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ABSTRACT:
Smart cities represent a transformative approach to urban development, leveraging advanced technologies to enhance efficiency and 
sustainability. Moving into the third decade of the 21st century, smart cities are becoming a vital concept of advancement of the 
quality of life. Without any doubt, cities today can generate data of high velocity which can be used in plethora of applications. 
The wind flow inside a city is an area of several studies which span from pedestrian comfort and natural ventilation to wind energy 
yield. We propose a Visual Analytics platform based on a server-client web architecture capable of identifying areas with high wind 
energy potential by employing 3D technologies and Open Geospatial Consortium (OGC) standards. The assessment of a whole 
city or sub-regions will be supported by integrating Computational Fluid Dynamics (CFD) outcomes with historical wind sensor 
readings. The results, in 3D space, of such analysis could be used by a wide audience, including city planners and citizens, for 
locating installation points of small-scale horizontal or vertical axis wind turbines in an urban area. The implementation presents 
various flows for spatio-temporal data processing. A number of evaluation plans assess the system performance. The results 
show an adequate performance, although there is a lot of room for improvement in future work.

1. INTRODUCTION

A smart city may well benefit from the large amount of data
collected within its boundaries. Valuable information can be
extracted via analytical processes and utilized for achieving sus-
tainability goals. Visualization of data can assist in the analysis
process and give better meaningful insights. Visualization has
emerged as a new research discipline during the last two dec-
ades (Keim et al., 2010) with Visual Analytics being the field of
visualization that can provide instant and interactive knowledge
to individuals by empowering a flexible control of workflow and
information. Three-dimensional visualization is fundamental to
establishing a modern information system in an urban space.
Urban 3D visualizations of geo-spatial data consist of above
surface entities, either physical or artificial, including as basis
a Digital Terrain Model (DTM) or the surface of the reference
ellipsoid. A typical example is the Digital Twins concept. A 3D
model is relayed with data acquired from the physical environ-
ment, and a simulation model studies the behavior and the per-
formance of the system. Numerical simulation methods, such
as Computational Fluid Dynamics (CFD), have been a success-
ful tool in urban physics research (Blocken, 2015). The 3D
spatial representation of a city is widely defined in the research
community and geospatial industry by CityGML. CityGML, an
Open Geospatial Consortium standard, is based on the Geo-
graphy Markup Language (GML) (Gröger and Plümer, 2012).
CityGML provides a semantic and geometric representation
model for city entities as a semi-structured format encoded in
XML. By its definition, CityGML can be extended via an Ap-
plication Domain Extension (ADE), which, among other ad-
vantages, provides relevant information for simulation applic-
ations. In Helsinki’s Kalasatama area, throughout the Digital
Twins project (Suomisto et al., 2019), a high accuracy DSM
model was generated for visualization purposes and a semantic
city model based on CityGML. The CityGML model was used

in a CFD simulation in order to investigate the wind impact on
the micro climate, comfort, and safety of the streets and pedes-
trian areas.

The climate in an urban area can play a tremendous role in the
socioeconomic status of a city. In particular, the wind flow
can influence the planning and morphology of a city, and, at
the same time, wind flow is affected by the urban morphology
(Franke and Baklanov, 2007). Moreover, the urban morpho-
logy in some cases could facilitate the production of wind clean
energy since urban and deep water offshore areas remain unhar-
vested, while onshore and shallow water wind farms continue
to be studied and realized (Islam et al., 2013, Hand and Cash-
man, 2017, Borg et al., 2014, Balduzzi et al., 2012, Tabrizi et
al., 2014, Mithraratne, 2009, Lee et al., 2018, Ledo et al., 2011).
Urban wind energy can provide a decentralized local source of
energy for residential areas and reduce the cost of energy by
avoiding the losses/costs of long-distance energy transmission
(Rezaeiha et al., 2020).

