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Abstract

As digital transformation accelerates in the construction industry, combining data from Building Information Modelling (BIM)
and 3D Geographic Information Systems (3DGIS) has become critical for enhanced decision-making across sectors including
construction planning, supply chain management, health and safety and sustainable waste disposal. In combination, BIM and GIS
underpin a location framework for Digital Twins across these applications. While traditionally relational databases have been used
to integrate the data into one system, they face increasing limitations in handling the massive, complex BIM and 3DGIS data.
This research investigates the potential of NoSQL databases as an alternative solution. Focusing on MongoDB, the study conducts
a systematic performance comparison with the mature relational database, PostgreSQL. BIM and 3DGIS datasets from a live
infrastructure construction project are utilised in three experiments assessing direct query, API-based retrieval, and 3D visualisation.
The results provide valuable insights into MongoDB’s strengths in managing large spatial data via flexible schemas. However,
limitations surface as data complexity and volume increases. Overall, this study concludes that NoSQL databases do offer some
advantages for optimising BIM-3DGIS integration for seamless, combined, use, but more work is needed to fully harness their
capabilities.

1. Introduction

The UK’s construction industry is undergoing a significant di-
gital transformation, driven largely by technologies such as
Building Information Modelling (BIM), Internet of Things
(IoT), and advanced data analytics (HM Government, 2015).
Since 2016, BIM has been mandated for all public sector pro-
jects, aiming to revolutionise 3D modelling and data manage-
ment for infrastructure (HM Government, 2015). This digital
transformation is expected to yield significant cost savings and
operational efficiencies (ibid.).

Key to this transformation is the concept of Digital Twins (DT),
a dynamic digital representation of an asset or infrastructure
system (National Infrastructure Commission, 2017). DT can
facilitate an immersive understanding of infrastructure func-
tionality and its relationship with the surrounding environment,
empowering both government and industry to make better-
informed decisions for future developments (ibid). Broadly, DT
may involve real-time two way communication between the di-
gital and physical environment, digital shadows (one way com-
munication) or human-in-the-loop (two way with manual de-
cision making) situations (Siddorn et al., 2022).

In parallel with DT, the UK is exploring regulations relating to
the ‘golden thread’ of information relating to the built envir-
onment, which aims to: ‘have the right information in order to
understand the steps needed to keep both the building and the
people living in it safe’(Storing your building’s information –
the golden thread, n.d.). The requirements include: information
must be kept digitally, and securely, and be a building’s ‘single
source of truth’, as well as being presented in a way that a per-
son can use (Storing your building’s information – the golden
thread, n.d.).
∗ Corresponding author

The rapid digitalisation of the construction sector has also led
to a proliferation of geospatial big data. These data often sur-
pass current computing capacity (Lee and Kang, 2015), and are
typically characterised by the five ’Vs’: Volume is the sheer
amount of generated data; Velocity is its rapid generation and
distribution; Variety refers to the different data formats; Vera-
city concerns reliability; and Value is about the actionable in-
sights derived from the data (Anuradha et al., 2015).

Amongst the varied data being generated is location data (geo-
spatial data, that can be related in some way to a place on,
above or below the surface of the earth). Construction DT are
intrinsically location DT: they can underpin construction chal-
lenges such as construction site planning, real-time monitor-
ing for health and safety or progress tracking, stakeholder en-
gagement and logistics (see Section 2.1.1). Modelling these ex-
amples requires data that includes both engineering detail and
a wider context/surrounding the generated data spans BIM and
geospatial disciplines.

The combination of BIM and 3D Geographic Information Sys-
tem (3D GIS) underpins both construction DT and the golden
thread: ”since location is a common attribute among different
datasets it can be used to combine and integrate them” (Geo-
spatial Commission, 2023). The resulting framework enables
a multi-scale data anchor, where additional data can be linked
(via a join) with a real world location in the integrated envir-
onment, with the granularity (from detailed engineering data to
generalised 2D mapping) selected as appropriate.

