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ABSTRACT:

The growing number of cars and limited street space present significant challenges for cities, applying not only to moving but
extending to stationary traffic. The quest for parking spaces exacerbates traffic congestion, noise, and air pollution, particularly in
residential areas. To develop effective parking solutions for these challenges, a trustful data foundation on available parking space
capacities, its usage and parking type is crucial. Gathering this data is currently time-consuming, requiring manual labeling and
street inspections. Moreover, it must be repeated to keep the data current. Research on parking space management has heavily
focused on monitoring designated parking lots with fixed cameras to identify free or occupied parking spaces. However, due to
privacy concerns fixed cameras are not applicable for the larger part of the street space in European cities. This paper introduces
a novel computer vision-based method for automatically collecting parking space capacities and parking type information. Our
approach combines both street view and aerial imagery, which are recorded by a moving camera source. We tackle challenges in
geo-referencing images, identifying parking types, classifying moving and stationary cars and dealing with partial occlusions in
images. By not permanently recording the same environment, our approach lowers the surveillance risk, making parking capacity
estimation scalable. We conduct a thorough evaluation of our methods and release a novel validation data set to allow for further
research. In the future, more moving camera sources will be available when attached to city cleaning vehicles or to delivery drones.

1. INTRODUCTION

The increasing numbers of private passenger cars are progress-
ively occupying an increasing amount of space both in mov-
ing and stationary traffic which leads to an insufficiency of the
available space [Lutz, 2014]. In dense urban spaces especially
the search of parking space contributes to the already existing
traffic, noise and air pollution. In areas where parking pres-
sure is high, meaning many cars competing for few spaces, an
unsuccessful search often leads to improper parking on side-
walks, intersections or exits where the curb is lowered [Parmar
et al., 2020]. In addition to this, people like to park on the road-
side because of its proximity to their destination (e.g. home)
which aggravates the problem [Biswas et al., 2017]. This poses
challenges for individuals with mobility aids, such as people
with wheelchairs or walkers, as well as families with strollers
when navigating neighborhood streets. Moreover, the increased
traffic from parking searches amplifies the risk of accidents by
irritated drivers [Bezirksamt Berlin-Neukölln, 2023]. To effect-
ively address this issue in urban planning, it must be known in
which suburbs parking pressure is particularly high to be able to
create corresponding concepts and solutions. In order to calcu-
late the pressure, comprehensive data on the number of roadside
parking spaces must be available. As the number of parking
spaces in a street depends on the type of parking, the differ-
ent types of parking longitudinal, diagonal, and perpendicular
must be distinguished. With this parking information per street,
the number of potential parking spaces in residential areas can
be estimated by using the street length and average car widths
and lengths.

Parking surveillance has been thoroughly studied, with the main
objective to recognize whether a parking space is free or occu-
pied. In most of these cases vehicle detection in image data

is utilized to monitor parking lots using fixed-location cam-
eras [Fahim et al., 2021]. While a camera-driven approach can
be applied to the recognize parking spaces on the roadside, a
high density of cameras would be required for wide-area cover-
age introducing privacy issues such as the risk of surveillance.
In addition, most studies only distinguish between free and oc-
cupied spaces, but cannot distinguish the type of parking which
is required for the estimation.

We present a novel approach that assigns the type of parking
to each street side of a street. We do so by training neural net-
works to detect cars and distinguish between the different park-
ing types in two different images sources. By using street view
imagery, we utilize a mobile data source that moves through the
streets, taking images every three meters. By moving continu-
ously, this data source covers a wide area which allows for our
approach to scale to the entire city while keeping privacy con-
cerns low. In the future moving camera sources can be created
by attaching cameras to delivery drones or other city vehicles
such as buses or cleaning trucks. To increase quality, we add
another modality and within each street compare the street view
images to the aerial image. Since street view images are taken
every three meters and are compared to one aerial image of the
street, one of the challenges is to find a suitable method for this
one-to-many comparison. For the comparison it is necessary to
assign detected cars to one side of the street while ensuring that
the street side is the same in both images. When deciding for a
parking type, the method has to tackle various difficulties such
as moving cars, construction sites or no-parking zones which is
why this paper initially focuses on the main challenges of the
approach. The code to our work is publicly available. 1

