
Integration of Movement Data into 3D GIS  
 
 

Joie Lim1,2, Filip Biljecki1,3, Rudi Stouffs1 

 
1Department of Architecture, 2Department of the Built Environment, 3Department of Real Estate 

National University of Singapore, Singapore 
(joie.lim, filip, stouffs)@nus.edu.sg 

 
 
 
 

Keywords: Movement trajectories, OD data, CityGML, Dynamizer, SensorThings, OGC. 
 
 
Abstract 
 
With the rise in usage of digital twins in the field of urban planning, the integration of data sources such as sensor data in 3D city 
models is a challenge that is often brought up. This is even more so with movement data, as they contain a geographical or 
geometrical aspect that is often overlooked. This paper looks at existing methods to integrate sensor data with 3D city models, and 
especially at the Dynamizer module in CityGML that supports the integration of dynamic data into the models directly. We look at 
how the Dynamizer module works with movement data and compare it with another method, SensorThings API. The comprehensive 
investigation we conduct involved different types of movement data, at different spatial and temporal scales, e.g. origin-destination 
public transport data in Singapore and London, migration routes in the USA, and highly detailed customer movement in a 
supermarket in China. While the Dynamizer is more flexible in representing data, it has less support and it is more restrictive when 
accessing the data. On the other hand, the FROST-Server implementation of the SensorThings API is more restrictive in representing 
data, however, accessing the data is more flexible. 
 
 

1. Introduction 

The concept of Digital Twins was initially proposed as a virtual 
model of a physical product to enable testing, optimization and 
simulations in manufacturing (Grieves, 2014). It was later 
adapted to be an integrated multi-scale simulation of physical 
entities to mirror the life of its twin for a better understanding of 
them (Glaessgen and Stargel, 2012). Over time, the concept of 
Digital Twins expanded and diverged as new industries adopted 
it and it is applied to new case studies (Guo and Lv, 2022; El 
Saddik, 2018; Kaiblinger and Woschank, 2022). Some 
examples include the manufacturing industry (Tao et al., 2019; 
Parris et al., 2016; Qi et al., 2018; Jwo et al., 2022), the medical 
field (Karakra et al., 2018), the aerospace industry (Glaessgen 
and Stargel, 2012; Reifsnider and Majumdar, 2013), and 
business (Agalianos et al., 2020).  
 
Digital twins have become popular in the field of urban 
planning and in conjunction with smart cities. Many cities such 
as Incheon, Helsinki and Singapore already have existing digital 
twins (Milner, 2021; Ruohomäki et al., 2018; Kobie, 2022), 
while others such as Las Vegas and Los Angeles are in the 
process of developing their own (Plautz, 2022; Goldin, 2022). 
They vary in implementation and usage, but refer to virtual city 
models of the built environment. They are based on 3D models 
with geometric and semantic information, and are able to 
incorporate real-time (dynamic) data to enable analysis, 
simulation and prediction to inform intervention decisions in the 
real world, in the areas of urban design, planning and systems 
operation (Dembski et al., 2020). Some examples of use include 
being used to facilitate public participation, city management 
and road life management (Bouzguenda et al., 2019; Yun and 
Lee, 2019; Svítek et al., 2020; Yu et al., 2021).  
 
Of the many challenges that one faces when attempting to 
implement an Urban Digital Twin (UDT), integration is one of 
the major challenges that is often brought up in studies (Lei et 
al., 2023). This process includes both the integration of data 

sources, such as various 2D and 3D sources for geometric data 
and various real-time sensors, as well as the integration of 
systems, such as differently structured databases and standards 
(Ramu et al., 2022; Lu et al., 2020; Li et al., 2020). 
 
To support such an integration, a number of methods and 
technologies have been investigated. Among these are the 
utilization of existing technology such as the Internet of Things 
(Rivera et al., 2020; Duan et al., 2020) and standards such as 
CityGML, Observations and Measurements, Sensor 
Observation Service and SensorThings. While these are not 
standards developed specifically for digital twins, they are 
commonly used in various implementations as they cover areas 
such as 3D city models, sensor data management and retrieval 
of data.  
 
