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Abstract

Autonomous vehicles must navigate independently in an outdoor environment using features or objects. However, some objects
may be more or less suitable for localization due to their attributes. Therefore, this work investigates the suitability of landmarks
for camera- and object-based outdoor localization methods. First, object attributes are methodically derived from the requirements
of object-based localization. The physical representation on the camera image plane, probability of occurrence, and persistence
were identified as influencing the object localization suitability. The influence of the object’s camera image plane representation
regarding object recognition algorithms is not considered or discussed, but advice on the minimum object pixel size is provided.
The first milestone was the creation of an equation for object localization suitability calculation by normalizing and multiplying the
identified attributes. Simultaneously, potential objects from the outdoor environment were identified, resulting in a structured object
catalog. The results of the equation and catalog are a ranked according to the object localization suitability in a comparison table.
Our comparison demonstrates that objects such as buildings or trees are more suitable than street lane markings for self-localization.
However, most current datasets do not include the proposed instantiated objects. The paper addresses this issue, assists in the object
selection for outdoor localization methods and provides input for the creation of future-oriented datasets and autonomous driving
maps.

1. Introduction

A significant challenge in Autonomous Driving (AD) and Auto-
mated Ground Vehicles (AGV) is the safe, robust, and autonom-
ous localization in different outdoor environments. Georefer-
enced information is the base of localization which is captured
by various sensor systems, fused, processed, and stored. State-
of-the-art localization approaches are primarily based on the
feature level (Zekavat et al., 2021). Alternatively, object-based
localization methods could enhance robustness by storing mul-
tiple information about objects.

Object-based localization methods are mainly used indoors due
to the defined and standardized environmental objects, which
reduce complexity. Outdoor localization has a higher complex-
ity due to many different object classes embedded in different
environments and weather conditions. Therefore, outdoor loc-
alization methods require high-fidelity object-level maps of the
environment as georeferenced information. The selection of ob-
jects for map creation affects the detection, pose estimation, and
vehicle relocation (Siciliano et al., 2009). Finally, the object
selection serves as the foundation for every object-based local-
ization system.

For this purpose, we present a systematic approach to the se-
lection of environment objects for the creation of visual and
object-based maps.

2. Related Work

The related work section considers machine vision localiza-
tion approaches and their datasets. The authors of the paper
’An Overview on Position Location: Past, Present and Future’,
mention that localization techniques have been integrated into
everyday life (Zekavat et al., 2021). They summarize most loc-
alization methods and categorize methods into ’visual object-
oriented localization’ approaches.

Feature-based outdoor localization approaches are mostly based
on LiDAR, camera, and RaDAR sensor systems, which enable
autarkical localization (Sattler et al., 2018, Schaupp et al., 2020,
Qin et al., 2018). These localization approaches are mainly
based on algorithms that extract key points from the environ-
ment and store these georeferenced landmarks on a map. This
idea is extended to edge-based (Ballardini et al., 2021) and
pole-based (Schaefer et al., 2021, Yu et al., 2018) approaches.

Ellipsoid approaches use artificial intelligence (AI) to recognize
objects within images. The method is abstracting the single ob-
ject from the image plane to an ellipsoid and using its midpoints
for localization (Ok et al., 2019, Tian et al., 2021, Rubino et al.,
2018). The mentioned approaches use parked cars as localiza-
tion objects. As ground truth, two methods use the Kitti dataset
(Geiger et al., 2013), and one uses the DARPA Fast Lightweight
Autonomy dataset (Paschall and Rose, 2017). The limitation of
the localization to parked vehicles is explained by the datasets
that do not include other instantiated 3D objects.
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Semantic signature localization methods associate classes of se-
mantically segmented georeferenced images with robust fea-
tures from algorithms, such as ORB or SIFT, for localization
(Murali et al., 2018, Weng et al., 2021). Weng Li et al. (Weng
et al., 2021) use eleven semantic classes near the roadside in the
Open Paris dataset (City of Paris, 2022). Similarly, V. Murali
et al. use twelve classes in their method based on the Cam-
Vid (Brostow et al., 2009) and the Kitti datasets (Geiger et al.,
2013). Both methods describe a potential improvement through
better segmented environmental data.