1 https://github.com/aruscha-k/

roadside-carparking-direction-detection.git
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The main contributions of this work include:

1. We train neural networks to detect and differentiate the
parking type of parking cars.

2. We consolidate two image sources based on their location
(geo-referencing).

3. We compute street sides and assign a parking type per side
to each street.

4. We conduct a thorough evaluation to identify strengths and
weaknesses and to inspire future work.

5. We publish an excerpt of our result data to trigger further
research.2

2. PROBLEM DEFINITION

We have tested, that using neural networks for the recognition
of parking cars in images while at the same time detecting the
parking type works reliably with average correct recognition
rates above 90 %. In doing so, the neural network encounters
challenges that many similar use cases in computer vision also
face, such as shadows, various lighting conditions, or obstruc-
tions by trees (see Fig. 1a and b). As a consequence, some cars
in the image remain unrecognized. More problematic is that
the neural net cannot distinguish whether the car is parked or
moving. It will therefore incorrectly assign a parking type to
moving cars. One of the challenges therefore is to distinguish
moving from stationary cars on these images (see Fig. 1a and
c, red dashed rectangle). Within this initial work, we exclude
multi-lane roads since these introduce further challenges. We
were provided with a data set of edges of street segments of
Leipzig, subdividing streets at every intersection with an aver-
age segment length of 138 meters (see Fig 3). Within one of
these segments, the parking type can change (see Fig 1a and
d, blue/yellow dashed line). In order to assign all correct park-
ing types to a segment, it must be divided into smaller units.
Therefore a suitable division unit must be found.

Figure 1. a) Aerial image of a segment with changing parking
type (blue/yellow), a driving car (red) and different lighting

conditions b) Aerial image with obstruction by trees. c) Street
view recording with driving car and d) changing parking type

Our multi modal data set consists of geo-referenced (see chapter
4.1) street view and aerial imagery of Leipzig. First, a crucial
task involves identifying all the images associated with a spe-
cific segment. Further, having a multi modal data source in-
volves comparing two perspectives: street view images, which
2 dataset available at: https://github.com/aruscha-k/

roadside-carparking-direction-dataset.git

are taken approximately every 3 meters, and images taken from
the air. To compare the results of object detection in both types
of images, the detected objects must be assigned to the same
sides of the street. Due to the different recording modalities
of the image types, regardless of which subdivision of the seg-
ment is made, there will be n > 1 street view images meeting
one aerial image (see Fig. 8). The challenge here is to find a
suitable method to compare one to n images, while also man-
aging scenarios where the comparison yields different results
between the two image types. It should also be noted that the
parking type can change over time. As both image sources are
not recorded at the same time, the detection from the neural net
can be correct and the result can still be different in both image
types (see Fig. 2, orange dashed line). Another challenge we
faced, was the verification of our results. Due to the novelty
of the problem, there was no ground truth data available. We
manually labelled the parking types of two larger residential
areas and compiled a validation set.

Figure 2. Cut out of the same segment with aerial image (left)
from 2019 and street view image (right) from 2021 showing

different parking types on the right side

3. RELATED WORK

Detection of cars in aerial and street view image data in urban
areas has already been explored on a large scale with first works
dating back to 2003 [Zhao and Nevatia, 2003]. In these, the
goal of detecting cars is the recognition of vacant or occupied
parking spaces, as well as the transmission of the information
to drivers looking for parking spaces. In most use cases in this
area, the data source is in a fixed position (e.g. camera on a
pole) observing a selected area and transmitting real-time data.
To be able to estimate the capacity for roadside parking, it is not
sufficient to only recognize cars in images, further their parking
direction must be identified. Extending the analysis to a large
area or whole city is hardly possible with a data source in a fixed
position. To the best of our knowledge, there is little research
on either using a moving data source or analysing the parking
space regarding the parking method in particular (longitudinal,
diagonal, or perpendicular parking).

