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Abstract

Mixed Reality (MR) global localization involves precisely tracking the device’s position and orientation within a digital
representation, such as Building Information Model (BIM). Existing model-based MR global localization approaches have difficulty
addressing environmental changes between the BIM and real-world, particularly in dynamic construction sites. Additionally, a
significant challenge in MR systems arises from localization drift, where the gradual accumulation of positional errors over time
can lead to inaccuracies in determining the device’s position and orientation within the virtual model. We develop a method
that extracts structural elements of the building, referred to as a wireframe, which are less likely to change due to their inherent
permanence. The extraction of these features is computationally inexpensive enough that can be performed on MR device, ensuring
a reliable and continuous global localization over time, thereby overcoming issues associated with localization drift. The method
incorporates a deep Convolutional Neural Network (CNN) to extract the 2D wireframes from images. The reconstruction of 3D
wireframes is achieved by utilizing the extracted 2D wireframe along with their depth information. The simplified 3D wireframe
is subsequently aligned with the BIM. Real-world experiments demonstrate the method’s effectiveness in 3D wireframe extraction
and alignment with the BIM, successfully mitigating drift issues by 4cm in prolonged corridor scans.

1. Introduction

Mixed Reality (MR) integrates virtual objects into the real-
world, allowing seamless interaction between virtual and
physical elements, distinguishing itself from Augmented
Reality (AR), which merely overlays virtual content on top
of the real-world (Kopsida, 2018). The real-time feedback
and digital interaction capabilities of MR systems make them
highly suitable for many applications, such as building work
inspection, ensuring that constructed elements comply with
design specifications (Einizinab et al., 2023b). MR provides
the means to align the Building Information Model (BIM) with
the real building, simplifying the inspection of corresponding
elements between BIM and the physical structure (Radanovic
et al., 2023a). A precise superimposition of the BIM onto the
real building for MR visualisation is essential for a reliable
inspection of building works (Kopsida and Brilakis, 2017,
Einizinab et al., 2023b).

In the AR/MR technology, localization of the device camera
involves the estimation of its pose (position and orientation)
within a reference coordinate system. Two types of localization
methods exist: local and global. The local method, such as
Simultaneous Localization and Mapping (SLAM) and visual
odometry, estimates the pose of the camera with respect to a
previous pose (Radanovic et al., 2023a). This task constructs
the 3D model in reference to a local coordinate system and
cannot be directly used to position the virtual model over
corresponding real-world locations unless the first camera pose
is determined with respect to the virtual model. However, it
suffers from drift. Global localization, often referred to as
the alignment between the virtual model and the real world,
involves estimating the pose of the camera with respect to a
global map or model of the environment. Alignment challenges
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are common in AR/MR, leading to spatial discrepancies
between the real-world and virtual models (Kopsida, 2018).
This task becomes significantly more challenging in indoor
environments without access to external sensors such as Global
Navigation Satellite Systems (GNSS) (Radanovic et al., 2023b).

A common strategy for the alignment involves an initial coarse
alignment, which roughly overlays the digital model onto the
real-world, followed by a subsequent fine alignment to refine
and optimize the initial alignment (Vermandere et al., 2022).
Coarse alignment is achieved through the absolute localization
of the camera within the virtual model (Acharya et al., 2019a).
This involves establishing basic spatial anchors using markers
(Einizinab et al., 2023a) or employing marker-less methods
(Radanovic et al., 2023a). Marker-based approaches can be
applied in any environment, but their implementation can be
expensive or impractical. In marker-less approaches, precise
correspondences can directly arise from preexisting point
clouds, surface models, or image datasets (Li et al., 2019,
Sheik et al., 2022). By utilizing a repository of referenced
images and/or scans of the facility, spatial correspondences
can be established through techniques such as image feature
matching or geometric feature matching (Vermandere et al.,
2022). Convolutional Neural Networks (CNNs) are also
proposed for the feature extraction in this context (Radanovic
et al., 2023b).