The localization approaches with object recognition and per-
spective-n-point transformation use key points of objects to de-
termine the relative vehicle position (Qu et al., 2015, Lecros-
nier et al., 2019). The approaches often use planar describ-
able objects or object parts, such as traffic signs, buildings,
or road markings. Their localization methods require object
visibility and description in six degrees of freedom (6DOF).
Today’s datasets and maps are mostly limited to objects in the
road space, such as road markings or traffic signs. As a result,
object recognition drops significantly in adverse weather condi-
tions and may lead to failures. A potential improvement could
be an object-based digital twin of the environment next to the
roadside.

Expanding the datasets to include a detailed, instantiated, seg-
mented environment would be a major enhancement for all object-
based localization methods Many well-known datasets provide
algorithms and methods for automated driving, such as the Kitti
(Geiger et al., 2013), CamVid (Brostow et al., 2009), Mapillary
Vistas (Neuhold et al., 2017), Cityscapes (Cordts et al., 2016),
A2D2 (Geyer et al., 2020), ApolloScape (Huang et al., 2020),
and Toronto Dataset (R. Garnett et al., 1998). They do not
provide an instantiated in a detail segmented environment and
their digitalization is strictly limited to road spaces. The LoD3
Road Space Model of Ingolstadt by B. Schwab et al. (Schwab
and Wysocki, 2021) represents the counterpart of the datasets
named above. It presents a high-quality environmental building
model, without labeled sensor data for algorithm development.

This paper addresses the question: Which objects should be in-
stantiated and segmented from the external environment so that
future object-based localization algorithms can be developed
and benchmarked?

3. Object Catalog Creation Methodology

3.1 From feature-based Localization to the object-based
Localization

Feature-based and object-based approaches tackle the challenges
of pose and position using different methods. So, feature-based
approaches are more sensitive to environmental variation, e.g.,
light conditions, view angles, and wet surfaces. Complex shapes,
deformed, and/or various scaled objects may challenge the fea-
ture extraction process. The extraction may also need appro-
priate data quality regarding real-world digitization difficulties
such as noise. Additionally, features only have limited contex-
tual information, which can lead to the context being lost in the
scene.

In comparison, object-based localization approaches may be
more robust regarding object changes and noise problems.

For example, a tree with snow can still be interpreted as a tree,
whereas extracted features covered with snow may be lost. Ob-
jects can provide context information and have spatial relation-
ships, enhancing information for localization approaches. Object-
based localization possibly needs more data processing and com-
putation power than feature-based approaches.

In summary, object-based localization may increase safety and
robustness but also increase the data processing complexity.

3.2 The basic Idea of the Methodology to create the Object
Catalog

Visual localization is generally a controlled process for estim-
ating one’s own pose and position in six degrees of freedom
(6DoF) with continuous updating based on environmental in-
formation. Figure 1 shows the information flow during the pro-
cess: The environmental information is transported over the air,
perceived with sensors, processed, and interpreted by the brain
or an electronic control unit.

Figure 1. The physical layer of localization information flow and
processing from the left to the right.

According to the physical layer, the research for the object cata-
log starts with requirements of visual-object camera detection,
pose, and positioning. With this information, real-world objects
are transferred via a camera pinhole model to an image plane,
to estimate the median individual object size during drive-by.
The median visual information in combination with statistics
like their probability of occurrence, geo-information, and life-
time create a formula for ranking the single object localization
suitability. In the second step, research of suitable real-world
environmental objects and their information for localization is
done. Lastly, for each object, the localization suitability is cal-
culated and ranked.

3.3 Localization Requirements to Objects and Object Cata-
log

The localization requirements for objects and the object catalog
are divided into the subcategories of application-specific attrib-
utes, object detection, and pose estimation.