In digital twin implementations, CityGML is often used as the 
standard for the 3D city model as it supports both geometric and 
semantic information. CityGML has finalized its conceptual 
model for CityGML 3.0 (Kolbe et al., 2021). Among the 
changes made since CityGML 2.0 is the inclusion of the 
Dynamizer as one of its core modules. Previously developed as 
an Application Domain Extension (ADE) for CityGML 2.0, the 
Dynamizer allows the integration of dynamic data into an 
otherwise static CityGML model. It does this by allowing one to 
specify properties or features to be replaced by dynamic values, 
either defined in-line or linked externally.  
 
In their analysis of the importance of including time-dependent 
properties into CityGML, the developers of the Dynamizer, 
Chaturvedi and Kolbe (2019) have highlighted the role that 
these kinds of properties play in areas of study such as smart 
cities and digital twins, urban mobility, urban simulations, 
urban planning, and history and archeology. 
 
While much work has been put into the integration of various 
kinds of sensor data within 3D city models over the years, 
especially through initiatives by the OGC Innovation Program 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W5-2024 
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W5-2024-219-2024 | © Author(s) 2024. CC BY 4.0 License.

 
219



 

such as the Future City Pilot (Chaturvedi and Kolbe, 2017) and 
the 3D IoT Platform for Smart Cities Pilot (Coors, 2020), not as 
much has been done with movement data. Even though urban 
mobility has been pointed out as an important area of study 
which can benefit from such integration. 
 
Movement data science is the study of spatial-temporal 
information, to understand what factors affect how and why 
dynamic entities move. These studies play an important role in 
urban planning, crisis mitigation and public health as well as 
understanding ecology. In recent years, the availability and 
quality of spatial-temporal information and connected 
contextual information has increased greatly. This trend is due 
to advancements in GPS and other tracking technology, and the 
increase in such data collected through widespread use of 
mobile phones and social media, resulting in more possibilities 
and development in movement analysis methods (Dodge et al., 
2016).  
 
One of the most important aspects of movement analysis is the 
study of the relationship between the moving entity and its 
surroundings (Purves et al., 2014; Siła-Nowicka et al., 2016). 
Such research requires both the representation of the movement 
data and the surroundings, preferably in an integrated fashion.  
 
In this study we look at how moving entities may be represented 
in CityGML. In Section 2, we elaborate on the Dynamizer as a 
means to integrate dynamic data in CityGML, whereas in 
Section 3, we compare the use of the Dynamizer method with 
other methods and techniques described in literature to integrate 
dynamic data information into CityGML. Subsequently, we 
distinguish two types of movement data (Section 4) and 
investigate two different methods of integrating dynamic data 
with CityGML based on six case studies and data sets (Section 
5). Finally, we compare and evaluate the two methods in 
Section 6 and offer a discussion and conclusion in Section 7. 
 

2. Dynamic Data in CityGML 

2.1 CityGML and Dynamizer 

CityGML was originally developed to be an open standard for 
the storage and sharing of 3D city model data. It focused on the 
documentation of both geometric as well as semantic 
information of objects within a city (Gröger and Plümer, 2012). 
It is able to support features and information at different levels 
of detail and at different connected levels of hierarchy with its 
semantic structure. For example, a building could be linked to 
subdivisions or parts like connected blocks or a garage, and 
these could be further linked to rooms within them. CityGML 
also had different optional thematic modules such as buildings, 
transportation and vegetation for describing elements across 
different domains. In addition to these thematic modules that are 
built into CityGML, Application Domain Extensions (ADE) 
allow users to add new object types and attributes to the existing 
CityGML schema (Biljecki et al., 2018; Biljecki et al., 2021).  
 
During the process of development of CityGML 3.0, one of the 
main changes planned was the support for changing data 
(Chaturvedi and Kolbe, 2016; Kutzner and Kolbe, 2018). This 
was classified into two different types of time-sensitive 
information. The first was long term and slow changes, such as 
changes to the city through the construction or demolition of 
buildings. These were to be updated in the form of different 
versions of the 3D City Model. A comprehensive versioning 
system for CityGML was conceptualised by Chaturvedi et al. 
(2017a). The second type of time-sensitive information was 

short-term and fast-paced changes, such as data collected from 
sensors. These were conceptualised to be able to update real-
time, without the need to update the other static portions of the 
model, leading to the inclusion of the Dynamizer module. The 
Dynamizer module was first introduced in the form of the 
Dynamizer ADE for CityGML 2.0, developed by Chaturvedi 
and Kolbe (2016) for integrating dynamic data into CityGML.  
 