To date, relational databases (Section 2.3.1) have primarily been
used to create an integrated location framework. However,
NoSQL databases - designed to store large quantities of data
in a distributed environment - may also show promise (Section
2.3.2). There has been little comparative research as to how
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these new database types perform with big geospatial vector
datasets. This research addresses the question:

How does a NoSQL database perform in storing and querying
BIM and 3DGIS data, when compared to a relational database?

2. Background and Literature Review

2.1 Context

To examine this subject within a real-world context, this re-
search was conducted in collaboration with a major UK con-
struction firm., one of the leading global corporations special-
ising in construction and infrastructure development. They cur-
rently rely on relational databases for storing and managing 3D
data and proprietary formats for BIM, and face challenges in
efficiently querying and retrieval of large 3D models, which are
used to facilitate visualisation on web platforms, to better in-
form decision-making processes and to enable data democrat-
isation - i.e. remove the data from silos where expert users are
needed to access and explore it, and enable it to be combined
with other data across the organisation.

2.1.1 Digital Twin Applications for Constructions Am-
mar et al. (2022) identify several applications of DTs includ-
ing facilitating information flow and data transparency between
stakeholders by providing accurate and up to date document-
ation (Ammar et al., 2022) and providing a collaborative en-
vironment with a single source of truth (Ammar et al., 2022).
DTs could enable real-time monitoring and real-time tracking
of construction sites allowing more informed decisions to be
made by utilising all the available data (Thomas and Bowman,
2021). They are relevant for construction site logistics and
visual presentation of data is a key component of its success-
ful implementation (Greif et al., 2020).

2.2 Defining Relational and NoSQL Databases

2.3 Databases

A database is a computerized record keeping system (Date,
2004) whilst a database management system (DBMS) is the
software that handled access to the data in the database (Date,
2004). Databases are large (making use of both primary and
secondary storage), shared (multiple users have simultaneous
access to the data), persistent (data is not destroyed on power
outage), ensure data privacy (users may be limited as to what
data they can access) and should be efficient in performance
(Atzeni et al., 1999). Thus, DBMS have key functions that
encompass storing data and facilitating concurrent sharing to
a large user base (Atzeni et al., 1999). They also offer the
key component of ad-hoc querying due to data independence
(Date, 2004) - the ability to slice and dice the stored data in
many different ways, and create different views of the data de-
pending on analytical/application requirements, without need-
ing to write additional code.

2.3.1 Relational Databases A relational database employs
tables composed of rows and columns to structure data, often
spanning multiple tables linked through primary and foreign
keys to depict relationships (Atzeni et al., 1999). It stores in-
terconnected data following the relational model, where each
table’s rows are records with unique identifiers, and columns
hold attributes, facilitating establishment of relationship among

data (ibid). Structured Query Language (SQL) is the standard
language used for relational databases.

Traditionally, relational databases have been the primary
choice for managing geospatial data (Guo and Onstein, 2020;
Gonçalves et al., 2021). 3D data is commonly stored in rela-
tional databases, such as Oracle and PostGIS (Mao et al., 2014;
Višnjevac et al., 2017). However, according to (Baralis et al.,
2017) and (Višnjevac et al., 2017), relational databases have
various drawbacks when it comes to geospatial big data stor-
age, in particular for BIM related information (Munawar et al.,
2022) and high concurrency queries or large-volume data ac-
cess for geospatial applications.

2.3.2 NoSQL Databases When facing rapid transaction
challenges in sectors related to online retail and website search,
and benefiting from the emergence of commodity hardware a
number of organisations developed NoSQL databases to de-
liver improved performance for complex and massive datasets
(NoSQL, 2018) (e.g. Amazon’s DynamoDB (DeCandia et al.,
2007), Google’s BigTable (Chang et al., 2008), Apache’s Cas-
sandra (Apache, 2014)). NoSQL - Not Only SQL - can refer
to schema-less, schema-free, or flexible schema guidelines to
data modelling (Asaad et al., 2020). NoSQL databases have
gained prominence due to their inherent capability to manage
large volumes of data, particularly in the context of complicated
and heterogeneous objects, a capacity that surpasses traditional
relational models (Nassif et al., 2020).

