

evaluated concerning road surface damage, taking into account 

the frequency, intensity and location of the damage. The final 

annotation contains an evaluation of the quality of each road 

segment at a scale of 1 (best quality) to 5 (worst quality), as 

well as notes/description of specific damages at that segment 

that can serve as a justification of this evaluation.  

 

3.4.1 Training models: Different ML and deep learning 

classification methods were compared during the training 

process, including CNNs, ResNet50 architecture, PSE-MLP 

(Pixel Set Encoder-MultiLayer Perceptron) architecture and k-

Nearest Neighbors (KNN). As an alternative approach, a linear 

regression method was also evaluated.  

 

Convolutional neural networks (CNNs) are a class of deep 

neural networks that can recognize specific features from 

images with high accuracy and are widely used for image 

analysis and classification (Lecun Yann et al., 1989).  

 

ResNet50 (Kaiming He et al., 2016) is another convolutional 

neural network (CNN)-based model, which consists of 50 

layers, including convolutional layers as well as a “Max 

Pooling” level and an “Average Pooling” level. This residual 

network framework allows the incorporation of shortcut 

connections and the use of residual functions, thus allowing the 

stacked layers of deep neural networks to reduce their training 

errors. 

 

Garnot (Garnot et al., 2020) suggested that convolution 

functions may not be suitable for detecting different classes 

from images with high spectral variations over time. CNNs were 

also observed to consume large amounts of memory. To 

overcome the above issues the PSE-TAE architecture was 

proposed, consisting of a pixel-set encoder (used to sample a 

fixed-size vector of data from arbitrary sized regions), a 

temporal attention encoder and a classifier. In this work, we 

used PSE to obtain data from each graph edge and then use a set 

of linear layers (multilayer perceptron) to obtain the final 

classification result. 

 

Moreover, the k-Nearest Neighbors (KNN) algorithm is a 

popular and one the simplest traditional Machine Learning 
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algorithms. It uses a non-parametric, supervised learning 

classifier, that classifies each individual data point based on 

proximity. 

 

Finally, the problem was also treated as a regression problem in 

order to exploit the continuous nature of road condition values. 

Specifically, a linear regression model was employed and its 

output was rounded to the nearest road condition class.  

 

3.4.2 Training optimization: To optimize results of the 

training process certain techniques were considered and 

evaluated to optimize the classification accuracy.  

 

The Normalized Difference Vegetation Index (NDVI) is a 

widely used index to quantify vegetation density using sensor 

data. NDVI (Normalized Difference Vegetation Index) masks 

were used, in order to mask out areas of the roads covered by 

dense vegetation during the road quality evaluation process and 

to take into account only the rest of the road area. It is 

calculated from spectrometric data in two specific bands: red 

(RED) and near-infrared (NIR), and is characterized by high 

accuracy correlation with the actual state of vegetation. The 

NDVI index is calculated by the following formula: 
 

                                   (1) 

From the definition of NDVI, it follows that an area containing 

dense vegetation will be characterized by positive values, 

mainly in the interval [0.3, 0.8] (Carlson et al., 1997). Pixels 

with NDVI values equal or greater than 0.3 are considered to 

picture plants and not forest road so they were discarded. 

 

The pan-sharpening process was used in order to combine the 

high spatial resolution panchromatic image data (0.3m) from the 

Worldview 3 satellite with the low resolution multispectral 

image (1.2m) and obtain a high resolution multispectral image. 

The benefit resulting from this particular process is that the pan-

sharpened image has high spectral and spatial resolution 

allowing a more detailed analysis and visualization of the 

image. This particular image has more detail and color 

information, making it easier to identify objects and features. 

However, care is necessary because the pansharpening process 

does not preserve the spectral integrity of the data. For example, 

it is not recommended to perform NDVI analysis on a 

pansharpened image. Three pan-sharpening methods were 

tested. The nearest neighbor method, bilinear interpolation and 

cubic convolution. The specified methods determine how the 

pixel values of the output raster are determined after performing 

a geometric operation. The nearest neighbor method is best 

suited for categorical data such as land use classification. The 

values entered in the output grid remain exactly the same as the 

original grid and no new values are displayed, in contrast with 

the other two methods. The value of each pixel of the output 

grid is determined by the nearest pixel center in the input grid.  