A significant challenge for marker-less methods is posed
by environmental changes between the reference and newly
collected data by MR device, especially in dynamic scene
environments. Furthermore, the considerable size of the
collected data and reference datasets presents a hindrance to
fast processing due to their memory and computation intensity.
This also necessitates an external processing device since
current MR devices have difficulty handling the extensive
auxiliary data involved (Radanovic et al., 2023a). These
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limitations create challenges for the continuous alignment
between the virtual model and the real-world, resulting in
significant misalignment, particularly when moving away from
the initial localization position, because of the drift (Kopsida,
2018). Regarding the current continuous alignment approaches,
they mainly rely on vision-based methods, such as projecting
BIM frame lines onto real image edges (Marchand et al., 2015,
Acharya et al., 2019b). These methods often require multiple
renderings to solve for a single frame, and may lack robustness
in environments rich with lines due to potential ambiguities
between the edges. Alternatively, another approach involves
regressing to a relative camera pose difference between real
and synthetic BIM images (Radanovic et al., 2023b), which not
only requires auxiliary synthetic BIM images but also suffers
from inaccurate alignments in areas where differences exist
between the BIM elements and real building. Overall, the
main challenges in MR global localization involves resource-
intensive requirements, environmental variations between BIM
and real-world, and the localization drift caused by accumulated
positional errors over time.

This paper aims to tackle these challenges by utilizing
a building wireframe—a simplified representation that
outlines the structural elements and spatial layout of a
building. Extracting wireframe elements, which possess greater
permanence, involves low computational efforts on the MR
device, ensuring reliable continuous alignment. An RGB
input image taken by the MR device undergoes processing
with a deep CNN to generate pixel-wise junction and line
heat maps. The deep learning algorithm is trained to detect a
specific type of wireframes, representing corners and edges of
the building. By utilizing the information from the extracted
edges and junction pixels, along with data from the MR depth
sensor, the wireframe representation enables the efficient and
precise reconstruction of the 3D geometry of the scene, even
when provided with only a single input image. This method
which requires no auxiliary data, extracts building wireframes
and their corresponding depth information from the MR device,
enabling a fast alignment process within the device’s processing
unit. After an initial manual registration of BIM over the real-
world, our proposed method performs fine alignment. Through
continuous refinement with newly captured images, the method
also effectively addresses the localization drift issues in long
paths without loop closures. The effectiveness of the proposed
method in performing accurate global localization, and its
ability to mitigate drift was assessed using real RGB images
captured by a MR device within a site equipped with a BIM
model.

The remainder of this paper is structured as follows. The related
works are presented in Section 2. The detailed methodology
is described in Section 3. Experimentation of the proposed
method along with the results and discussions are presented
in Section 4. Finally, the conclusions and suggestions for the
future works are outlined in Section 5.

2. Related Works

Global localization in the AR/MR systems involves estimating
the pose of the AR/MR camera in the virtual model
environment such as BIM (Vermandere et al., 2022).
Vision-based approaches play a prominent role in global
localization for AR/MR applications. These approaches, which
can dynamically refine global pose estimation during the
application’s runtime, involve the utilization of images, surface

models, or point clouds to precisely locate the MR device
and align the digital model with the real-world environment
(Kopsida, 2018, Blut and Blankenbach, 2021). Vision-based
approaches can be categorized into feature-based, model-based,
image retrieval, and image-based pose regression methods (Blut
and Blankenbach, 2021, Sheik et al., 2022, Radanovic et al.,
2023b).