In general, there are four types of structures that fall within the
category of NoSQL (Krstić and Krstić, 2018; Dancuk, 2020;
IBM, n.d.)):

• Key-value: Store data as a collection of key and value pairs
• Document: Store data in documents and typically in

JSON, XML, or BSON formats
• Graph: Store data in nodes (entities) and edges (relation-

ships) where edges define relationships between nodes
• Column-oriented: Store data in columns instead of rows.

In a location/geospatial data context they have been used to
store large point clouds (Boehm and Liu, 2015) and IoT sensor
data (Hong et al., 2023).

Table 1 describes differences between Relational and NoSQL
databases(Krstić and Krstić, 2018; Dancuk, 2020; IBM, n.d.))

2.4 BIM and 3D GIS Integration and Interoperability

Interoperability is the ability of a system, or components of a
system, to provide information portability and inter-application
cooperative process control (Bishr, 1998). Extensive research
into resolving ”semantic heterogeneity” (Bishr, 1998) of BIM
and GIS is underway - where a single feature such as a building
is represented using a different data model in different systems
(Roxin and Hbeich, 2019; Guyo et al., 2021). Challenges relat-
ing to syntactic heterogeneity, where geometry is represented
in different ways (Bishr, 1998), are also being addressed (Liu
and Ellul, 2022; Borrmann et al., 2015). As an intermediate
approach, a DT location framework does not require full data
interoperability between BIM and 3D GIS, but rather achieves
integration - brining the data into one system for combined
analysis - via minimal interoperability concepts which seek to
identify any basic commonality as an initial step prior to full
semantic mapping (Mulquin, 2023) - in this case, the location /
coordinate information is common to both datasets.
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Relational NoSQL
Model Tables with rows and columns Key-value, document, graph, column-oriented
Data Strict data structures Can be structured, semi-structured or unstructured data
Schema Fixed Flexible
Scalability Mainly vertical by upgrading hardware Sharding/horizontal with more servers to distribute load
Transaction
Support

ACID (Atomicity, Consistency, Isolation and Durability)
properties: • Atomicity: All transactions must either suc-
ceed entirely or fail completely. • Consistency: rules must
ensure validation and prevent corruption. • Isolation: Con-
current transactions are not allowed to interfere with each
other. • Durability: The outcomes of executing a transac-
tion are final, even when failures occur.

Mostly follow BASE (Basically Available, Soft State,
Eventual Consistency) properties: • Basically Available:
Every user can execute queries, and the database distrib-
utes data across multiple systems to avoid a complete out-
age. • Soft State: The state of the database can evolve over
time. • Eventual Consistency: Given a functioning system
and sufficient time, the database will attain consistency.

Table 1. Relational versus NoSQL Databases

2.5 Database Performance Comparisons

Baralis et al. (2017) provided an in-depth analysis of four data-
bases for cloud-based applications. Their research illustrated
that while Azure Document DB had quick response times,
Azure SQL Database showed stronger scalability. On the other
hand, Sharma et al. (2018) focused on identifying the best data-
base for GIS applications. They reported MongoDB has con-
sistently outperformed both PostgreSQL and Neo4j, especially
in the context of geotagged data queries. Pietroń (2019) meas-
ured the performance of selected databases in processing large
geospatial datasets, establishing that MongoDB often surpassed
PostGIS, especially when enlarging the search area. Mean-
while, Treviño Villalobos et al. (2020) aimed to determine the
best fit database for supporting a Web Map Service. Their re-
search evidenced that PostGIS is more apt for managing com-
plex geospatial data types, while emphasizing the importance
of multiple factors in selecting a DBMS. Lastly, (Makris et al.,
2021) compared MongoDB and PostGIS for managing detailed
spatio-temporal queries. They found that PostGIS often per-
formed better, especially with indexes.