The work of Fahim et al. [Fahim et al., 2021] provides an over-
view of different smart parking systems (SPS). The authors list
various technologies used for this application such as ML meth-
ods, GPS or Bluetooth. All of the mentioned works (in total
54 studies) monitor parking lots, both inside and outside. One
common goal of most of the studies is to categorize parking
spaces into two classes: free or occupied.

Most research focuses on the surveillance of parking spaces
through vision-based technologies like image or video data. These
approaches typically involve cameras providing real-time data
from fixed locations. Vision-based applications face challenges
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in handling varying light conditions, weather, shadows, and oc-
clusions (e.g., by trees, street lamps). Primarily utilized for
parking occupancy detection, these approaches also extend to
additional use cases such as license plate recognition, facial re-
cognition for billing, and generating traffic congestion reports
[Fahim et al., 2021]. Examples of vision-based approaches re-
cognizing the free or occupied state are the work of Masmoudi
et al. who implement parking lot monitoring based on feature
extraction in video data using the SURF and HOG algorithm
[Masmoudi et al., 2014] or the work of Amato et al. [Amato et
al., 2017] who use convolutional neural networks (CNNs).

While most studies focus on the surveillance of parking lots,
the work of Goren et al. [Goren et al., 2019] uses a fixed cam-
era positioned on the roadside to recognize parking cars and
inform drivers about free spaces. The authors also concentrate
on distinguishing free from occupied parking spaces. The work
only scales with sufficient coverage of roads by cameras.

Apart from image data, LiDAR sensors are used for parking
monitoring as well. LiDAR is a form of three-dimensional
laser scanning that does not produce any image material. The
research of Chen et al. [Chen et al., 2023] uses a stationary
LiDAR sensor positioned on the side of the road supplying
real-time data. The authors claim that an advantage of LiDAR
sensors is that no image material is recorded making the data
more privacy-friendly.

By training neural networks to recognize additional parameters
(such as restricted areas or markings) in addition to cars, similar
methods can be used to detect parking in unauthorized zones
such as the work of Peng et al. [Peng et al., 2022].

4. METHODS

We trained two neural networks for object detection in both
aerial images and street view images. For this task, we used
detectron2 [Wu et al., 2019] which is a state-of-the-art network
for object detection and segmentation. Each trained model is
capable of detecting cars along with their parking type longit-
udinal, diagonal or perpendicular parking. Due to the high
similarity of diagonal and perpendicular parking in street view
images, the model for street view images considers these two
types as one class. The differentiation between diagonal and
perpendicular is then made using the more precise detection
from the aerial image, provided that this network has reached
the same result. The output of both neural networks is bound-
ing boxes around detected cars and corresponding classes. We
did not evaluate the relationship between CNN parameters and
recognition accuracy since the correct recognition accuracy of
our trained networks already lies between 93 to 100%. The net-
works were trained by creating a data set of manually labeled
parked cars in street view and aerial images. Due to the dif-
ferent orientations of streets and the two possible ways of nav-
igating through a street, a fixed definition of which side of the
street is left and which is right must exist. If it is clear which
side in the image is the left/right side of the street, the bounding
boxes found can be assigned to one of the sides. This makes it
possible to compare the results from both image types for each
side of the street. The final step is to merge the results from
both image sources into one result per side.

4.1 Data set

The city administration of Leipzig provided us with 360° pan-
oramic street view imagery with a recording for approximately

every three meters which is accessible via API. Our second im-
age source consists of orthophotos, which are images depict-
ing a bird’s-eye view of the city that have been rectified in the
ground plane [GeoSN Saxony, 2024]. The images have a res-
olution of ten centimeters per pixel (see Fig. 2 for examples).
Both image types are geo-referenced: each street view image
has an assigned recording point coordinate and in each air im-
age, each pixel is mapped to a coordinate. We were further
provided with street edges and nodes. In this data set, a street
is subdivided into segments which means a subdivision at each
intersection. Each street segment is defined by two endpoints
in coordinates, as well as the median width of the street. In the
process, each segment is subdivided into iterations (see Fig. 3,
red dashed lines).