In actuality, there are numerous methods/models to estimate or
assess the wind energy in an urban environment, namely on-site
measurements, wind tunnel testing (Al-Quraan et al., 2016),
Computational Fluid Dynamics, and analytical. Simulation
processes, specifically Computational Fluid Dynamics (CFD),
play a fundamental role in numerically estimating wind velo-
city and direction in a segregated/sampled 3D space. Although,
in an urban context, a CFD simulation could have a high error
tolerance, mainly for performance improvement, the calcula-
tion of a dynamic velocity field in the course of a year is greatly
demanding. Profiling the wind potential of a 3D city model by
utilizing the aforementioned methods cannot be related to ad-
ditional 3D city models via a geometric similarity factor, i.e.,
the Hausdorff distance (Hausdorff, 1965), since similarities in
the terrain surface model and the wind profile (wind directions,
wind speeds) are also required. Monitoring of the wind proper-
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Wind Atlases Statistical Analysis On-Site Measurement Wind Tunnel CFD

Spatial Resolution low low/high high high high
Spatial range large small/large low low low

Temporal resolution low high high high high
Temporal range high high high low low

Visual representation 2D 2D/graph graph graph 2D/3D/graph
Expertise low high modest high high

Accessibility easy easy easy hard hard

Table 1. An overview of characteristics of the different wind energy assessment methods.

ties in an urban environment is possible with dedicated anem-
ometers (Beller, 2011) or with weather station bundles which
are measuring additional weather variables. Although a large
number of such sensors can be installed across the boundaries
of a city, interpolation models cannot estimate the wind flow
field between the surface model of the city because wind motion
obeys to fluid mechanics and is described by the Navier–Stokes
equations (Moeng and Sullivan, 2015). A variety of toolsets
make use of Computational Fluid Dynamics (CFD) to numer-
ically solve the flow of the wind as a dynamic/time dependent
series of vector field snapshots or as a static vector field. Des-
pite the fact that a CFD simulation can model the wind flow in
an urban area with better accuracy (Blocken, 2018), these solu-
tions come with high demands/requirements and several restric-
tions (Table 1).

2. PROBLEM STATEMENT AND MOTIVATION

The evolution in data-driven web-based visualization allows for
interactive exploration and information extraction for a wide
audience. An interactive visualization, based on 3D city model-
ing, can extract meaningful information in the field of wind en-
ergy. Although, in some cases, a 2D visualization of high wind
potential can be facilitated, a 3D representation is more intuitive
and provides the opportunity to explore special use cases, such
as the integration of wind turbines into the underside of high
altitude bridges (Handsaker et al., 2021) or the implementation
of an array of vertically aligned wind turbines (Figure 1).

Figure 1. An array of three wind turbines is integrated between
the two towers of the Bahrain World Trade Center (by Denise

Krebs is licensed with CC BY 2.0.

Identifying locations in an urban environment where a small
scale wind turbine could yield an adequate amount of energy in
the course of a year is a four-dimensional problem. Three di-
mensions are used for the spatial component of the location, i.e.,
the X, Y, Z coordinates in an arbitrary coordinate system where

wind speed reaches above a required threshold. The fourth di-
mension is the time component, i.e., the duration of the required
wind speed during a year. A web-based client-server architec-
ture can be used to assess the wind energy potential in an urban
environment by integrating static CFD simulations, wind his-
torical data, Web 3D technologies, and OGC Standards, which
would allow researchers, entrepreneurs, and civilians to estim-
ate the yearly yield of such investment. A spatio-temporal query
in the form of “find locations where the wind velocity is higher
than 6 m/s for more than 5 h a day for more than 200 days in
a year” is expected to be resolved by such a solution. The res-
ults of such query will indicate locations where a small scale
vertical axis wind turbine can be installed. The current paper is
based on (Koukofikis and Coors, 2021).

Motivated by providing the possibility to the public to assess
the wind potential in residential areas, we propose a web-based
platform and a dedicated workflow that will give a better insight
in interactively exploring simulation data combined with histor-
ical readings. Our study investigates if it is possible to design
a workflow to analyze and process in near real-time massive
simulation data in conjunction with historical readings on the
server side combined with a thin visual analytics toolset for
eloquent visualizations and data exploration in the client side
to give better insights and assist in decision-making in an urban
environment. To the best of our knowledge, such a framework is
currently not available in the scientific literature. Most of the re-
lated research on wind potential focuses on offshore locations,
while cases in an urban environment are not interactive, demand
high expertise, and Web-based accessibility is absent or limited
by 2D visualizations. The varied contributions of our work are:
(i) a thin web client with a simplified interface and passive ren-
dering to assist the visual analysis of simulation/historical data
in low end desktop and mobile clients, (ii) an interactive integ-
ration and processing of simulation/historical data to support an
energy sustainable urban environment, (iii) a centralized sim-
ulation data architecture with efficient distribution of relevant
data controlled via filtering, (iv) a combined data access inter-
face realized by a query API in parallel with the OGC standard
3D Portrayal Service, and (v) a variety of data processing and
data transmission schemes.