3. Data

Two types of data are used in this research - BIM for a road
construction project and 3D GIS topographic mapping of the
surrounding area (at Level of Detail 1 (Kutzner et al., 2023)).
BIM is delivered as 15 files in Industry Foundation Classes
(IFC) format (International Standards Organisation, 2018), ver-
sion 2x3, with a total size of around 12.9 gigabytes, using a
local grid referencing system. A screenshot of the IFC data is
shown in Figure 1. IFC is an open, international standard (ISO
16739-1:2018) and is vendor-neutral (International Standards
Organisation, 2018). It is not used for storing BIM data, but is
used to exchange information from one party to another for a
specific business transaction (Industry Foundation Classes - An
Introduction, n.d.).

GIS data was sourced from Digimap’s (Edina DigiMap Service,
n.d.) Ordnance Survey (OS, the National Mapping Agency of
Great Britain) Collection where building footprint polygons for
the intended area of study were downloaded, part of the OS
MasterMap (Mastermap Topography Layer, n.d.) topographic
mapping dataset. Building heights are also included in the data-
set. The downloaded data was in Esri’s file geodatabase format
with a total size of about 200 megabytes. Extrusion is per-
formed to create 3D geometry.

4. Method

4.1 Selecting a NoSQL Database

4.1.1 Developing Selection Criteria Table 2.3.2 shows
support for geospatial data in various NoSQL databases. Ex-
panding upon that foundation and with the understanding of the
dataset and communication with construction partner’s team,
a set of criteria for qualitative comparison among different
NoSQL databases was developed. Each criterion is assigned a
weight based on an evaluation of its significance in addressing
the research topic. Table 2 shows the selection criteria

Within the above criteria, ratings from 5 to 1 were given de-
pending on how the selected NoSQL databases met require-
ment: fully supported = 5; supported = 4;partially supported
= 3;limited support = 2; not supported = 1.

4.2 Test 1 - Inserting Data

The hardware for performance testing was a Lenovo device
with an AMD Ryzen 7 4800H with Radeon Graphics @
2.90 GHz, 16GB RAM and a solid state drive. Safe Soft’s
FME (FME By Safe Software, n.d.) was used to import the
data (both the IFC and the 3D building models), transform-
ing/georeferencing the IFC from local coordinates to British
National Grid for PostgreSQL (PostGIS, n.d.) with the Post-
GIS extension (PostGIS, n.d.). A transformation of the data
from British National Grid to WGS84 is required for MongoDB
(as the latter does not support British National Grid), and Mon-
goDB’s (MongoDB, n.d.) JSON importer was used to import
the resulting GeoJSON data. Five different-sized datasets were
created for the IFC data, and five additional datasets created for
the 3D GIS data, to enable queries to be run to understand how
the databases perform under varying loads, with the data selec-
ted to test NoSQL suitability for the static 3D city models and
BIM that are the focus of this paper.

4.3 Test 2 - Direct Query

Select queries were conducted for the above datasets, using
PGAdmin (PGAdmin, n.d.) for PostgreSQL (PostgreSQL, n.d.)
with the PostGIS extension (PostGIS, n.d.), with SQL select
statements (select * from) issued. The MongoDB (MongoDB,
n.d.) shell was used to query the MongoDB system, by run-
ning find queries (db.collection.find(query)). Both clients were
installed on the same machine as the server in order to avoid
network latency.

4.4 Test 3 and 4 - API Query and Retrieving Data for Visu-
alisation

NodeJS (NodeJS, n.d.) APIs were created to connect to the
database servers. Two tests were carried out - a URL-based API
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# Criterion Descriptions Wt
1 Native storage of spatial data Handles spatial data without the need for third-party extensions 0.15
2 Supports geometry types Stores points, lines, polygons, multi-points, multi-polygons, and geometry collec-

tions?
0.25

3 Supports spatial operations Supports spatial functions and operations such as spatial join, buffer, intersect, con-
tains, and distance calculations?