Feature-based methods leverage correspondences established
between 2D image feature points and their corresponding 3D
coordinates in a reference model. The practical implementation
involves generating a 3D reference scene reconstruction from
the images. For localizing a query image, feature extraction
is performed by identifying keypoints and their corresponding
descriptions, within local neighborhoods. This involves
employing a suitable feature descriptor, such as SIFT, SURF,
and ORB (Vermandere et al., 2022, Radanovic et al., 2023a).
Subsequently, a search for matching keypoints in the reference
3D model is conducted, typically through nearest neighbor
search in the descriptor space. The camera localization is
then achieved using found matches and Perspective from
Points (PnP) algorithm. Additionally, a robust estimation
process, such as Random Sample Consensus (RANSAC),
is incorporated to eliminate incorrect correspondences and
enhance the accuracy of the localization (Marchand et al.,
2015, Oh and Kim, 2023). The main downside of the feature-
based method is its dependence on image-based point feature
descriptors, necessitating the construction of a huge database
using a specific descriptor (Li et al., 2019).

Contrary to feature-based methods, model-based approaches
utilize models like CAD or BIM, relying on lines or other
shapes within the model for localization. The fundamental idea
is to minimize the distance between detected contour points
in an image and the projection of a corresponding 3D line or
shape from the model (Petit et al., 2012, Acharya et al., 2019b).
However, model-based approaches require an initial estimate
of the position and face challenges in extracting correct and
complete contour lines (Acharya et al., 2019b).

In image retrieval localization approaches, the query image is
compared to a database of geo-referenced images or image
features, either previously captured or generated from a BIM
(Marchand et al., 2015, Mahmood et al., 2020). The main
drawback of image retrieval methods includes the need for a
substantial dataset and their susceptibility to viewpoint changes
(Radanovic et al., 2023a). More importantly, image retrieval
provides an approximate localization and cannot guarantee the
alignment.

Image-based pose regression methods estimate the pose by
regression from a set of images with known pose (Piasco et
al., 2018). Predominantly relying on convolutional regression
networks such as PoseNet (Kendall et al., 2015) and BIM-
PoseNet (Acharya et al., 2019a), these approaches learn the
mapping from images to their corresponding global poses
(Radanovic et al., 2023b). In this approach, the presence of
changes in scene geometry or virtual model elements adversely
impacts the accuracy of localization (Piasco et al., 2018). While
recent methods can address appearance differences between the
real images and virtual model images (Acharya et al., 2022,
Acharya et al., 2023), the accuracy is still insufficient for high-
precision alignment. Overall, according to the literature, the
current vision-based global localization approaches encounter
challenges related to low accuracy, environmental changes,
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Figure 1. a) Architecture of the used neural network (Zhou et al.,
2019b). b) Transformation between different frames in a MR

system.

memory and computation intensity, and constraints in handling
extensive auxiliary data.

Among high-level geometric features, straight lines and their
junctions, forming the building wireframe, are fundamental and
stable elements for assembling 3D structures and establishing
correspondence with BIM elements (Zhou et al., 2019a).
An optimized approach capable of extracting the building
wireframe could offer a novel solution for efficiently achieving
continuous global localization in MR applications (Zhou et
al., 2019b). Traditional methods such as Hough transform
detect lines based on local edge features (Stephens, 1991).
In contrast to the wireframe representation, conventional line
detection algorithms lack information about junctions and their
connections, limiting their applicability in scene parsing and
understanding. Recent advances in deep learning enable the
extraction of high-level features from labeled data (Xue et
al., 2019). In this case, Huang et al. (Huang et al., 2018)
introduced a wireframe parsing task employing a deep learning-
based approach. This involved the training of two distinct
neural networks dedicated to predicting junction and line heat
maps from an input image. Subsequently, the outputs of these
two networks were combined using a heuristic wireframe fusion
algorithm, ultimately yielding the final vectorized output.
Additionally, Zhou et al. (Zhou et al., 2019a, Zhou et al.,
2019b) presented an alternative framework characterized by a
direct approach. This framework was founded on a single end-
to-end trainable neural network capable of directly generating
a 2D wireframe and reconstructing its 3D representation as
the final output. Considering the capabilities of deep CNN
approaches that directly extract the wireframe of a building
as the key geometric features, we apply this methodology for
global localization in AR/MR applications.