3.3.1 Application-Specific Attributes for Localization
These attributes cover the fundamental requirements of func-
tionally safe localization and affect the creation of the object
catalog. Starting with functional assurance, T. G. R. Reid et
al. (Reid et al., 2019) describe the absolute accuracy of vehicle
localization in road space below 10cm in longitudinal and lat-
eral range and an absolute angle of 0.17◦ pointing accuracy.
According to these assumptions, the object position accuracy
has to be measured more accurately than the localization sys-
tem inaccuracy. In addition, the Safety Of The Intended Func-
tionality (SOTIF) requires a permanent redundancy of at least
three objects (ISO, 2019). The condition of overlapping and
disappearances of objects results in a minimum number of four
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persistently detectable objects. Grounded objects, such as lane
markings, should only be used as a support, as they may not
be physically detectable by the sensor system due to adverse
weather conditions or dirt.

3.3.2 Object Detection and Pose Estimation

Minimum Set of Object Detection Requirements The min-
imal requirements for possible object detection depend signific-
antly on the raw sensor data. These requirements are explained
for the camera to create a correlation between the sensor sys-
tem design and the objects. Lidar and Radar object detection
are not pursued further in this paper. Y. Cai describes in his
paper ’How Many Pixels Do We Need to See Things?’ (Cai,
2003), the minimum resolution of an object in a camera image
so that humans can recognize it. The number of pixels ranges
from 18 × 18 pixels for a face to 47 × 47 pixels for complex
objects. T. Unel et al. (Unel et al., 2019) propose a minimal
feature map for person detection of 38 × 38. This meets with
the 35 × 35 of figure detection (Cai, 2003) and leads to the as-
sumption that computers and humans of abstract pixel-based in-
formation are close together. Deriving these assumptions to the
minimum representative object size in any pose on the image
sensor plane, the size should be similar to the complex object
with 47 × 47 pixels or larger. In order to minimize the uncor-
rectable errors such as blurring, vignetting, noise, and optical
flow, the representative object display may need to be enlarged.

The minimal object representation size assumption can be used
for optical path and system design. Figure 2 shows the de-
pendency of the object to sensor distance and the object size.
This must be considered as a scaling factor in the sensor sys-
tem design. Based on the assumptions above and the premise
that the object side length and the pixel side length are on one
plane, the formula for the camera can be set up according to
the intercept theorem to fulfill the minimal object detection re-
quirement:

Figure 2. Simplified pinhole model for object representation on
camera image plane. Used for proposed minimal object

detection requirements and normalization.

lobj,img/d

lpixel/f
≥ npixel,min (1)

Modern object detection algorithms such as improved MMF-
YOLO (Zhang et al., 2022) use feature fusion to detect objects
smaller than 32×32 pixels and relate the object-detectability to
their size. For simplicity and safety, we propose that projected
pixels in line should be greater or equal to the assumed detec-
tion requirement of complex scenes with
npixel,min = 47 pixels (Cai, 2003).

Disruptive Influences The essential prerequisite for object-
based localization is its detection. Disruptive influences such as
bad weather, fading, darkness, and sources of interference are
dynamic effects that significantly impact object detection. The
influences are dependent on both distance and location and are
considered to be complex to describe. Therefore, the attributes
are not further considered.

Physical Attributes for Object Description Physical attrib-
utes describe objects in their geometric shapes, surfaces, and
material attributes. Geometric attributes can be divided into
two- or three-dimensional shapes, such as traffic signs or cars.
Current datasets annotate objects with segmented 3D bounding
boxes. A more accurate annotation with instantiated 3D bound-
ing boxes is a minimum requirement. A further improvement
could be the use of a more accurate CAD or mesh model.

The second component that contributes to object detection and
pose estimation is surface texture and material behavior. The
ideal solution would be to digitize the surface behavior of the
objects by capturing the absorption, reflection, and transmis-
sion behavior over the electromagnetic spectrum. Further, this
would lead to the abstraction of different electromagnetic sensors,
viewing angles, and light interference and reduce the gap between
the real and simulation world.

Geographical Object Attributes The geographical attributes
describe the object on the map. These attributes are categorized
into location, environment, and data format.

The derivation of the object location results in the attributes di-
gitizability, statistics, update cycle, and persistence. The di-
gitizability of an object requires its recording, detection, and
pose estimation from a distance. To achieve this, objects should
be located within a radius of 300m around the vehicle, within
sight distance of the sensor system. The radius was chosen to
provide a sufficient number of objects for object-based localiz-
ation methods in rural environments. Leading from this, the at-
tribute probability of occurrence (PO) measured in objects per
kilometre can be derived. The persistence of objects and object
changes correlate with the update cycle of the map. For these
two attributes, the key indicators can be infrastructure mainten-
ance and traffic counts.