Through the years, the Dynamizer ADE and Dynamizer module 
have been demonstrated to be used with different types of data 
and in different use cases. One example was HVAC and 
building energy analysis (Chaturvedi et al., 2019).  
 
2.2 Dynamizer Features and Examples 

The Dynamizer ADE for CityGML 2.0 and the Dynamizer 
module in CityGML 3.0 allow one to add dynamic data to a 
particular attribute in the model by specifying timeseries data to 
override its static value. This integration can be done in a 
number of ways, using different features (Kolbe et al., 2021). A 
Dynamizer object consists of two main components. 
 
The first is the Dynamizer object itself. This portion describes 
the details of the attribute or element that is being made 
dynamic by replacing its value. It contains an attributeRef, 
which is the reference to the attribute or element. It is defined 
using XML Path Language (XPath), which is a path notation 
used to navigate through the hierarchy of an XML file. Other 
attributes that are defined include the startTime and endTime 
which specify the period of time in which the attribute or 
element is dynamic.  
 
The second component is the SensorConnection or TimeSeries 
object. These define the data that overrides the static value 
specified in attributeRef. The SensorConnection object is used 
to link an external sensor or IoT service such as OGC 
SensorThings API or Sensor Observation Service. The various 
formats of Timeseries objects are used for specifying existing 
timeseries data. 
 
2.2.1 SensorConnection: SensorConnection describes 
details used to retrieve and process dynamic data from an 
external sensor. This includes links to different sources such as 
the baseURL and linkToObservation, as well as attributes such 
as the observationProperty, uom (units of measurement) and 
datastreamID.  
 
2.2.2 Timeseries: The Dynamizer module has three types of 
Timeseries objects for defining existing timeseries data from 
different types of sources, as well as a CompositeTimeseries 
object for specifying repeating patterns. The first type of 
Timeseries object is GenericTimeseries. This represents 
dynamic data as in-line time-value-pairs, directly in the model 
itself. The second is using TabulatedTimeseries. This inserts the 
dynamic data by linking to external tabulated files like CSV or 
Excel files. The respective columns for timestamps and values 
are specified in the TabulatedTimeseries object, and each row in 
the file represents one time-value-pair. The third is using 
StandardTimeseries, which inserts the dynamic data through 
external files following the OGC TimeseriesML standard or the 
OGC Observations and Measurements standards. Finally, 
CompositeTimeseries allows one to specify repeating patterns, 
such as hourly, weekly or monthly patterns, using a 
combination of the other features. 
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3. Integration of Dynamic Data Information with 
CityGML  

Including studies involving CityGML and the Dynamizer, there 
have been many papers describing different ways that the 
implementation of integrating CityGML with external data can 
be handled. We summarise them into three main categories.  
 
3.1 Using CityGML and Dynamizer – Integrate Data into 
CityGML 

Throughout their research and development of the Dynamizer as 
part of the OGC Future City Pilot (Chaturvedi and Kolbe, 
2017), Chaturvedi, Kolbe and their colleagues have 
demonstrated its use in a number of use cases. This includes the 
integration of real-time sensor observations in a 3D city model 
of Greenwich, London (Chaturvedi and Kolbe, 2016), and time-
dependent solar irradiation analysis results in a 3D city model of 
Rennes, France (Chaturvedi et al., 2017b) and HVAC and 
building energy analysis (Chaturvedi et al., 2019). 
 
To support the use of the Dynamizer, they have also 
investigated the technologies that are required to store and 
retrieve such data. They developed an extension for the 
commonly used CityGML database, 3DCityDB, and a method 
to import, retrieve and visualise Dynamizer ADE data in 
CityGML files (Chaturvedi and Kolbe, 2016). Their work 
involved creating additional tables and structures to manage the 
time-series data separately. In addition, they also worked on the 
Mini Sensor Observation Service to support the reading, 
querying and visualization of Dynamizer timeseries data 
without requiring a database, using relational adapters to handle 
the retrieval of data from external files, cloud-based servers and 
external databases (Chaturvedi et al., 2017b).  
 
Other researchers, such as Chatzinikolaou et al. (2020) also 
make use of the Dynamizer and 3DCityDB. They also 
configured 3DCityDB to support the Dynamizer ADE, but 
instead of using it to import CityGML containing the dynamic 
data, they made use of a python script to populate the 
3DCityDB tables with their time-series data.  
 