3. SYSTEM ARCHITECTURE

3.1 Conceptual Design

The proposed approach emphasizes on the investigation of
knowledge extraction based on CFD results and historical wind
data. The concept is supported by the definition of a web-
workflow to assist in locating possible areas in a city envir-
onment that small scale wind turbines could be installed. The
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workflow is expected to resolve queries formulated as a com-
posite spatial and temporal high-pass filter. Additional func-
tionality should allow the incorporation of wind simulation vec-
tor fields for supplementary analysis. To obtain an eloquent
visualization, the results of the analysis will be visualized in
an interactive Web 3D environment. To facilitate this concept,
an integration of historical wind data with CFD simulations is
needed. The historical readings, namely timestamp, wind ve-
locity, and wind direction, of a weather station will be used to
perform a statistical analysis in order to find the prominent wind
directions, i.e., directions with the highest probability. For each
prominent wind direction, a second statistical analysis will re-
veal its prominent wind speeds. Each combination of wind dir-
ection and wind speed will become the inflow boundary condi-
tions for a static CFD simulation (Figure 2). The output of each
CFD simulation, i.e., a static 3D vector field will get integrated
with the historical wind data. The latter will serve as a lookup
table. The integration will be realized in several steps: The
historical data are queried for similar simulation boundary con-
ditions within a similarity range; then, for each historical entry
that qualifies, a matching simulation result will get associated.

Figure 2. Conceptual graph of the workflow.

The definition of high wind potential locations utilizes a 3D
feature layer in the form of a regular three-dimensional grid
(Figure 3). The potential is defined in terms of spatial and tem-
poral wind events. Each grid cell captures the spatial informa-
tion coming from the vector fields of the CFD simulations and
the temporal information from the historical wind data. In each
grid cell, a reducing function (Equation 1) aggregates the dur-
ation and velocity of the wind. The application of a high-pass
filter in both wind velocity and duration generates the desired
locations in 3D space.

Figure 3. A 3D feature grid with three historical events in a cell.
The dots represent the locations of the velocity vectors. The red
and yellow vector are results of the same CFD simulation since
they are produced from the same wind direction (assuming the

same wind speed in the historical data).

Vc =

N−1∑
i=0

∑S−1

j=0
vj

S

(
ti
T

)
, (1)

where Vc = scalar horizontal velocity in a cell

N = number of simulations in a cell
S = number of spatial events in a cell
v = horizontal velocity
t = number of a single simulation temporal
events in a cell
T = number of all temporal events in a cell

4. END-TO-END IMPLEMENTATION

An important consideration in our implementation is the need
to offer to the end users multiple options to process data. The
implemented flows take into consideration the regions of in-
terest, the processing architecture, the data transfer scheme and
the web protocol (Table 2).

Flow ROI processing transfer protocol

flow#1 Focus centralized bounded http

flow#2 Focus centralized stream ws

flow#3 Area centralized bounded http

flow#4 Area distributed stream ws

Table 2. The end-to-end implemented flows for spatio-temporal
data processing.

4.1 Frontend Implementation

In order for the client side to fulfill its scope, the following com-
ponents are needed:

• A 3D city model to support the visualization since it can
give a better perspective in identifying city areas and relat-
ive locations between buildings and high potential areas. It
can also assist in reasoning in cases of low potential areas
because of building occlusion.

• An interactive formulation of queries for investigating a
city area in an easy manner, allowing multiple, adjustable
and repeating requests.

• Definition of time and space properties is an essential part
of a query, as mentioned before, since we want to apply fil-
tering in four dimensions, i.e., three dimensions for space
and one dimension for time.

• Augmentation of the 3D city models with the query results
gives a better insight of the potential of an area in three
space dimensions. The capabilities of the 3D engine en-
ables an interactive navigation in all areas that might show
high potential.