0.15

4 Supports spatial indexes Offers spatial indexing to optimise query performance over large spatial datasets? 0.15
5 Supports GeoJSON Stores data in GeoJSON and JSON formats - i.e. web-based open standard formats 0.10
6 Supports coordinate reference

system (CRS)s
Stores data in different coordinate systems? 0.10

7 API support Can be extended to retrieve and interact with the data through Application Program-
ming Interfaces (APIs)

0.05

8 Documentation Availability of comprehensive documentation specifically focusing on geospatial fea-
tures of the database, ensuring easier implementation and troubleshooting

0.05

Table 2. Criteria for evaluating geospatial suitability of different NoSQL databases

GeoJSON retrieval, and retrieving the test datasets for display
inside a CesiumJS (CesiumJS, n.d.) globe environment.

5. Results

5.1 Selecting a NoSQL Database

Data Model Database Name Support for spatial
(native)

Key-value Redis Yes
Document MongoDB Yes
Document CouchDB Yes
Graph Neo4j Yes
Column Cassandra No
Column HBase No

Table 3. Popular NoSQL Databases

A list of popular databases (Table 3 was generated combining
information from (Guo and Onstein, 2020) and (Gonçalves et
al., 2021). The selection criteria were then applied through a
desk-based review, with results shown in Table 4.

To assess performance comparison between a NoSQL and a re-
lational database in the context of BIM and GIS data manage-
ment, it is important to ensure that the NoSQL can handle a
wide range of geometries and support a variety of spatial op-
erations. MongoDB stands out as the most suitable NoSQL
candidate for this purpose: Couchbase aligns with MongoDB
regarding geometry types, however its spatial operators are lim-
ited to a bounding box operation. Neo4j supports point geo-
metry only and it has a restricted spatial operation where it cov-
ers only distance calculation among various point types. Mon-
goDB supports a wider range of geometry types and offers di-
verse spatial query operators. Therefore, the MongoDB data-
base was selected for the next phase of research.

5.2 Test 1 - Inserting Data

As shown in Figure 1, one individual 3D object could consist of
tens of thousands of vertices for geometry. As such, both BIM
and 3DGIS data were classified into five categories of varying
sizes using a Data Sampler tool in FME (which creates subsets
of the data), each category representing different complexities
and number of vertices (Table 5).

5.3 Test 2 - Direct Query

Figure 2 and Figure 3 illustrate the results of a standard com-
mand line or PGAdmin query for the different dataset sizes. As
can be expected, response times for the smaller datasets (ifc5

Figure 1. Vertices in a Single Feature

and gis5) are lower than those for larger data sizes. There is
an inverse trend in terms of the comparatives - MongoDB out
performs PostgreSQL/PostGIS for larger datasets, but slower
retrieval times are shown for the very smallest datasets.

Figure 2. Direct Retrieval Times in ms, BIM Data
(Orange=MongoDB, Blue=PostGIS)

Figure 3. Direct Retrieval Times in ms, GIS Data
(Orange=MongoDB, Blue=PostGIS)

5.4 Test 3 - API Query

10 API calls were to each database for each dataset (200 in
total). Figure 4 shows the average response time for query-
ing BIM via these APIs. A consistent pattern was observed
– response times increased for both databases as the size of
the queried data escalated from ifc5 to ifc2. Both PostGIS
and MongoDB failed to return results for the largest dataset
(ifc1), possibly indicating limitations in handling extensive data
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S/N Criteria Weights Redis MongoDB Couchbase Neo4j Cassandra HBase
1 Native storage of spatial data 0.15 0.75 0.75 0.75 0.75 0.15 0.15
2 Supports geometry types 0.25 0.50 1.25 1.25 1.00 0.75 0.25
3 Supports spatial operations 0.15 0.60 0.60 0.45 0.60 0.45 0.15
4 Supports spatial indexes 0.15 0.45 0.60 0.30 0.60 0.30 0.15
5 Supports GeoJSON 0.10 0.50 0.50 0.50 0.10 0.10 0.10
6 Supports coordinate reference sys-

tem (CRS)
0.10 0.40 0.40 0.30 0.30 0.40 0.10

7 API support 0.05 0.15 0.25 0.25 0.25 0.15 0.25
8 Documentation 0.05 0.20 0.25 0.20 0.20 0.15 0.15

Total Weighted Score 3.55 4.60 4.00 3.80 2.45 1.30

Table 4. Comparison of criteria matrix and weighted score for selected NoSQL databases

Datasets 3D Object Count

BIM

ifc1 28848
ifc2 14424
ifc3 9616
ifc4 7212
ifc5 5769

3DGIS

gis1 6564432
gis2 23020
gis3 15346
gis4 11510
gis5 9208

Table 5. Dataset Insertion Results

volumes. As for the remaining data sizes, MongoDB consist-
ently outperformed PostGIS, showing quicker response times
across the board.