Also, extra features, including the detected dead-end and 

junction areas were used as additional features during the 

training process and were seen to lead to improved results. 

Finally, augmentation (random horizontal and vertical flips) 

was used for the training of CNN and ResNet architectures to 

avoid overfitting. 

 

3.5 WebGIS 

In order to support the display and management of the 

information by relevant stakeholders (forest authorities, public, 

etc.) an online Geographical Information System (WebGIS) 

supporting different information layers was developed. Great 

emphasis was put into the usability, security, interoperability, 

and scalability of the open-source WebGIS infrastructure, 

integrating all existing and produced information, enabling 

users to manage and process spatial data and to effectively 

visualize the results of the AI models. The WebGIS enables 

access from any computer through a browser, without requiring 

installation. 

 

3.5.1 WebGIS Architecture: The WebGIS architecture is 

depicted in Figure 5, providing a top-level overview. The 

system comprises of two primary components: the front-end 

(client-side) and the back-end (server-side). The front-end 

constitutes the portion of the platform with which end-users 

interact. It was designed with a clean, intuitive, and 

straightforward front-end to ensure a user-friendly interface 

(UI) for both experienced and inexperienced users of geospatial 

data. Furthermore, it was developed to be compatible with 

various devices, ranging from large screens to smaller ones. 

Open-source languages, frameworks, and libraries were utilized 

for both the front- and back-end components of the application. 

Specifically, HTML5, CSS3, and JavaScript were employed for 

the UI, along with JavaScript libraries such as Cesium, Axios, 

and React. For the back-end, we utilized a GeoServer (WebGIS) 

server, allowing sharing, processing and editing of geospatial 

data files and a PostgreSQL / PostGIS database for storing 

additional spatial data. Libraries such as Node.js, Express.js 

were used and the Bcrypt algorithm by (Provos and Mazieres, 

1999), which is a cryptographic hash function created using the 

Blowfish Algorithm (Schneier, 1993) and designed for 

password hashing and secure storage. 

 
Figure 5: The WebGIS architecture (Server and Client side) 

 

3.5.2 Main Functionalities: As depicted in Figure 6, the 

application comprises three main Sections accessible to users of 

any level. Section 1 features the map centred on the Seich-Sou 

peri-urban forest of Thessaloniki (i.e., the pilot area).  

 
Figure 6: The project webpage and the three main sections of 

the application. 
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This section also includes all the necessary tools for interacting 

with the mapping application and guiding users. Section 2 

serves as the repository for available geospatial information 

(Layers) and consists of functions for layer management. 

Section 3 hosts the application's main menu, which includes not 

only the main page (i.e., Layers) but also the pages 'Requests,' 

'Queries,' 'Log in,' and 'Sign in'. Currently, the application is 

available only in Greek, but translation into English is being 

considered as a future step. The main functionalities of WebGIS 

can be categorized into the following broader areas: 

 

Map interactivity: The WebGIS employs various front-end and 

back-end technologies to achieve map interactivity. These 

functionalities include zooming in and out, restoring the 

original (initial) map view, transitioning from a 2D to a 3D 

projection, switching base maps from satellite to roads, 

changing the geodetic system (from WGS84 to GGRS87), 

providing user instructions for map navigation on both 

computers (mouse/cursor) and mobile/tablet devices (touch), 

printing the current map view as an image with legend, and 

viewing and managing layers. Users can control layer 

appearance and hierarchy within the application. 