Objects and object classes should be assigned to environments
depending on their appearance-behavior. The goal is to create
a cluster of objects that fulfill the object density for function-
ally safe localization. The suggested environment categories
are city, countryside, forest, nature, and highway.

3.4 Perspective Normalization of Object Imaging

The idea of perspective normalization of object imaging is to
get an average projected area of the object on the camera image
plane by driving along. It is assumed that the average projec-
ted area is a factor for the suitability of the object for localiz-
ation methods and indirectly as well for its recognition. The
individual landmark objects are located at different positions in
the road space, so they are imaged differently on the camera
image plane, depending on their relative distance and 6DOF
from the vehicle. The object points are transformed from the
3D world via transformation matrix P to the 2D-pixel coordin-
ates (2) (Hartley and Zisserman, 2011).

xy
1

 = P


X
Y
Z
1

 (2)
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Assuming that the vehicle with a forward-facing camera travels
along a straight road, the longitudinal distance to the object
decreases and the object’s projected area on the image plane
changes. The normalization is done via the integration of the
object’s projected area along the longitudinal distance dx ∈
[dmin, dmax] to a frustum and its division through the distance
(3). An example of a house projected frustum is shown in Fig.
3.

aimg,norm =
1

dmax − dmin
·
∫ dmax

dmin

aimg(xveh) dx (3)

In addition, there may be a certain loss of object projection on
the camera image plane due to an object being out of the Field
of View (FoV) or the projection extending beyond the image
plane.

Figure 3. Real-world house-object (right) projections on the
camera image plane (left) while driving along in X direction.
The connecting lines between the image planes indicate the

frustum of integration.

3.5 Object Localization Suitability

The object localization suitability is calculated according to the
basic idea in subsection 3.1. As a result, the object suitabil-
ity was chosen to rely on three factors. The first factor is the
normed single object dimension aimg,norm on the camera im-
age plane while driving along. The second is the object prob-
ability of occurrence (PO) in the environment as an essential
factor. Additionally, object persistence (PS) affects the updat-
ing map cycles. All three factors are multiplied without weight-
ing to calculate the object localization suitability in formula (4).

suitability = aimg,norm · PO · PS (4)

The equation was kept simple to allow reproducibility.

3.6 Object Classes for the Creation of an Object Catalog

This section lists potential-spatiotemporally static objects and
classes for localization methods in the German road space. Ob-
jects or object classes must be replaced, added, or removed for
other countries and regions. This paper does not claim com-
pleteness of the objects and object classes. It only provides a
collection of suggestions.

The referenced datasets in section 2 only annotate the data of in-
dividual objects into object classes. Hence, note that this paper
addresses the proposal of an instance and panoptic segmented
annotation of objects. The explanation of the classification fol-
lows the top-down principle and the approach of logical, self-
explaining ontology. The presented classification is intended to
serve as a template for future related work and to create consist-
ent naming conventions.

At the top level, an object distinction is made between artificial
and natural objects.

3.6.1 Artificial Objects
Artificial objects are human-made and can be divided accord-
ing to their function and geographical locality into the ground,
street furniture, buildings, city furniture, supply and com-
munication infrastructure, orientation objects, and miscel-
laneous.

The class ground is assigned grounded surface areas with their
associated function. Examples are sidewalks, roads, or parking
lots.

The street furniture class includes all objects for traffic guid-
ance and vehicle routing. For a better overview, the class is sub-
divided into traffic signs, lightning, restraint systems, obstacles,
and mounting systems. Traffic signs can be found in the Ger-
man traffic sign catalog, including traffic signs, wayfinding,
road markings, traffic barriers, and traffic flow control. Lighting
equipment is divided into traffic-relevant light signal systems,
such as traffic, warning, and street lights. Streetlights are only
regulated in their lighting behavior by EN132301 and are not
standardized in appearance. Passive protective devices, such as
traffic barriers are assigned to traffic restraint systems. Traffic
obstructions on the road, such as pollards or big plant pots, im-
pede or stop traffic flow. The last group is mounting systems
that distance many objects, like traffic signs, from the ground.