Figure 4. API Retrieval Time in ms, BIM Data
(Orange=MongoDB, Blue=PostGIS)

Figure 5. API Retrieval Times in ms, GIS Data
(Orange=MongoDB, Blue=PostGIS)

For 3DGIS queries (Figure 5), both databases exhibited an in-
crease in response time as the size of the data increases from
gis5 to gis1. It was observed that MongoDB consistently out-
paced PostGIS in all data sizes. The most noticeable perform-
ance difference was with the largest dataset (gis1), where Mon-
goDB’s response time was less than half of that for PostGIS.

5.5 Retrieving Data for Visualisation

Table 6 shows the results of data visualisation using CesiumJS,
with Figures 6 and 7 showing partial visualisations - the ifc5
and gis5 datasets respectively.

In terms of performance evaluation, another set of 200 queries
was executed via Cesium, with each database responsible for

Figure 6. Partial BIM Dataset (ifc5) Displayed in Cesium

Figure 7. Partial GIS Dataset (gis5) Displayed in Cesium

Database ifc1 ifc2 ifc3 ifc4 ifc5
MongoDB N/A N/A 17304.3 12335.8 11472.3
PostGIS N/A N/A N/A 19987.5 17954.3
Database gis gis2 gis3 gis4 gis5
MongoDB 10600.1 9843.4 7649.9 7146.8 6269.1
PostGIS 14316.1A 13482.7 10372.7 10240.1 9090.3

Table 6. BIM and GIS Queries via Cesium (N/A means test was
not completed

100 queries across the five varying sizes of BIM and 3DGIS
data. Both PostGIS and MongoDB failed to visualise for the
larger BIM datasets (ifc1 and ifc2). MongoDB was able to suc-
cessfully handle the medium-sized dataset (ifc3), outperform-
ing PostGIS which failed in this case as well. For the smaller
datasets (ifc4 and ifc5), PostGIS and MongoDB managed to
return results, albeit with considerably longer response times
compared to previous experiments. MongoDB notably outper-
formed PostGIS in these instances, delivering quicker response
times by some margin. For example, with the ifc4 dataset, Mon-
goDB was approximately 7600 ms faster, and for the smallest
dataset, ifc5, MongoDB was about 6500 ms quicker.

On the other hand for 3DGIS retrieval via Cesium, both Post-
GIS and MongoDB managed to process all five sizes of 3DGIS
data, as presented in Table 6. Here, MongoDB consistently out-
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performed PostGIS across all dataset sizes. For the largest data-
set (gis1).

6. Discussion

The aim of this research was to compare performance of
NoSQL databases and relational databases for facilitating the
incorporation of BIM and 3DGIS into a common environment.
The study was approached in the context of a large construc-
tion firm’s real-world data management issues, particularly the
prolonged retrieval times for large 3D models that affect user
interaction and decision-making.

MongoDB was selected due to its ability to handle diverse geo-
spatial geometry types and greater spatial capabilities.

6.1 NoSQL Support for Spatial Data Storage

The selection of MongoDB mirrors many of the previous re-
search studies have opted for MongoDB when comes to dealing
with geospatial data tasks(Pietroń, 2019; Treviño Villalobos et
al., 2020; Makris et al., 2021).