 

User management system (UM): The WebGIS features a 

comprehensive user management system to handle activities 

related to individual access and functionalities within the 

application. Four levels of accessibility—User, Registered User, 

Administrator, and Super Administrator—have been 

constructed to address varying user needs. PostgreSQL 

facilitates access restriction to system data based on the user's 

role. Each level of accessibility inherits the capabilities of the 

previous one while offering additional functions. The Bcrypt 

algorithm ensures password security in the backend of the 

application. Users can upgrade to the registered status through 

the Sign-in page, while administrators have the authority to 

create registered users and manage user accounts through the 

administrator panel. 

 

Layer management and spatial data visualization: The ability 

of all the application users to view and modify layer 

appearances, including colour, transparency, and line weight 

when applicable. Registered users and administrators can save 

their preferences for future sessions. Additionally, users can 

adjust the hierarchy of layers as needed. Administrators have 

additional privileges such as viewing, editing, and downloading 

geospatial information. 

 

Requests: This feature serves as a communication channel 

between the public and local authorities. Through the 'Requests' 

page, any user can pinpoint a location on the map and describe 

a problem or offer a suggestion related to that point. Users also 

have the option to upload photos related to the point of interest. 

Administrators receive these requests and can manage them 

through the administrator panel. 

 

Queries: Accessible to all users, the 'Queries' page offers 

essential tools for data filtering to obtain subsets. Users can 

access descriptive statistics for each available dataset and utilize 

various data classification methods for categorization. Queries 

are limited to individual road characteristics such as width, 

slope, accessibility, etc. 

 

Future steps may include implementing changes to simplify user 

experience or further modernize the user interface to meet 

technological advancements. 

4. Results 

Results from the road extraction and road condition monitoring 

modules are presented below. 

 

4.1 Road Extraction Results 

We compare results of the original U-TAE model and the 

modified alternative proposed here, using examples from the 

Seich-Sou forest as validation. 

 

In , from left to right, we can see firstly the satellite image for a 

specific region of the forest, next the road segment from OSM, 

the results from the original U-TAE model, and the results from 

the proposed version, which uses inverted residual blocks in the 

input and output of the architecture.  
 

 
          (a)       (b)                (c)          (d) 

Figure 7: (a) RGB channels of satellite image, (b) Ground truth, 

(c) U-TAE prediction, (d) modified U-TAE prediction using 

inverted residual blocks 

 

As seen in the second and third row, the predictions provided 

by the models may often detect new road segments not 

accounted for in the OSM road network, which may correspond 

to valid road segments that have not yet included in the ground 

truth. In Table 1, evaluation metrics for the two methods used 

for road extraction are presented. By jointly examining these 

metrics as well as the visual examples, one can argue that due to 

these roads missing from the ground truth, some “correct” road 

predictions may be erroneously treated by the metrics as false 

positives. This renders evaluation metrics less meaningful, 

given that they can only assess the ability of the network to 

mimic the –often inaccurate- ground truth, ignoring this 

important ability of detecting new unknown road segments. For 

this reason, visual assessment of the performance of the models 

is always very important. As seen, the evaluation metrics in 

Table 1 favour the original U-TAE architecture, while the visual 

examples favour the proposed method. Therefore, a more fair 

comparison of these models in the future will require re-training 
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after thoroughly validating the existence of any new roads and 

updating accordingly the ground truth.   

 

Architecture Accuracy Precision Recall F1 IoU 

U-TAE 97% 87% 84% 85% 77% 

Proposed 96% 82% 80% 81% 71% 

Table 1. Testing accuracy, precision and recall of different 

architectures for road quality classification 

 

As regards to the connectivity of the road network, we can see 

in  that the road connectivity provided by the proposed model is 

better, while also preserving the road width. The U-TAE model 

and the proposed modification can correctly extract road 

segments, even those not provided through the ground truth 

OSM. However, the proposed algorithm has the overall 

advantage of predicting more accurate road width and of 

increased connectivity between road segments. 

 

4.2 Forest/rural road Condition Monitoring Results 

The best results for each of the four architectures that were 

tested are presented in this section. For the CNN, the best 

results were achieved with the concatenation of the 

multispectral and the panchromatic image, random horizontal or 

vertical flip with a 40% probability, the use of NDVI masks 

with a threshold value of 0.3 and using dead-end and junctions 

as extra features during training. Image size used was 224x224, 

batch size was equal to 32 and learning rate was equal to 1e-3. 