3.2 Using CityGML and an External API or Service – 
Integrate CityGML into Data 

There are also studies that do not make use of the Dynamizer 
ADE. Most make use of one database or application to manage 
the 3D city models and another separate one to manage the 
dynamic data.  
 
For example, Santhanavanich and Coors (2021) proposed 
CityThings. They find that it is difficult to have to represent 
sensor data in the form of a Dynamizer object and to embed it 
directly in the CityGML, especially when the people managing 
and collecting each set of data are different. They suggest 
instead to link the data externally, by using the CityGML 
objects’ gml-id to identify the respective objects and adding that 
as an attribute to the sensor data’s representation in OGC 
SensorThings API. Through the SensorThings API, the 
requesting of the relevant information can be done through a 
query using the gml-id.  
 
In the OGC 3D IoT Platform for Smart Cities Pilot, that the 
development of CityThings was part of, multiple 
implementations to link CityGML with air quality 
measurements and indoor occupancy readings were carried out 
by multiple parties (Coors, 2020). These include the STT 

GeoPortal, Taiwan Civil IoT Taiwan Data Service Platform, and 
Cyient 3D GeoPortal, among others. These all make use of 
various implementations of the SensorThings API to manage 
the sensor data, along with the 3D city model in glTF or 3D 
tiles format. In this pilot, they also made use of IndoorGML 
models and created an augmented reality visualisation platform 
using Unity3D, the Skymantics 3D GeoPortal. 
 
3.3 Using a Separate Database or Model – Integrate Both 
CityGML and Data into One Model 

There are also studies that aim to integrate the two (and other 
formats) regardless of standards used. These focus on not 
having to worry about information not matching up to a 
specified format, standard or organisational structure. This 
includes the use of a managed object method (implemented in 
Java) to represent features in CityGML and other data as 
different objects according to different sets of rules and 
standards (Wen et al., 2010) and the use of a NoSQL database 
like MongoDB (document database) which can store CityGML 
models and other data as separate objects (Mao et al., 2014). 
 
3.4 Movement Data in CityGML 

In many studies, the Dynamizer was mainly used to represent 
dynamic data that is numerical, or in the form of an attribute. In 
this case when visualising the model, the dynamic data can be 
retrieved and viewed as an updating property, or in the form of 
tables or graphs. Although the Dynamizer is also able to 
represent geometric information, with the option to specify the 
type of value being replaced as ’geometry’, there have not been 
many examples of such use. According to the requirement 
analysis by Chaturvedi and Kolbe (2019), such geometric 
information covers two aspects, changing objects as well as 
moving objects, the latter which is of interest here. 
 

4. Movement Data 

4.1 Trajectories 

Movement data is primarily collected in the form of trajectories. 
These are most commonly represented as a collection of points 
at which a moving entity was located during their movement, 
and modelled using Spatiotemporal Data Models. This borrows 
existing standards from GIS for 2D spatial data and temporal 
data. For example, with animal tracking, the position of the 
tracked entity is captured at a certain time interval. This results 
in a data set with a set of captured values (its position and other 
properties like temperature or speed) linked to timestamp 
values. While these time intervals tend to be regular, it is 
possible that gaps in readings or slight variances may occur due 
to technical errors or inaccuracies. 
 
4.2 Origin-Destination 

When looking at movement data in an urban context, it is also 
common to find some data collection methods such as public 
transport ticketing that only capture data about the entry and 
exit of a passenger. These result in a form of data called Origin-
Destination (OD). OD studies aggregate movement data to 
create datasets of properties (such as the number of trips, or 
average speed) about movement from one specific point or area 
to another. The aggregation could group data from a certain 
time period, like a month, and be categorized by different 
patterns or properties, such as day of the week or time bands 
across the day. As such, not all OD datasets may be able to be 
associated with timestamps in the same way one would expect 
of data from trajectory datasets. 
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5. Study 

In light of the possibilities of existing methods and the lack of 
examples of such use, we investigate how different methods 
work for combining CityGML models and movement data of 
different types. We have focused on the first two methods, using 
CityGML and Dynamizer, and using CityGML and an external 
API or service, so that we may take advantage of existing 
implementations and standards. For each method, we 
investigate the differences and issues faced at two points of the 
process: first, the conversion and processing phase of turning 
the available datasets into their target formats and, second, the 
usage and visualization phase of accessing the data in the 
resulting formats. 
 