More broadly, the qualitative review revealed that most NoSQL
databases offer limited support for geospatial data when com-
pared to relational databases such as PostgreSQL/PostGIS.
Popular NoSQL databases currently provide only basic fea-
tures: basic spatial indexing with geohash, and a limited set
of spatial operations. In contrast, mature spatial databases like
PostGIS offer comprehensive geometry support, various co-
ordinate systems, spatial analytics functions, and compliance
with international standards. Additionally, the lack of support
for a broader range of coordinate systems beyond WGS84 re-
stricts the practicality of NoSQL, especially in areas where ac-
curacy matters, such as construction. The limited spatial cap-
abilities in NoSQL databases suggest that while developers re-
cognise the need for spatial data management, functionality and
the ability to support a wide range of geospatial data is not yet
a top priority(Guo and Onstein, 2020).

6.2 Data Interoperability and Coordinate Transformation

The research used IFC files as provided by the construction
firm. A significant challenge involved converting these 3D BIM
models into intermediate GeoJSON/JSON formats before in-
serting them into the MongoDB database. Multiple approaches
were employed to import the BIM data into MongoDB. During
this process, it was observed that the geometry type converted
from IFC to GeoJSON was in “MultiLineString” despite the
original IFC models being in B-rep format. This resulted in a
higher number of vertices for data stored in MongoDB com-
pared to PostGIS (Table 5). These findings of data incompatib-
ilities aligned with interoperability issues when converting BIM
data, as reported by (Fosu et al., 2015; Noardo et al., 2020).

6.3 Performance Comparison

The three experiments conducted provide some empirical in-
sights into the geospatial big data handling capabilities of Mon-
goDB in comparison to the relational database, PostgreSQL.
When it comes to direct queries from databases, MongoDB dis-
played promising results, particularly in retrieving large and
complex BIM and 3DGIS data more efficiently than Postgr-
eSQL. This highlights MongoDB’s strength in using a flexible
document schema to store 3D data in various formats, includ-
ing GeoJSON (Višnjevac et al., 2017). However, MongoDB

was comparatively slower when dealing with smaller data sizes,
highlighting PostgreSQL’s maturity in these scenarios. Thus,
MongoDB’s performance gains appear to be closely tied to the
complexity and volume of the big data, which aligns with find-
ings from (Pietroń, 2019).

In the experiment involving the web API endpoint, which aimed
to replicate real-world spatial data retrieval, MongoDB de-
livered strong performance across the board for both BIM and
3DGIS datasets. However, both databases faced challenges
when dealing with the largest BIM data (ifc1), revealing lim-
itations as the complexity and sizes scaled, although it is yet to
be determined if this was due to the hardware used for testing.
Finally, on visualisation tests using Cesium, MongoDB once
again demonstrated superiority over PostgreSQL for handling
of both BIM and 3DGIS datasets across all data sizes. However,
large data volumes remained a challenge for both databases.

Overall, while MongoDB holds potential for effectively man-
aging extensive spatial data applications related to BIM and
3DGIS, it is worth noting that these advantages tend to diminish
as complexity and data volume grows exponentially. It can also
be noted that the while the hardware used for comparison is well
above the minimum specification for both servers (MongoDB
requires 4GB RAM, PostgreSQL requires 2GB) in practice this
may also impact results.

6.4 NoSQL for Spatial Data Query

Due to their restricted geospatial analytical options, this study
focussed on the storage and retrieval potential of NoSQL data-
base, mirroring real-world situations through the use of both
command line and visualisation queries. Our results mirror the
studies in Section 2.5 highlight a consistent theme emerges –
while NoSQL databases, especially MongoDB, exhibit merits
in specific scenarios, relational databases like PostGIS gener-
ally fare better in complex geospatial tasks (which are not avail-
able directly from MongoDB without additional software devel-
opment and/or use of external libraries).

6.5 Data Engineering Challenges for Construction Digital
Twins and the Golden Thread

As noted in Section 2.1 one of the key challenges facing the
built environment in the UK today is the concept of a ’golden
thread’ that is the record of the structure from cradle to grave.
Conceptually, this requires all relevant data to be stored and
shared in an open format, that can easily be migrated through
the project’s life cycle, and can be accessed by any software that
wishes to make use of this data. To enable this reality, changes
in the data should immediately be shared to all users in real
time. This is fundamental for both construction monitoring and
health and safety applications

To date, BIM data is stored and managed in proprietary formats,
with IFC used as an exchange format. As noted, interoperabil-
ity between IFC and GeoJSON is challenging, in particular due
to geometry modelling approaches - boundary-representation
versus constructive solid geometry (Donkers et al., 2016). Ad-
ditionally, IFC only provides a static snapshot of the BIM
model. This contrasts with the multi-user, real-time approach
enabled by DBMS (Section 2.3).