The building class is a central part of human civilization and
living. Buildings tend to have large dimensions that make ob-
ject detection in urban areas more challenging due to short dis-
tances. This is caused by the requirement that objects must
be in the sensor FoV as a whole. Therefore, we propose to
divide buildings into granular sub-objects, like masonry, win-
dows, doors, roof ridges, gutters, signs, and lighting.

The class city furniture contains objects that may support loc-
alization, like trash cans, clocks, telephone booths, billboards,
etc. Sporadically appearing objects, like speed cameras or road-
side bales, should be classified as miscellaneous.

Supply and communication infrastructure is described in the
German spatial ordinance. That means power lines, pipelines,
and waterways are planned and built parallel to linear route cor-
ridors like roads and rails. Therefore, objects of these classes,
such as power poles, are primarily found in rural areas beside
roads. Maintenance-related buildings, like maintenance holes
and fire hydrants, are also assigned to this class. In addition, ra-
dio masts for telecommunication are assigned to this category.

Objects that are memorable to people are called orientation
objects (Gooley, 2020). This object class includes wayside
crosses, birdhouses, boundary stones, and oversized symbols
with a recognition value.

3.6.2 Natural Objects
Localization in natural environments has always been essential
for human survival. Throughout of evolution, the localization
instincts of humans decreased. Applied to today, this should
be considered as an essential part of the localization methodo-
logy, because it can be used in regions with weak infrastructure,
such as rural areas or unpaved roads. For object-based localiz-
ation, natural objects are divided into the classes of vegetation,
bodies of water, landforms and animal -ade buildings. The
vegetation includes trees, bushes, meadows, and fields. Small
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plants, such as flowers, are not maintained to due their short
lifespan and size. Bodies of water make their mark on the
landscape in the form of rivers, lakes, or seas. Landforms can
be cliffs, hills, mountains, forest edges, or silhouettes. Animal-
made buildings such as anthills or bird nests can point the way.

The number of different classes of natural objects is much smal-
ler than the number of classes of artificial objects. Nevertheless,
natural objects are omnipresent.

4. The Object Catalog

The object catalog results from listing potential object classes
with attributes according to their suitability for object-based
localization methods. An excerpt of the catalog is shown in
Table 1. The excerpt contains a subset of objects and attributes
to calculate the location suitability described in section 3.5 and
instance availability (IA) in datasets. The complete version
of the catalog with 22 objects, ten object attributes, related re-
sources, and an object classes graph, is available on GitHub at
https://github.com/Crackzero/ObjectCatalog.

object anorm PO PS suitability IA
unit [m2] [km−1] [yr] [m2km−1yr]

building 0.22222 30.78 60 68.4033 -
tree 0.07667 22.02 200 16.8844 -

lane (road) 0.17980 3.33 30 5.9933 x
edge of the forest 0.24000 1.96 100 4.7005 -
electricity pylon 0.03333 2.46 80 0.8204 -
lane markings 0.00084 3.33 5 0.2997 x
traffic signs 0.00071 37.48 16 0.2665 x

traffic barrier 0.18083 0.10 50 0.1846 ˜
street lights 0.00064 15.15 40 0.0970 ˜

anthill 0.00040 14.83 15 0.0593 -
trashcan 0.00030 5.19 12 0.0156 x
delinator 0.00027 9.73 5 0.0130 x

traffic light 0.00067 0.08 10 0.0005 x

Table 1. Excerpt of the object catalog. Probability of occurrence
(PO); persistence (PS); instance availability in datasets (IA); ’x’

as instantiated; ’˜’ as segmented; ’-’ as unavailable.

4.1 Assumptions and Column Explanation

The object image plane representation area anorm is normalized
as described in section 3.4. The focal point F = [0m, 0m,
1.2m] and the distance of the image plane f = 1m has been
adopted. The range of dx ∈ [−300m, 0m] was determined by
driving towards and along the object on the road. The size of
the image plane was assumed not to be limited by multi-camera
systems. The adopted object dimensions, areas and their associ-
ated resources can be found in the online version. The building
class represents an assumed, average German house with all its
related sub-objects like windows, doors, etc.