• Two types of regions of interest (ROI), i.e., “Focus ROI”
and “Area ROI” each one with spatial constraints.

• Different processing flows for each region of interest, i.e.,
centralized and distributed processing.

• Different data transaction approaches, i.e., bounded and
streaming.

• A multi-layer visualization design can further assist or
reason the analysis results. Information coming from sep-
arate layers, where query results are stored, can be com-
bined in the same 3D scene to better empower the analysis.
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On the client side, the end-users are able to navigate and visu-
ally analyze either the integration of the historical wind data
with the CFD simulation data, as well as simulation results, util-
izing a multi-layer scheme. The 3D module of the web client
is based on Three.js, a powerful JavaScript 3D engine bring-
ing computer vision to the browser. The web client is based on
the Flux Architecture, which is a unidirectional flow of con-
trol and information. For that purpose, the redux library is
controlling the state management of the web application. The
backbone of the client is realized in Riots.js, a library which
shares commonalities with React.js. It is a popular client-side
framework/library, offering custom HTML tags, which are the
building blocks of the user interface. Each custom tag could
be described as a tiny MVC application. The user interface is
composed by a Single Page Application. The layout is separ-
ated into two main sections: the 3D Engine viewer covering
the whole screen and the side-bar on the left side of the screen.
The 3D viewer is the rendering component of 3D static assets,
i.e., buildings, terrain, and dynamically generated query results
or CFD attributes. Additionally, the user can interact with the
3D viewer, via defining clipping planes, in order improve the
visualization of results in specific city volumes. The side-bar
is a scroll-able generic area of graphical user interface to con-
trol the workflow. Various user interface controls are logically
grouped and wrapped in collapsible graphical elements in order
to save space on the side-bar.

The first group of user interface controls in the side-bar defines
the Regions of Interest (ROI). A Region of Interest defines the
3D spatial domain as a tight bounding volume in order to ex-
clude CFD data (e.g., wind velocity 100 m above ground when
the highest building is 30 m) and improve performance. The
creation of an ROI is interactive. A defined ROI can be reused
multiple times in the analysis workflow. There are two ROI
definition modes: (a) Focus mode and (b) Area mode. An ROI
in focus mode is used to analyze small areas in a city. It has
maximum size constraints of 50 m in all dimensions (width,
length, height). A typical example of usage could be the poten-
tial analysis of a single building. An ROI in area mode (Figure
4) is used to analyze larger areas in a city. It has minimum size
constraints of 100 m in planar dimensions (width, length).

Figure 4. Definition of an ROI in area mode (green box). In blue
an already defined ROI in focus mode.

A focus ROI is related to two processing flows, i.e., flow#1 and
flow#2 (Table 2). Data are processed in a single computing
node but the transfer scheme can be bounded or streaming. On
the other hand, an area ROI can access a centralized processing
flow or a distributed processing flow.

4.2 Backend Implementation

At the heart of the data tier is a PostgreSQL database, a power-
ful database management system. The relational database pub-
lic schema of our implementation (Figure 5) defines the tables
for storing the historical wind data, the boundary conditions for
the performed CFD simulations, the resulting 3D vector fields
and the descriptive statistics for each variable of a single simu-
lation. The latter will become useful information when apply-
ing value filtering in the client. Additionally, there are several
temporary tables, which do not belong to the public schema,
which are part of the interactive processing of the resulting 3D
grid. PostgreSQL manages transactional integrity by using a
Multiversion Concurrency Control model (MVCC). Therefore,
every transaction in the database is realized in its own context.

Figure 5. The public schema of the PostgreSQL database.

The spatio-temporal grid generation takes place in the data-
base system. It is segmented in several database procedures
and functions. Several functions and procedures perform spa-
tial and temporal filtering. The relations between those routines
is depicted in Figure 6.

Figure 6. The series of steps of the spatio-temporal grid
generation.