3. Method

In the global localization of MR with respect to BIM, referred
to as the MR-BIM alignment process, two distinct 3D models
exist, each lacking spatial reference to the other: a 3D BIM
and a 3D real model generated by the MR device. In most
of the AR/MR applications such as building work inspection,
the 3D model created by the MR device is not needed for

direct user visualization; it represents the genuine real-world
environment perceived by the device holder. In contrast, the
virtual model (BIM) is intended to be projected onto the real-
world by the MR system and is fully visible to the device
holder. Acknowledging that extracting only essential geometric
features from the real-world data can expedite the alignment
process and overcome associated challenges, we propose a
method that exclusively identifies the wireframe of the building
as significant and stable geometric features. Subsequently, the
real 3D model is reconstructed using only these features, and
the resulting simplified 3D model undergoes global localization
with BIM.

Hence, our proposed method comprises three main stages:
firstly, the extraction of a 2D wireframe from RGB images
captured by the MR device; secondly, the reconstruction of a
3D representation based on the extracted 2D wireframe; and
thirdly, the execution of a global localization process between
the MR camera and BIM model.

3.1 2D wireframe extraction

The deep CNN method employed for extracting junctions and
edges pixels is in accordance with the work conducted by Zhou
et al. (Zhou et al., 2019b). Notably, our implementation differs
from theirs as they utilized depth information to train the model
for 3D wireframe reconstruction. In contrast, our model was
not trained with depth information, as we always have access
to the depth information of the extracted wireframe in our MR
system.

As illustrated in Figure 1 (a), our implemented approach
initiates with a neural network that takes a single image
captured by the MR system as input. This network jointly
predicts 2D heatmaps of lines and junctions. In the geometric
wireframe W = (V, E) representing the scene, V and E denote
the junctions and the lines, respectively. Specifically, E
represents lines formed by the physical intersections of two
planes, excluding planar textural lines, while V represents the
intersections of lines among E. The approach aims to capture
the global scene geometry, specifically the building wireframe,
while disregarding local textural details.

For each image, the pixel-wise outputs of the implemented
neural network consist of three items including junction
probability J, junction offset O, and edge probability E. Among
these outputs, J and E will be utilized for generating the
wireframe.

The network structure is derived from the stacked hourglass
network. Input training images are cropped to dimensions of
512 × 512 before entering the network. The initial feature-
extracting module, comprising strided convolution layers and
one max pooling layer, downsamples the feature map to 128
× 128. Subsequently, the network consists of S hourglass
modules, each sequentially downsamples and upsamples the
feature map. The stacked hourglass network progressively
refines the output map to align with supervision from the
training data. In the training phase, the main objective is
to minimize the total loss, which is computed as the sum
of individual losses across all training images and hourglass
modules. Moreover, the individual loss for an image is
calculated by comparing the output of the hourglass module
with the actual ground truth representation for that image.
Indeed, the total loss is the accumulation of these individual
losses for all images and hourglass modules. The loss for each
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Figure 2. a) The BIM of the testing site, depicting the 3rd floor of Infrastructure Engineering Block B. Segments S1 to S6 illustrate the
segmented areas designated for the experiments. b) The 3D wireframe extracted from the images (approximately 700 images). Colour

represents elevation from the floor.

image (L), is a composite function, which is a weighted (λ) sum
of specific loss functions including junction loss, offset loss,
and edge loss:

L=̇
∑
k

λkLk, k ∈ {J,O,E} (1)

For training our network, for each input image we prepared the
following information, and the outputs of the neural network
are image-space heatmaps of the desired wireframe.
Junction Map: The ground truth junction map is a down-
sampled binary map indicating the presence of junctions in
pixel locations with sub-pixel accuracy:

Ĵ(p) =

{
1 ∃v ∈ V : p = ⌊ v

4
⌋

0 otherwise
(2)

where p is the integer coordinate and v is the pixel coordinate of
a junction in the input image. The network is trained to predict
the junction maps using softmax cross entropy loss for each
pixel. The resulting probability maps indicate the likelihood of
a junction at specific locations in the input image.
Offset Map: To address precision issues caused by the lower
resolution of the junction map, as it gets four times less than
the resolution of the input image, an offset map is employed.
The offset map stores the difference vector from the ground
truth junction position to its original position with sub-pixel
accuracy:

Ô(p) =

{
v
4
− p ∃v ∈ V : p = ⌊ v

4
⌋

0 otherwise
(3)

The offset map loss is computed only near actual junctions
using the heatmap as a mask by applying a sigmoid and constant
translation function to the last layer of the offset branch in
the neural network. The offset map loss is normalized by the

number of junctions.
Edge Map: Line positions are estimated by representing them
in an edge heatmap. Ground truth lines are drawn on the edge
map with an antialiasing technique for better accuracy. The
edge map is defined as:

Ê(p) =

{
maxe 1− dist(p, e) ∃e ∈ E : dist(p, e) < 1

0 otherwise
(4)

dist(p, e) denotes the shortest distance between a pixel p and the
nearest line segment e. The edge map with the range between 0
and 1, represents the probability of a line close to point p. Then,
treating it as a probability distribution, the network is trained
using the sigmoid cross entropy loss. The resulting probability
map indicates the likelihood of a line at specific points in the
input image.

3.2 3D wireframe reconstruction

In the majority of MR systems, such as Microsoft HoloLens,
a variety of sensors equipped with their respective coordinate
frames are employed. Visible light and depth cameras stand
out as the main sensor types crucial for scene reconstruction
within an MR system. Each camera sensor (visible light and
depth) is associated with a specific coordinate system, while the
device itself maintains a unique coordinate system as the origin
frame. The known intrinsic parameters of the camera sensors,
estimated during calibration, in conjunction with the known
pose values of the visible light and depth cameras relative to the
origin coordinate system, enable the dynamic transformation of
data captured by these sensors to the device’s origin coordinate
system during runtime. IMU sensors, including accelerometer,
gyroscope, and magnetometer, contribute to determining both
the relative and absolute poses of the device. Furthermore,
in the high-tech MR devices such as the Microsoft HoloLens,
the utilization of camera and depth sensor data enables the
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execution of SLAM techniques. This allows for accurate self-
positioning within the environment, ensuring that the pose of
the MR device is consistently known relative to the real-world
reference point.

In the MR system, visible light camera and depth sensor
are associated with three primary frames: the 2D image
frame, the 3D camera space, and the 3D real-world coordinate
system (Figure 1 (b)). Real-world coordinate system is shared
between the depth and visible cameras. The 2D wireframes
extracted from the visible camera image frame cannot be
directly transformed into 3D space. However, by utilizing
the depth camera frame, which contains depth information,
these wireframes can be converted to the 3D real-world
coordinate system. In a synchronized depth and visible image
pair, 3D points extracted from the depth camera are first
transformed into real-world coordinates and then projected onto
the visible camera frame. The matching process guarantees
accurate preservation of depth values for the pre-extracted
2D wireframe, enabling its reconstruction into 3D coordinates
within the real-world reference.

3.3 Global localization

After converting the 2D image space wireframes to the 3D
real-world frame, two 3D models exist for the alignment: the
virtual model (BIM) and the real-world reconstructed model.
For precise alignment, this paper employs the Iterative Closest
Point (ICP) method, which minimizes the difference between
two point clouds. Assuming an initial manual alignment, ICP
fine-aligns the models. Continuous refinement during runtime
in a long path corridor, utilizing newly captured images,
effectively overcomes misalignment issues caused by drift and
refines the global pose parameters of the MR system relative to
the BIM.