Figure 3. Data set of street segments and iterations. A segment
(purple) is subdivided into iterations (red). A bounding box

(turquoise) can be calculated using the endpoints and the median
width (blue).

4.2 Aerial image extraction and iteration units

For every street segment, we use its two endpoints (xstart, ystart),
(xend, yend) and its median width w to compute a bounding box
b = [(x1, y1), .., (x4, y4)] around the street with the following
formula3:

[(xstart, ystart −
w

2
), (xstart, ystart +

w

2
),

(xend, ystart −
w

2
), (xend, ystart +

w

2
)]

(1)

The resulting bounding box coordinate points can be used to
cut out a segment from the geo-referenced aerial image dir-
ectly using various Python libraries. Using the WFS-API of the
street view image provider, we conduct a geospatial mapping
of point-in-box to extract all street view recordings lying within
this bounding box which results in a list of recording points.
As mentioned in chapter 2, a segment has an average length of
138 meters. But, there are large differences within the lengths,
with the smallest segment length being 7 meters and the longest
2539 meters (see Fig. 4).

It is therefore possible, that there is more than one parking type
on one side within one segment. Further, if the segment length
is used for cutting out the images, the varying lengths lead to a
variety of image sizes. This in turn leads to poor neural network
results since the size of the cars in the images also varies with
the size of the images. Therefore, as a preprocessing step, each
street segment is further subdivided into sections with a manu-
ally chosen length of 30 meters called iterations (see Fig. 3).
These iterations are generated by dividing the segment every
30 meters, resulting in around five to ten evenly-sized iterations
for each segment. To cut out the iteration-sized images from the
aerial image, for each iteration, its bounding box is computed
as described before (see formula 1).

3 The formula is simplified for explanatory purposes, as it is only applic-
able to streets that run parallel to the vertical and horizontal axes.
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Figure 4. Distribution of lengths of street segments in meters.
Outliers > 1000 m are cut off.

4.3 Street view image extraction and side assignment

To compare the results of the detections from both image types,
each detected car must first be assigned to one side of the street.
We want to assign the detected bounding boxes defined as bbox =
[(x1, y1), (x2, y2)] to the left or right side using their x-values
and the image midpoint (midx,midy) (see Fig. 5):

∀[(x1, y1), (x2, y2)] : if ∀i ∈ {1, 2}, xi < midx left, else right
(2)

Cars recognized on the left-hand side of the image are thus as-
signed to the left-hand side of the street and vice versa (see Fig
5).

Figure 5. Street sides in street view and aerial images with violet
line representing image center.

To ensure that the image is aligned so that the left side of the
image is also the left side of the street, further measures must
be taken. In the case of street view images, the street side as-
signment must therefore be known prior to image extraction for
the images to have the correct alignment.

Since there is no universally valid definition of which side of
a street is the left and which is the right, we define a reference
point from which the sides of the street are viewed. This ref-
erence point is the city center. We define that the endpoint of
a segment closer to the city center is the starting point and the
endpoint further from the city center is the ending point of a

segment. We consider street sides as left or right as if we had
navigated through the street from its starting to its ending point
(see Fig. 6a).

Because the street views are 360° panoramic images, the re-
cording direction of the camera must be set when extracting the
images. If the recording direction is not set, the image is auto-
matically output in the direction of travel. However, the direc-
tion of travel does not always correspond to our definition of the
starting and ending point of the street (see Fig. 6b and c). For
each recording point, its recording direction is known. The re-
cording direction displays the driver’s viewing direction and is
expressed as deviation from North as angle in degrees (see Fig.
6b and c). To set the recording direction of the camera so that
the image is correctly aligned, we also compute the deviation
from North of the street from the starting point to the ending
point (see Fig. 6a). If the angles of the deviations are the same,
the recording direction corresponds to our definition. If not, the
image must be extracted against direction of travel, which can
be done by adding 180 degrees to the recording direction.

Figure 6. Deviation from North in street view images. a)
Deviation from North for street b) Deviation from North of

street is the same as the recording direction of the car. c)
Deviation from North of street is contrary to the recording

direction of the car.