The distributed flow (Table 2) is based on BullMQ
(Taskforce.sh, 2024), a message queue system built on top of
Redis. A message queue is a messaging middleware that en-
ables applications and services to communicate in a decoupled
manner. Operating as intermediary buffers, message queues
store and manage messages until they are consumed by the
intended recipients. Redis (Redis, 2024) is a well known in
memory key-value data store with significant performance, high
throughput and low latency. It’s data model supports strings,
hashes, lists, sets, and more, which makes it a versatile tool for
data processing in a distributed system. The communication
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protocol between client and server is WebSockets. The client
requests an action under a specific namespace which acts as a
communication channel with a spatio-temporal query payload.
The server breaks down the bounds parameter of the query into
batches (Figure 7) using a 3D bin packing algorithm (Wu et al.,
2010).

Figure 7. A region of interest is split into tight fit batches. The
result in each batch is processed by a BullMQ worker.

Using the BullMQ models (queue, job), two queues are cre-
ated. The first queue will manage the parent jobs and the
second queue the children jobs. All batches are converted to
children jobs which in turn become the children of a single par-
ent job. Once the parent job is created, the BullMQ workers
keep requesting tasks from the message queue server until the
queue gets empty. When a child job is resolved, the results are
transmitted back to the client through a WebSockets connec-
tion where the data get rendered. When all children jobs are
resolved, the parent job is resolved and the socket connection
can close.

To improve fault tolerance, scalability, and data availability in
our distributed system, database replication is used. Although at
runtime the database system is read-only, replication increases
the availability of historical and CFD data to all workers (Figure
8).

Figure 8. The end-to-end implementation components divided
into frontend and backend tiers.

The access of the 3D assets, namely terrain and buildings, is ab-
stracted via OGC’s 3D Portrayal Service. The 3D Portrayal Ser-
vice (Hagedorn et al., 2017) is an OGC Standard that abstracts
the access of 3D geospatial datasets in various client platforms
via the web mainly for visualization purposes. The standard
specifies three methods to access information: GetCapabilit-
ies, AbstractGetPortrayal, and AbstractGetFeatureInfo. A Get-
Capabilities request returns information about the available re-
quest methods, the extents of the data, data layers (buildings,

vegetation, etc.), layer styles, and streaming formats suppor-
ted. The retrieval of a scene is implemented by the Abstract-
GetPortrayal operator. The GetScene method, which is real-
ized in our solution, is used for client-side rendering and the
GetView method for server-side rendering. The 3D Portrayal
Service specification does not indicate a specific content deliv-
ery format. Among several payload formats, OGC community
standards which expose a bounding volume hierarchy, namely
3D-Tiles (Cozzi et al., 2018) and I3S (ESRI, 2019), can be
served by a 3DPS GetScene implementation.

4.3 Streaming Database

Although streaming databases offer a variety of solutions, leg-
acy database systems can mimic streaming capabilities by em-
ploying generator functions. Generators in JavaScript (MDN,
2024) are stepwise versatile functions which can be paused and
resumed. This provides a plethora of possibilities for synchron-
ous and asynchronous workflows. Establishment of communic-
ation between the frontend client and the backend is achieved
via WebSockets (Figure 9). In particular, the library Socket.IO
(Socket.IO, 2024) is used (both client and server implement-
ations). The processing flow#2 (Table 2) utilizes this tech-
nique with PostgreSQL v12.17, a database management system
version which does not support streaming. A spatio-temporal
query is passed in the constructor of the generator which defines
the bounds of the focus Region of Interest. The generator del-
egates the spatio-temporal query for each cell inside the Region
of Interest, yields the result and stops execution waiting for the
next Socket.IO event to process the next cell.

Figure 9. Utilizing a generator to stream data from a database.

5. EVALUATION

Our visual analytics platform supports query processing via
various scales of region of interest (focus, area) and flows (cent-
ralized, distributed). To evaluate the interactiveness and per-
formance of the flows of our platform and investigate the para-
meters which greatly affect the response times, we facilitate
a number of evaluation plans. Each plan is designed to per-
form a spatio-temporal query to area regions of interest for both
centralized and distributed flows. All the query parameters are
constant except the bounds which is the parameter that is vary-
ing (Table 3, plan#1 and plan#2). In addition, the performance
of the distributed system is examined with variable number of
workers (Table 3, plan#3). We utilize OpenStack (OpenStack,
2024) as test environment to provide computing nodes with dif-
ferent specifications (Table 4). OpenStack is an open-source
cloud computing platform that facilitates the creation and man-
agement of both public and private clouds. OpenStack Nova is
the component serving as the primary compute engine respons-
ible for managing and provisioning virtual machines (VMs) and
instances.