4. Experiments and Results

To evaluate the efficacy of our proposed method, we first
implemented the 2D wireframe extraction network using
PyTorch. Training was conducted on images collected by
Microsoft HoloLens2 within the Block B of the Department
of Infrastructure Engineering at the University of Melbourne.
Utilizing sample codes from (Ungureanu et al., 2020), we
extracted raw streams on HoloLens2. The method was
then applied to reconstruct 3D models from the extracted
wireframes, enabling continuous global localization of the MR
in a BIM model. The system used for training employed a
Dell XPS 15 laptop equipped with a 13th Generation Intel(R)
Core(TM) i9 CPU, a NVIDIA(R) GeForce(R) RTX(TM) 4070
GPU, and 64GB (2x32GB) RAM.

4.1 Dataset and annotation

A total of 158 real RGB images, captured by the Microsoft
HoloLens 2 on the third floor of Block B, were utilized for both
network training and validation purposes. 70% of the images
were employed for network training, while the remaining 30%
were reserved for the validation. The selection of train and
validation images was performed randomly. To annotate the
images, an online tool called V7Darwin (V7Labs, Darwin) was
employed. The junctions and edges labels to be identified in
each image were generated one by one. As for the offset map, it
was generated through Python coding and exported in a suitable
format for the network.
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Figure 3. Real images with corresponding 2D and 3D wireframe
extractions: RGB image (Left), 2D wireframe (Middle), and 3D
wireframe (Right). Colour represents elevation from the floor.

Concerning the virtual model, we utilized the BIM model of
the same site, as illustrated in Figure 2 (a), which has been
employed in various prior studies, including (Acharya et al.,
2019a, Radanovic et al., 2023b). In the alignment process,
the BIM model is initially aligned roughly with the real-world
manually. Subsequently, when the device captures an image,
its 3D wireframe, if available, is employed to enhance the
alignment through the ICP method. This refinement process
can be iterated by capturing new images while moving the
device until the alignment reaches completion at the end of the
corridor.

4.2 2D wireframe

We adopted the network architecture proposed by (Zhou et
al., 2019b) for junctions and edges detection, maintaining its
structure. The backbone is a two-stack hourglass network each
consists of 6 stride-2 residual blocks and 6 nearest neighbour
upsamplers. Following the stacked hourglass feature extractor,
different head modules are inserted for each map. Each
head comprises a 3 × 3 convolutional layer to reduce channel
numbers, followed by a 1 × 1 convolutional layer to compute
the corresponding map. During training, the ADAM optimizer
is employed with a learning rate set to 10−4 for four epochs. All
the experiments are conducted on a single GPU, with a batch
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size of 4. Loss weights are configured as λJ = 2.0, λO = 0.25,
and λE = 3.0, ensuring approximately equal loss terms (λkLk

in Eq 1).

The total loss curves for the training and validation datasets
are depicted in Figure 4 (a). Notably, the loss values
for the validation dataset consistently exhibit a higher
magnitude compared to the training dataset, indicating potential
overfitting. The initial stages of training are characterized by an
exponentially decreasing trend, signifying rapid convergence
and adaptation to the training data. As iterations progress,
both curves stabilize, resulting in a smooth and straight trend.
This phenomenon suggests that the model achieves a level of
convergence, demonstrating improved generalization on both
the training and validation datasets.

In this study, in the process of 3D wireframe extraction,
a distinction was not made between junction and edge
pixels. Following the extraction of these pixels through their
corresponding heatmaps, all identified interest pixels were
employed uniformly for 3D wireframe extraction. Some
samples of extracted 2D wireframes are shown in Figure 3
(Middle). Despite the presence of numerous other textural
linear elements in the images, the network reliably extracts
only the wireframe. To evaluate the extracted 2D wireframe,
precision and recall, two standard metrics, were employed,
computed by varying the threshold between 0.4 and 1. The
comparison of precision and recall curve, as illustrated in
Figure 4 (b), was conducted on the edge pixels extracted from
the test images. A higher precision signifies a robust capability
to accurately identify the desired edge pixels within the images.
In contrast, the model exhibits low recall values, indicating its
inability to extract the majority of positive true edge pixels.
However, this limitation does not significantly impact our
primary objective, as even sparse edge points contribute to the
reconstruction of the 3D wireframe for use in our broad goal
of global localization. Consequently, a threshold of 0.8 was set
for acceptance, corresponding to a precision of 0.94 and a recall
of 0.06, ensuring the inclusion of pixels with a high probability
of belonging to true edge pixels. This strategic thresholding
enhances the reliability of the reconstructed 3D model of the
real-world.