With the above specifications, the model presented accuracy of 

56%, precision of 71% and recall of 50%. In the case of 

ResNet50 architecture optimal results were accomplished with a 

similar setting as in the CNN case. The only differences are the 

use of the 3 RGB channels from the multispectral image instead 

of the concatenation of the multispectral and the panchromatic 

image and the use of a ReLU unit with batch normalization after 

Resnet. The results were as follows: accuracy 63%, precision 

42% and recall 53%. 

 

In the case of the PSE-MLP algorithm, the best results were 

achieved with the concatenation of the multispectral and the 

panchromatic image, the use of NDVI masks with a threshold 

value of 0.3 and the use of dead-ends and junctions as 

additional features during training. The batch size was set to 32 

and the number of sample pixels for each edge was 128. This 

architecture achieved accuracy of 53%, precision of 56% and 

recall of 50%. In the case of kNN, with the concatenation of the 

multispectral and the panchromatic image and using k=4, we 

obtained the following results: accuracy of 53%, precision of 

36% and recall of 45%. The above results are summarized in . 

 

Architecture Accuracy Precision Recall 

CNN 56% 71% 50% 

ResNet50 63% 42% 53% 

PSE-MLP 53% 56% 50% 

kNN 53% 36% 45% 

Table 2. Testing accuracy, precision and recall of different 

architectures for road quality classification 

 

Finally, when treating the problem as a regression task, a 53% 

accuracy was achieved by the linear regression model. Although 

this result is similar to the results obtained by the classification 

methods, an advantage of this approach is that a higher 

percentage of predictions are either correct or correspond to the 

neighbouring class. 

5. Conclusions and Future Work 

This article presented the final framework that was developed 

by the INFOROAD project, which integrates state-of-the-art 

technologies in remote sensing and machine learning for the 

automated and periodic extraction and condition monitoring of 

the forest road network. The methodology applies Worldview 3 

high-resolution satellite images and diverse auxiliary data 

sources. The framework includes road extraction, road graph 

extraction, and road condition monitoring modules and was 

evaluated using data from the Seich-Sou forest in Thessaloniki. 

The road extraction module utilizes the U-TAE network 

architecture, incorporating a proposed adjustment with inverted 

residual blocks to enhance accuracy. Road graph extraction 

entails the creation of a graph from road segmentation output or 

OpenStreetMap (OSM) data, enabling efficient analysis of road 

segments. Road width calculation relies on road segmentation 

results, while road condition monitoring utilizes machine 

learning and artificial intelligence classification algorithms. 

 

Once the proposed method is trained for road extraction and/or 

road condition monitoring, it can be applied to other forest 

areas using just a high-res satellite image as input. 

OpenStreetMap data and field measurements are needed only 

for the training process. In addition, Digital Elevation data can 

be used, as an auxiliary source, to estimate additional road 

features (e.g. slope, aspect).  

 

Results highlight the efficacy of the proposed framework, 

demonstrating enhanced accuracy in road extraction through the 

modified U-TAE model. The proposed model was also able to 

detect even new roads that did not exist in the available forest 

maps. Furthermore, road condition monitoring results were 

encouraging, accomplishing a peak accuracy of 63% with the 

ResNet50 architecture for a 5-class classification task. This task 

had to deal with significant challenges, including the lack of 

related datasets, issues with data integration of data from 

different sources, outdated or inaccurate maps, the significant 

surface and texture variations of forest and agricultural roads – 

as opposed to asphalt roads as well as vegetation cover 

obstructing road visibility.  

 

We believe that the project made a notable advancement in 

leveraging modern ML/AI technology towards sustainable 

forest road management. Future work will mainly involve 

further refinements and adjustments of the road condition 

monitoring module by addressing in a greater degree the 

aforementioned challenges in order to make it more robust and 

accurate. 
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