5.1 Centralized and distributed processing

This evaluation plan makes a comparison between a main node
which employs centralized processing and a distributed pro-
cessing system of 8 workers with specs shown in Table 4. Each
evaluation is defined as:
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Plan bounds batch size cell size no. of workers

#1 varying 20 m 2 m 8

#2 varying 10 m 2 m 8

#3 varying 20 m 2 m [2, 4, 6, 8]

Table 3. The evaluation plans and the parameter values. Batch
size and number of workers are only applicable to the distributed

flow.

Specification Main Node Worker

OS Ubuntu 20.04 Ubuntu 20.04

VCPU AMD EPYC AMD EPYC

VCPU Base Freq. 2.4 Ghz 2.4 Ghz

No. of VCPUs 4 1

RAM 16GB 2GB

Database PSQL v12.17 PSQL v12.17

Table 4. Software and hardware specifications of the testing
environment.

(bi, bs, cs, w) → (ti, fi, oi) for i ∈ [n], (2)

where bi = bounds
bs = batch size
cs = cell size
w = number of workers
ti = response time
fi = initial frame time
oi = network overhead time
n = number of varying bounds

The bounds for each evaluation plan are defined as offsets in
reference to the coordinate system origin:

bi = (lti, rti, bki, fti, bmi, tpi) for i ∈ [n], (3)

where lti = left offset
rti = right offset
bki = back offset
fti = front offset
bmi = bottom offset
tpi = top offset
n = number of varying bounds

The initial frame is used as an indicator of the responsiveness of
the distributed system when a request is sent. In simple terms
it indicates when the processing result of the first batch is re-
turned. All evaluation plans (1, 2 and 3) use regions of interest
which cover areas from 4 to 484 square decameters (dam2).

The first evaluation (Figure 10) compares the response time
between the centralized and distributed processing when the
batch size is 20 meters. A second vertical scale is used to cap-
ture the network overhead in milliseconds. Results show that

centralized processing consistently outperforms the distributed.
Centralized processing response time stays below 2 seconds
through all areas. Although the response time in the distributed
system increases linearly, the initial frame is comparable to the
centralized system when the bounded area is small and remains
almost constant regardless the of the size of the bounded area.
The network overheads in both systems evolve differently but
at the same time do not present a performance bottleneck.

Figure 10. Response time comparison between centralized and
distribute processing. Batch size in distributed processing is 20

meters.

The second evaluation plan (Figure 11) depicts the performance
impact of the distributed system when the batch size decreases
to 10 meters. It is obvious that the decrease of the batch size
into half drastically downgrades the performance and increases
the network overhead while at the same time keeping the initial
frame similar to 20 meters batch size.

Figure 11. Response time when the batch size in distributed
processing is 10 meters.

The third evaluation (Figure 12) compares the response time of
the distributed system when the number of workers variate. The
results show an almost linear increase in performance when the
number of workers doubles.

Figure 12. Response time comparison in distributed flow
between varying number of workers.

5.2 Cognitive complexity between WebSockets and
Streams

Cognitive Complexity is a language-neutral metric that applies
to source code structures (classes, objects, functions, etc.) to
measure the mental, or cognitive effort required to understand
those structures (Campbell, 2018). In this particular case two
listings are compared, each one is a frontend client that tries to
read the same set of data coming from the backend (Figure 13).
The WebSockets approach is utilizing the flow described in sec-
tion 4.3. On the other hand, the streams approach is based on
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Node.js Readable streams. To calculate the cognitive complex-
ity for each approach the static code analysis tool SonarCube is
used.

Figure 13. Cognitive complexity calculation for the WebSockets
listing (left) and the Node.js Readable Stream listing (right). The
comments indicate the location and the score of the complexity.