A key assumption of the work also involved the use of
GeoJSON, with a primary focus on geometry. This was driven
by the fact that GeoJSON is the data format predominantly used
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in web mapping, and can be directly visualised in CesiumJS
(GeoJSON Data Source, n.d.). It is also a document format and
thus handled natively by MongoDB. As a document format, it
has the advantage of providing directly embedded options for
a single geometry to be linked to multiple data points - e.g.
a sensor to many readings - a relationship which in a rela-
tional database has to be constructed via an expensive JOIN
query. This may explain the performance issues encountered
with PostGIS, as an additional JOIN and conversion task (us-
ing ST AsGeoJSON) was required to generate GeoJSON. While
GeoJSON - and JSON formats in general - can be stored in Post-
greSQL (JSON Types in PostgreSQL, n.d.) this would degrade
performance for spatial query functionality (as a conversion to
geometry would be required).

It can also be noted that CesiumJS offers alternative options for
visualisation of large, complex datasets - in particular 3D Tiles
(Cesium 3D Tiles, n.d.). These offer a very performant option
for visualisation, but have the disadvantage of being file based
and thus not able to easily support the multi-user ad-hoc query
(including real-time update of individual features as construc-
tion progresses) offered by a DBMS.

6.6 Recommendations for Future Work

The work presented here focussed on comparing the perform-
ance of a relational and NoSQL database when handling con-
struction data, in order to enable Digital Twins and the construc-
tion golden thread. Future work should address the following:

• The experiments were conducted on a standalone com-
puter system. Assessing distributed database architectures
- and in particular the low cost, distributed, commodity
hardware that NoSQL is designed to use (Section 2.3), or
the relational database equivalent of partitioning (or even
replication) - could provide insights into scalability.

• The data types selected reflect those required to provide
the underpinning location framework - the static anchor
data to which other data can be referenced. A more real-
istic test would involve combining both static and dynamic
data - e.g. sensor data. Increasing dataset sizes, con-
sidering alternative storage formats other than GeoJSON
and adding data such as LiDAR/laser scanning data (e.g.
to support applications such as construction monitoring)
would also provide useful evidence. Extending this fur-
ther, NoSQL approaches to underpinning full digital twins
(with two-way communication between physical and di-
gital environments) would provide additional insights.

• The queries used for benchmarking related to basic re-
trieval and visualisation operations. A more comprehens-
ive assessment that includes complex spatial functions,
such as topological processing, could provide a more thor-
ough understanding of the NoSQL databases’ capabilities.
Aligned to real world case studies, these would allow the
construction partner to better understand the benefits and
issues of using a NoSQL approach to provide a primary
database for all location data storage. In particular, a list
of spatial queries used in various construction applications
- with a focus on the need for ad-hoc querying of data -
would assist with this task.

7. Conclusion

This research explored options for integrated location data stor-
age for construction applications, to underpin the development

of a location framework for construction Digital Twins and
more broadly provide an anchor point for a golden thread and
single source of truth for the built environment. The poten-
tial of storing location data in a NoSQL database was demon-
strated and some clear performance benefits were highlighted
for data retrieval for visualisation. However, the challenges en-
countered highlighted that there is still some way to go before
these end goals are reached. Proprietary data formats in BIM
require extract/transform/load procedures to convert the data to
a format where the ad-hoc querying required to enable multiple
Digital Twins is possible. Coordinate system transformation
issues were challenging and the lack of support for spatial ana-
lysis/queries in NoSQL databases means that the real-time, ad-
hoc query environment and advanced spatial functionality of a
relational database may still be preferable.
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