5.1 Datasets 

We have selected a range of city models, in the CityGML and 
CityJSON formats, as well as movement data of different types, 
including animal tracking trajectories, human movement 
through spaces, and traffic data. All movement data considered 
constitutes historical data, no live tracking was considered for 
this study. Seven city models from different sources and six 
datasets for movement data were used. To see how different 
combinations of datasets work with the two implementations, 
the city models and movement datasets have been combined 
into six case studies, as shown in table 1. 
 
 CityGML 

1.0 
CityGML 
2.0 

CityGML 
3.0 

CityJSON 

Trajectory 
(Animal) 

Brussels & 
Gulls 

Berlin and 
Potsdam & 
White 
Storks 

 New York 
and 
Philadelphia 
& Osprey 

Trajectory 
(Human) 

  University 
Supermarket 
& 
Customers 

 

Origin-
Destination 

 University 
Campus & 
Bus 

London & 
London 
Tube 

 

Table 1. Combinations of city models and datasets used as case 
studies in this study. 

 
5.1.1 CityGML Models: The CityGML models we used 
include:  
1. CityGML 1.0 model of Brussels (Brussels Regional 

Informatics Centre, 2016).  
2. CityGML 3.0 model of Student Supermarket in Tsinghua 

University, Beijing, China. Model created from floorplans 
used in study of customer behaviour (Yang et al., 2019).  

3. CityGML 2.0 model of Berlin (Berlin Business Location 
Center, 2015).  

4. CityGML 1.0 model of Potsdam (Bereich Vermessung, 
Geodateninfrastruktur, 2012).  

5. CityGML 2.0 model of a university campus in Singapore.  
6. CityJSON model of part of London, generated using 3dfier 

(Ledoux et al., 2021) and GeoJSON data tiles of building 
footprints from OSM Buildings. 

7. CityJSON models of New York and Philadelphia 
(BuildZero.Org, 2019). 

 
A summary of the city models used in the study, including their 
location, city model type and level of detail is shown in Table 2. 
Of these models, the six LOD1 and LOD2 models here focus on 
the exterior of the buildings, while the LOD3 model of the 

University Supermarket is a model of the interior of the 
building. 
 
Country Area City model 

type 
LOD Total size (kB) 

Belgium Brussels CityGML 1.0 2 3975763 
China University 

Supermarket 
CityGML 3.0 3 5238 

Germany Berlin CityGML 2.0 2 39767944 
Germany Potsdam CityGML 1.0 2 1454187 
Singapore University 

Campus 
CityGML 2.0 1 2151 

UK London CityJSON 1 58187 
USA New York & 

Philadelphia 
CityJSON 1 553275 

Table 2. Details of the city models used in this study. 
 
5.1.2 Trajectories: The datasets of the trajectories type we 
used include:  
1. Lesser black-backed gulls tagged along the southern North 

Sea Coast (data collected by the LifeWatch GPS tracking 
network for large birds and published by the Research 
Institute for Nature and Forest (INBO)) (Stienen et al., 
2021).  

2. White Storks from 3 populations in Beuster, Dromling and 
Loburg (Carlson et al., 2021b), retrieved from Movebank 
(Carlson et al., 2021a).  

3. Fall migration routes of Osprey in USA, from the areas of 
the lower Columbian river, north-central Minnesota, 
Shelter Island, New York and southern New Jersey 
(Martell et al., 2001), retrieved from Movebank (Martell 
and Douglas, 2019).  

4. Customer trajectories collected in a student supermarket in 
Tsinghua University (Yang et al., 2019).  

 
5.1.3 Origin-Destination: The datasets of the OD type we 
used include:  
1. Origin-Destination data between bus stops in Singapore 

(Land Transport Authority, 2021).  
2. Origin-Destination data between London Underground 

Stations (Transport for London, 2021; as part of the 
NUMBAT dataset). 

 
A summary of the movement datasets used in the study, 
including their location and data type is shown in Table 3. Of 
these models, three are animal tracking trajectory datasets, one 
tracks the trajectories of human movement indoors and two 
contain Origin-Destination data from public transportation. 
 