Segments or iterations in aerial images are cut out from the
overall image (see Fig. 7a). For our methods to process these
images, they have to be rotated so that their edges are aligned
parallel to the horizontal and vertical axis. That means the
edges have to align with the display screen. To apply our street
side definition to the aerial images and be able to assign the
bounding boxes, the images must be rotated so that the left side
of the image also represents the left side of the street and vice
versa. To achieve both, we rotate the ending point of the street
towards North (see Fig. 7b and c). The angle of rotation is again
the deviation from North of the street.

Figure 7. Rotation of aerial images.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W4-2024 
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W4-2024-99-2024 | © Author(s) 2024. CC BY 4.0 License.

 
102



4.4 Differentiating between driving and parked cars

To solve the problem of driving cars described in chapter 2 (see
Fig. 1), driving cars must be recognized and excluded from fur-
ther computations. To do so, we tested two methods. Assuming
that parked cars will mostly be on the left and right edges of an
image we experimented with clustering cars on each side. We
computed the center points of all bounding boxes of detected
cars and applied k-means clustering (with k=2) to sort out de-
tected cars that do not fall within one of the clusters. Problems
with this approach occurred with images, where there is park-
ing only on one side of the street, which is why the approach
with two fixed clusters does not work correctly. Other prob-
lems are uneven distribution of parked cars on each side, lead-
ing to skewed clusters and the false exclusion of cars. Methods
to determine the optimal cluster size, such as shilouette, are not
practical because they only work for a cluster size >= 2. The
second method we tested is to insert a black area in the image
(no-detection area) prior to object detection in which no cars
are to be recognized. In street view images this area is added
by drawing a black triangle into the center of the image and in
aerial images this area is added by drawing a black rectangle
starting from the centre of the picture with a flexible width of
15% of the image width. This naive method already provided
good results. However, in future work we consider to train a
separate classifier to distinguish moving from parking cars that
takes the context information in the image as well as geo-spatial
information about the street boundaries into account.

4.5 Result merging of detection results

The last step of the process is to evaluate all detection results to
define one parking type per iteration and street side. For each
iteration of a street segment, results from one aerial image need
to be compared to several street view images (see Fig. 8). In a
first step, the merging of detections is performed for each image
type and street side separately.

Figure 8. Two different perspectives on one iteration step of a
segment a) aerial image with recording points, b) street view
images of different recording points within the same iteration

step.

Within each iteration step, all detected classes are assigned to
one side of the street (see chapter 4.3), resulting in a list of de-
tections d =[(detected class 1, detected class 2), ...] per side.
To achieve one result per side, a majority decision is made on
all entries in the list based on frequency of the detected classes
and the most common class and an average class probability is
saved. The average probability is computed by calculating the
proportion of the most frequent class of all entries. At the end
of this first step, for each image type the parking type is determ-
ined for each side of the street based on iterations (see Figure
9) resulting in a list of results r =[(iteration: 0, left: (paral-
lel, 99%), right: (diagonal, 87%)), (iteration: 1, left: ...] for

each image type. In a second step, the results from the differ-
ent image types have to be compared to achieve one result per
side for each iteration. The results from step one are therefore
again compared using majority vote per iteration and side. If
both image types came to the same resulting class, this class
is chosen as result. If they produced different results, the class
with the highest probability is chosen. If both image types con-
clude to different classes with the same probability, both results
are saved and are marked as ties.

Figure 9. Merging detection results for each image type and
iteration. Merging is first done on each image type separately
before merging this interim result into a final one. Red letters

represent different detection classes.
l - longitudinal, p - parallel, d - diagonal

5. EVALUATION

For the evaluation of our methods, we conduct several experi-
ments in two districts (see Fig. 10).

Figure 10. The study area consists of two districts, where district
1 can be seen on the lower excerpt and district 2 on the upper

excerpt.