The probability of occurrence (PO) values were collected from
various sources. References of those are in the online version.
The values are given per square kilometer and are assumed to
be evenly distributed over the area of Germany.

The persistence (PS) is based on the mean lifetime. The influ-
ence of persistence in the formula was limited to persistence
∈ [0, 10] years. Object localization suitability was calculated
according to 3.4. The objects’ instance availabilities in datasets
were also listed to demonstrate the current situation of instance-
segmented datasets.

4.2 Results

To better understand the results, the distribution of the table is
discussed first The table was sorted by suitability from good,
large, and not-so-good, small values. In this context, suitability
should be understood as a normalized object area on an image
plane in square metres for years of durability per kilometres
driven.

Trees and buildings are located in front of the omnipresent roads.
This arrangement is probably based on the assumption that all
buildings in Germany are located along streets and that trees are
equally distributed over the area. Another critical factor is the
minimum distance to the object, which for most objects is the
possible minimum of dx,min = 1.5m to cover a full range of
possibilities. A tenfold increase in the average minimum dis-
tance to 15m and doubling the lane marking width would im-
prove the suitability of buildings just behind the lane from 6.6 to
12. Persistence is mainly irrelevant in this comparison because
of the ten-year limit.

Traffic lights and delineators are omnipresent and therefore at
the end of the table. The delineators took these places due to
their limited visible area and the traffic lights due to their low
occurrence.

5. Discussion

The presented method for the calculation of suitabilities could
be described as simple. Its weaknesses will be discussed in
this section. The formula for object suitability calculation does
not consider a weighting of the factors. Accordingly, to the
value range, the suitability is mainly influenced by the nor-
malized representation of object areas anorm and probability
(PO). The majority of values were gathered from diverse on-
line sources, accessible through the GitHub online version. The
factor anorm depends mainly on the object dimensions and the
minimum distance dmin. These values are not normed and are
estimated based on experience or median values. The suitabil-
ity calculation does not consider nested objects, features, gradi-
ents, textures, or colors, which may directly influence object
recognition. The only mention of object recognition is the pixel
requirement, which is not taken into account for reasons of gen-
eralizability. The resulting suitabilities are based on numerous
assumptions and should be viewed as estimated values with po-
tential falsification. The ranking should help to identify addi-
tional potentially suitable candidates for object-based localiza-
tion methods.

Initially, this paper proposes an object selection method and ob-
ject catalog for outdoor object-based localization methods for
automated vehicles. Consequently, no comparable work has
been found yet. The IA column in the table indicates the in-
stance availability of objects to datasets mentioned in related
work. The missing instance availabilities should be considered
in creating new or improving existing datasets in the future.

6. Conclusion

This paper shows a straightforward methodology to calculate
the object suitability for object-based localization methods. Ob-
ject attributes for potential detection, pose determination, de-
scription, and geographical attributes were derived based on
object-based localization requirements.
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The object suitabilities for object-based localization methods
include normalized object representation on a camera image
plane, its probability of occurrence, and persistence. The nor-
malization is done while driving alongside the objects beside
the road and the average projected area on a camera image
plane. The statistical values of occurrence probability and per-
sistence were gathered from various sources and can be con-
sidered as potential error sources. The method of suitability
calculation can be described as simple due to its multiplication
and limiting value functions. Further improvements could be
made by including additional attributes and weighting the in-
fluence of the values.

The main result of this paper is an object catalog in table format
that sorts objects according to their suitability for object-based
localization methods. Buildings and trees were ranked the highest
due to their omnipresent location along roads and their high
density in urban areas. In conclusion, it is advisable to include
buildings, trees, and other objects beside the road in object-
based localization methods. With the presented suitability rank-
ing, the paper prioritizes suitable objects for outdoor camera-
object-based localization methods.

The object attributes of instance availabilities present that a
large part of the environment is either absent or only partially
represented in datasets. Future datasets for object-based local-
ization methods should be developed with appropriate quality.
These data sets should include a digital twin on the object level
of the environment, as well as instantiated and segmented raw
sensor data.
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