4.3 3D wireframe-BIM alignment

In this section, we aim to demonstrate the efficacy of our
proposed method in the global localization of the MR system
within a BIM framework. Furthermore, we analyze the
effectiveness of our proposed method in mitigating the drift
issue encountered by the MR system along a lengthy corridor.
To achieve this objective, the corridor is divided into six
segments, as illustrated in Figure 2 (a), and two distinct
scenarios are defined. In both scenarios, we applied our
proposed method, aligning the BIM with the 3D wireframe. In
the first scenario, we exclusively performed the alignment using
the 3D wireframe extracted from the initial segments (Segment
1 and partially Segment 2). In the second scenario, alignment
was continuously refined at each segment as we progress toward
the end of the corridor (S6). Consequently, for whole site, in
Scenario 1, the alignment process was performed once, while
in the second scenario, we refined the alignment six times.
By having these scenarios, the effectiveness of our proposed
method in terms of global localization accuracy is evaluated in
both scenarios. Additionally, the contrasting outcomes between
scenarios highlight the significance of our proposed method in
addressing the drift issue.

Figure 4. a) Total loss curves for training and validation datasets.
b) Precision-recall curve for 2D wireframe extraction.

As illustrated in the Method section, following the extraction
of the 2D wireframe from RGB images, the corresponding
pixels in the depth map are identified, and a 3D wireframe is
reconstructed relative to the MR coordinate system. In Figure
3 (Right), several 3D wireframes generated from 2D pixels are
illustrated. Additionally, Figure 2 (b) provides a comprehensive
view of the entire 3D wireframe of the testing site. In both
scenarios, for the purpose of aligning the BIM model with
the real-world environment, an initial manual rough alignment
is conducted. Subsequently, utilizing the reconstructed 3D
wireframe and their corresponding objects in the BIM, the ICP
method is implemented to refine the alignment. The alignment
process initiates from the right side of the corridor (S1), and
by refining the registration through our defined scenarios, the
corridor is scanned until reaching its end (S6).

The corridor’s total length spans approximately 27 meters,
resulting in each segment covering around 4.5 meters. In order
to verify the capability of the method in performing global
localization with limited inputs, we endeavored to utilize the
minimum number of RGB images for reconstructing the 3D
wireframe of each segment. Specifically, 32 images that were
not included in the training set, were employed for the entire
set of segments. The chosen metric for accuracy evaluation
involves measuring the distance between the nearest points in
the two models (BIM and real-world) after alignment. Figure 5
provides a comprehensive overview of the accuracy values for
all designated segments of the corridor within the two specified
scenarios.

In both scenarios, the effectiveness of the proposed method is
evident. Despite various factors influencing global localization
accuracy, such as the quality of the initial alignment, geometric
precision of the utilized BIM, reliability of the extracted
wireframes, and the convergence ability of the ICP method, the
proposed method successfully aligns both the models. In the
first scenario, the average alignment accuracy is approximately
10 cm in the initial segments, while an accuracy of below 15 cm
on average was achieved at the end of the corridor. However,
it becomes evident that as the MR system progresses towards
S6, alignment accuracy decreases, leading to a wider spread in
registration errors, especially in S5. The substantial accuracy
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difference between the first and sixth segments in the first
scenario is unexpected, as the mentioned criteria are unlikely
to cause such a significant variation. If the virtual model
accurately represents the real-world, even with a fine alignment
in the initial segments (as we performed in Scenario 1), the
registration accuracy of the end segments should logically be
close to that of the initial segments. The notable difference
(≈5cm) is likely attributed to the drift issue in the MR system,
as no closure loop scan was performed, and SLAM localization
is affected by drift in lengthy paths, such as that presents in our
test site.