The result, sockets=2; streams=10, shows a much lower cognit-
ive complexity in the sockets example. Noticeable is the fact
that a stream’s outbound buffer captures no semantics. This is
the reason the streams approach makes use of Newline delim-
ited JSON (Hoeger et al., 2014), even though there is no guar-
antee that on the read event the frontend client will receive a
single cell encoded as NDJSON. Although the cognitive com-
plexity of the backend implementation of both approaches is
not considered, it is worth mentioning that Readable/Writable
streams in Node.js give an option to the implementer to apply
back-pressure to a stream when a producer or a consumer speed
is lower than the respective consumer/producer of the stream.
This added consideration is not applicable to the WebSockets
paradigm since the producer (backend) syncs with the request
rate of the consumer (frontend).

6. CONCLUSIONS

In this study, an interactive visual analytics platform was
presented that is able to locate areas in an urban environment
where small scale wind turbines could be installed. The archi-
tecture is based on community best practices, and its imple-
mentation utilizes standardized web and 3D technologies. The
visualization on the client side is based on a number of REST-
ful APIs. Although the number of backend services is small,
the absence of an API gateway and service orchestration could
affect the overall system reliability. Presently, a form of or-
chestration is facilitated in the frontend implementation. It is
important to mention that the query parameter dailyDuration,
of the query API, is a normalized value in the course of a year
and does not guarantee the daily duration of the wind above the
horizontal velocity threshold on daily basis.

The performance of various processing flows supported by the
platform was evaluated against the spatial domain volume, in-
cluding various scenarios. In limited spatial domains the prefer-
able flow characteristics, i.e., either centralized or distributed
processing or either bounded or streaming data transfer plays
insignificant role performance wise. When the region of in-
terest becomes large enough to cover the bounds of a city the
preferred flow plays significant role. The centralized processing
of the spatio-temporal data outperformed the distributed sys-
tem. Namely, the reasons can be the limited number of workers
and the specifications of a single worker. A great performance
drop was detected when the batch size decreased, which sug-
gests that an optimal batch size is required in a distributed sys-
tem realization. Similar was the performance drop when the

number of workers decreased. Thus, it is important to identify
the requirements and the edge cases of a web application be-
fore any architectural decisions. A distributed system strategy
can end up being an over-engineered solution and maintenance
bottleneck. A centralized system facilitates easier monitoring,
configuration, and maintenance. On the other hand, a distrib-
uted system has the advantage of improved fault tolerance and
reliability, as it reduces the risk of system failure due to a single
point of failure. Additionally, distributed systems can scale
more effectively by spawning additional nodes as needed, en-
hancing performance and accommodating increasing user de-
mands.

Although the ground area of the domain volume reached almost
500 dam2, the response time of the centralized flow and the ini-
tial frame of the distributed flown stayed below 2 seconds. One
of the reasons is the utilization of spatial indexing, one among
other spatial capabilities of the PostgreSQL database system.
PostgreSQL spatial indexing depends on the PostGIS extension,
a data-driven R-Tree (Guttman, 1984) structure which uses the
idea of a spatial containment relationship. Although spatial in-
dexes aim for the query planning improvement, there are cases
where this may result in efficiency degradation, which may ad-
versely affect query performance. Counter-intuitively, it is not
always faster to do an index search: if the search is going to
return every record in the table, traversing the index tree to get
each record will be slower than sequentially reading the whole
table (Ramsey, 2021).

Partitioning the data regarding the CFD results will consider-
ably decrease parts of the database queries where joins are per-
formed, since the the first step of any database join is a cartesian
product. It is obvious that the centralized flow will reach its
performance limits while the query bounds increase. For this
reason, a streaming design is favorable for achieving (near) real-
time results. Expanding the search domain in higher geograph-
ical and administrative regions would require the streaming of
3D assets as hierarchical 3D delivery formats, namely 3D-Tiles
and I3S, which are widely adopted OGC community standards.

The client application can be accessed at http://hellowind.xyz.
A wind energy yield calculation module is already implemented
but not performance wise optimized.
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3DPS 3D Portrayal Service
API Application Programming Interface
CFD Computational Fluid Dynamics
CityGML City Geography Markup Language
CPU Central Processing Unit
DSM Digital Surface Model
DTM Digital Terrain Model
glTF Graphics Language Transmission Format
HTTP Hypertext Transfer Protocol
WS WebSocket
I3S Indexed 3D Scene
MVC Model View Controller
MVCC Multiversion Concurrency Control
OGC Open Geospatial Consortium
REST Representational State Transfer
SQL Structured Query Language
VM Virtual Machine
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