We look at

• results for both image types combined
• results for both image types separately
• results for both image types with and without no-detection

area
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• result differences for the two units segment or iteration
• results with ties, where two results were equally likely

In the process, we evaluate 338 segments in district 1. These
segments are subdivided into iteration steps resulting in 1,220
iterations in district 1. We analyze a second district regarding
iterations with a number of 998 iterations. Looking at the num-
ber of analyzed images, the number of aerial images is equal
to the number of segments or iterations. The number of street
view images analyzed for iterations in district 1 is 3,337 and in
district 2 2,316. Within these images, an average number per
image of 7 cars was detected in aerial images, and 4 cars in
street view images.

5.1 Results

To evaluate the prediction result of our proposed method, we
have to generate a manually labeled data set to test our res-
ults due to the lack of similar methods in current research. Our
validation set contains labeled data of two suburbs of Leipzig,
whereas one item contains the original street segment id, the
segmentation number, iteration number, the street side and the
parking value. The output of our method contains the same
information so that we can compare result items one on one.
Street segments where the annotators could not determine the
parking type (for example, due to temporary roadworks or in-
correctly parked cars) were ignored in the overall ranking.

Looking at the combined results from both image types for
the unit segments, our method produces a good result with a
rate for correctly classified parking types of 85.8% (see table
1). Between results with and without no-detection area, there
is practically no difference. The results of the individual im-
age sources separately are within the range of the overall res-
ult, with a slightly higher correct rate for aerial images and a
slightly lower correct rate for street view images. Here also, the
use of the no-detection area has no influence on the quality of
the results.

By dividing a street segment into smaller units (iterations), it
was our aim to recognize and localize different parking types
within a segment allowing for the assignment of parking types
to smaller, more nuanced units and thus improving the correct
classification rate. Comparing the segment results to the unit
of iterations, we can observe a higher correct classification rate
for both data sources combined as well as for the individual data
sources. The correct classification result for the combined data
sources increases by approximately 1.7 %, the result for street
view images increases by about 9.5 % and thus interestingly
exceeds the combined result. As assumed, the smaller unit in-
creases the overall result and solves the problem of different
parking types within a segment. The usage of the no-detection
area has a more significant impact for street view images. One
explanation for this is the different number of cars recognised
per image. For street view images, usually only the cars close
to the camera are recognized, while the neural network does
not recognize the vehicles further away. Since all cars in aerial
images have the same distance from the camera, more (i.e. a
higher number) cars are recognized. The fewer cars per image
are included in the calculation, the more influence false detec-
tions such as moving or incorrectly parked cars have, which is
why the no-detection area in street view images has more effect
(see evaluation set specs at beginning of chapter 5).

Looking at the iteration results of the second district, we can
observe similar numbers for the individual and combined image

sources and similar behaviour for the use of the no-detection
area. Interestingly, district 1 has more ties than district 2. This
can be confirmed by the manual inspection of the data, which
showed that in district 1 the parking type often changed from
one type to another between the different recording years.

By merging the results by majority vote, individual false de-
tections in a set of otherwise correct results do not lead to an
incorrect overall result. The longer a segment, the more in-
dividual results are included in the majority decision and the
fewer incorrect results distort the overall result. However, as-
signing only one result per segment overlooks the possibility
of multiple parking types coexisting on a single segment and
therefore distorts the result again. To address this, segments
were subdivided into iterations, where an iteration length of 30
meters has proved to be a good choice.

5.2 Problems

By looking at faulty results, we were able to identify several
factors leading to wrong parking type allocations which can be
divided into context-related and methodological. Most meth-
odological errors occur in crossroad areas due to the street di-
vision in the city data. In the data, the subdivision of streets
is made in the midpoint of every intersection. This is why a
part of the intersection is attached to each segment end (see
Fig. 3). For street view in particular, because of this images
are included in which the car is only just turning into the des-
tination street, meaning that areas and cars that are not relevant
are depicted. Secondly, there are cars in every branch of the
intersection, which also leads to false detections by the neural
network. It would be good to cut off these intersection areas
from the segments before applying the methods. However, this
task is not trivial, as the intersection areas are not always the
same size and their size is unknown to the city. A small role
plays the date of the recording. For a few streets, the parking
type has changed over time. In this work, we evaluated two data
sources with different recording years. If the parking method
has changed, the method may produce a different but correct
result for each image source, but the merging process produces
the error. Another methodological error is produced by the dif-
ferent points of view in the data sources. Air images are cut
out with exactly the boundaries of one segment or iteration,
whereas street view images are collected by checking if their
recording position lies within the segment/iteration. Street view
images therefore depict a field of view several metres ahead of
the current location and thus depict cars outside the currently
inspected area. We would categorise the problem of differen-
tiating between parking and moving cars between methodolo-
gical and context-related errors since it is difficult to detect a
dynamic state in stationary data. A mainly context-related error
is the correct detection of cars in places with no parking and
thus a wrong allocation of parking space (e.g. short-stay park-
ing, parking for certain vehicles only such as taxis or e-cars,
delivery vehicles, or cars in no-parking areas). For some of the
segments or iterations, there is no valid image for either air or
street view images, excluding them from the results.