Scenario 2 is designed to assess the efficacy of the method
in mitigating the drift issue. One of the main benefits
of the proposed approach lies in its independence from
auxiliary data and a high-performance processing unit.This
enables the complete global localization process to be carried
out exclusively within the device processing unit located
on the building site, eliminating the requirement for an
external processing unit. This capability facilitates continuous
alignment during scanning, utilizing the BIM model as a
reference. Through ongoing alignment, the global pose of the
MR device can be progressively refined as it advances toward
the end of the corridor during the registration process. This
helps in addressing challenges arising from SLAM drift in scans
without loop closures. The outcomes of the second scenario
validate this assertion. As depicted in Figure 6, notably in
Segments 5 and 6, the most substantial drift issues are mitigated
through continuous alignment, resulting to a reduction in drift
of up to 4cm. In addition, as anticipated, Scenario 2 exhibits
a consistent trend in global localization accuracy values from
Segment 1 to Segment 6.

The results suggest that the significant drift does not occur
until Segment 4. However, a substantial difference between
the two scenarios becomes more apparent in Segments 5 and
6. This discrepancy can be attributed to the presence of
a turn in Segment 5, which completely alters the scanning
route. It can be inferred that within the experimental site, the
alignment process demonstrates reliability under the condition
of a consistent route without alterations in direction or entry
into new paths. The places where changes occur can be
recognized as appropriate positions for refining the alignment.

5. Conclusion and Future Works

This paper addressed crucial challenges faced by model-based
methods in achieving continuous global localization within MR
systems, particularly in dynamic construction environments.
The proposed method, focusing on the extraction and utilization
of the building structural elements such as wireframes,
demonstrates significant advantages. Employing deep learning,
specifically a deep CNN, we successfully extracted 2D
wireframes and reconstructed their 3D counterparts, enabling
efficient and precise continuous global localization.

The 2D wireframe extraction network is carefully trained and
evaluated, demonstrating its capability to identify edges and
junctions with satisfactory precision. The application of the
method in 3D wireframe extraction and subsequent alignment
with BIM models is demonstrated through experiments in a
real-world setting. The method effectively mitigated the drift
issue encountered by the MR system during a lengthy corridor
scan, depicting its adaptability in challenging environments.
The results indicated that the proposed method maintains a high

Figure 5. Localization errors for both Scenario 1 and Scenario 2.

Figure 6. The average global localization errors for both
alignment scenarios, with the trends representing the exponential

fits applied to the data.

level of global localization accuracy, especially in scenarios
involving continuous alignment.

A pivotal strength of the proposed approach lies in its
independence from auxiliary data and the ability to perform the
entire global localization process within the device processing
unit at the construction site. The fine alignment achieved
using only a single RGB image containing the building’s
wireframe. This eliminated the need for external processing
units and enhanced the feasibility of continuous alignment.
The investigation revealed a noteworthy distinction in accuracy
between non-continuous and continuous alignments, attributed
to a change in direction at a specific location altering the
scanning route. Despite this observed difference, the overall
accuracy in both scenarios did not manifest a substantial
disparity. The method’s efficacy is particularly evident in
addressing challenges arising from SLAM drift in scans without
loop closures. These benefits prove especially advantageous in
applications such as building work inspections using AR/MR
technology.

However, it is important to highlight a constraint associated
with the proposed method’s dependence on the data capturing
range of the depth sensor, which necessitates attention in future
investigations. One potential resolution could involve training
the network to predict depth values as well. Furthermore, while
the processing component of the method is highly optimized,
there is a need for a more in-depth quantitative analysis
regarding the time assessment of the entire alignment process.
Future research directions may also focus on optimizing and
validating the method in diverse construction scenarios to
enhance its robustness and broaden its applicability. This study
contributes to advancing global localization solutions for MR
devices, offering valuable insights for both current and future
research endeavors in this dynamic field.
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