6. DISCUSSION AND FUTURE WORK

Due to a lack of similar methods in current research, we pro-
posed a novel method to identify the parking type in streets in-
cluding the use of a mobile data source. This information is
required within the city administration for a variety of urban
planning processes: The parking pressure can be calculated by

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W4-2024 
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W4-2024-99-2024 | © Author(s) 2024. CC BY 4.0 License.

 
104



unit district correct in % ties in % wrong in % source no-detection area

segment district 1 85.80 3.55 10.65 combined yes
segment district 1 82.21 - 17.79 street view yes
segment district 1 88.76 - 11.24 air yes
segment district 1 85.50 3.25 11.24 combined no
segment district 1 82.52 - 17.46 street view no
segment district 1 88.76 - 11.24 air no

iteration district 1 87.55 3.09 9.36 combined yes
iteration district 1 93.11 - 6.89 street view yes
iteration district 1 89.99 - 10.01 air yes
iteration district 1 86.09 3.82 10.09 combined no
iteration district 1 89.44 - 10.56 street view no
iteration district 1 89.83 - 10.17 air no
iteration district 2 86.62 0.47 12.90 combined yes
iteration district 2 88.07 - 11.93 street view yes
iteration district 2 85.57 - 14.43 air yes
iteration district 2 82.73 0.76 16.51 combined no
iteration district 2 86.85 - 13.15 street view no
iteration district 2 85.87 - 14.13 air no

Table 1. Results for different length units, data sources and no-detection area (grey)

intersecting the number of parking spaces with the number of
car registrations in the same area. Based on this, parking con-
cepts can be created for residential areas. Other use cases are
the calculation of fairness of space allocation according to the
different traffic participants or the planning of street greenery
taking into account the parking situation. In comparison to re-
search in this area, we do not use a locally permanently installed
camera as data source, but movable data sources that move in
or above the city. This gives us the opportunity to scale the ap-
plication of our methods to the entire city and minimise privacy
risks. Our method is intended to create an initial data basis,
as up to now new recordings are made annually or biennially.
It is foreseeable that the frequency of street view recordings
will increase as soon as the recordings are no longer reques-
ted and purchased by the city authorities, but are automatic-
ally carried out by vehicles that are already on the road, such
as buses or self-driving cars. We would like to encourage the
usage of mobile data sources, because with increased record-
ing frequency, detecting and transmitting free parking spaces,
which in current research is limited by fixed cameras in park-
ing lots, can also be implemented for street space. Moving data
sources (cameras) make the installation of fixed cameras obsol-
ete and allow the use case to scale to the whole city. Further,
they represent a smaller privacy risk, as they do not perman-
ently monitor individual locations. Prospectively this use case
can be implemented with LiDAR data, a sensor that is also in-
stalled in self-driving cars, to even further reduce privacy con-
cerns. For future work and as soon as recordings are available
at shorter intervals, analyses can be extended to the time dur-
ation of parked cars. Thus, temporal parking patterns can be
recognized and incorporated into the urban planning processes
mentioned above. Furthermore, we plan to investigate multi-
lane roads and include prior knowledge and rules on the range
of validity of street signs. Moreover, we are already working
on recognizing driveways in the images to include them in the
calculation of the parking space estimation.
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