5.1.4 Differences Between Scale and Frequency: The 
movement data we used range in scale and time frequency. The 
data collected by Tsinghua University covers only a small area 
of less than 50 m by 50 m, and across a period of 3 days, for 
less than an hour each. But the positions are collected at a high 
frequency of once every 0.02 seconds. Meanwhile, the animal 
tracking datasets cover a much larger distance, in this case, 
across continents, between North and South America, and 
between Europe and Africa. However, the positions are 
collected much less frequently, such as once every half hour, or 
sporadically, for much longer periods of time of up to 2-5 years. 
 
5.2 Method 1 

The first implementation makes use of embedding the dynamic 
data into CityGML using Dynamizer. 
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Country Dataset Data type Total size (KB) Sample trajectory or 
OD size (KB) 

Sample size as CityGML 
+ CSV (KB) 

Belgium GPS tracking of Lesser Black-backed 
Gulls and Herring Gulls breeding at the 
southern North Sea coast 

Trajectory 613441 557 - 49594 108 - 9603 

China Customer movement in University 
Supermarket 

Trajectory 299325 55 - 2766 404 - 2252 

Germany HUJ MPIAB White Stork E-Obs Trajectory 550054 4234 - 20592 1501 – 7302 
Singapore Passenger volume by origin-destination 

bus stops 
Origin-
Destination 

195688 - 14 - 786 

UK TfL Rolling Origin and Destination 
Survey 

Origin-
Destination 

19522 - 2729 - 3559 

USA Osprey in North and South America 1995-
2002 (Martell) 

Trajectory 21989 19 - 692 8 - 9 

Table 3. Details of the movement datasets used in this study. 
 

 
Figure 1. University supermarket and customer trajectory (left), University Campus and Bus OD (center) and New York and 

Philadelphia and Osprey trajectory (right) viewed in Angular Cesium. 
 
5.2.1 Conversion and Processing: Citygml4j, an open 
source Java API for reading, processing and writing CityGML, 
was used to convert the movement data into CityGML models, 
with the dynamic data embedded using the Dynamizer module 
(for CityGML 3.0) or Dynamizer ADE (for CityGML 2.0) and 
CSV files. Here, we have created new CityGML files for each 
dataset but the data can also be added into existing files. With 
the range of datasets used, we were able to test out the usage of 
different Dynamizer features, such as TabularTimeseries for 
trajectories and CompositeTimeseries with GenericTimeseries 
for OD data. The evaluation follows in Section 6. Note that for 
trajectory data, the data was not included directly into the 
CityGML, but was linked as a CSV file. For O-D data, the data 
was explicitly integrated into the CityGML file (in order to 
make use of the repeating feature of CompositeTimeseries). 
 
5.2.2 Usage and Visualization: A viewer to view the 
resulting CityGML files was implemented using Angular 
Cesium, an extension of the CesiumJS API (Figure 1). 
CesiumJS is an open source JavaScript library commonly used 
to create web platforms for the visualisation of city models, and 
Angular Cesium builds upon it with RxJS, which makes it 
easier to update groups of entities. The CityGML files are read 
and city objects are created as Cesium entities for visualization. 
To view objects in motion, Cesium’s built-in clock was used. If 
Dynamizer objects are present, the timestamps are compared 
against the Cesium clock to determine what geometry or 
attributes to display, updating the Cesium entities accordingly 
based on their gml id. 
 
5.3 Method 2 

The second implementation stores the data separately from 
CityGML, in the SensorThings API. 
 

5.3.1 Conversion and Processing: For this method, the 
movement data was first processed and imported into an 
implementation of SensorThings API. FROST-Server was 
selected as it is a complete and well-maintained open-source 
implementation. 
 
5.3.2 Usage and Visualization: The city models were 
imported into 3DCityDB, an open source CityGML database, 
and exported as tiled KML files for viewing. The data is viewed 
on the Web Map Client that comes with 3DCityDB. It was 
extended to be able to retrieve and process the JSON data from 
the SensorThings API. 
 
5.4 Case Studies and Compatibility with Methods 

Due to a lack of support, some datasets are not compatible with 
some methods. A summary of the compatibility and the reasons 
for incompatibility are shown in Table 4. 
 
 Implementation 1 Implementation 2 
Brussels & Gulls No Dynamizer in 

CityGML 1.0 
Yes 

University 
Supermarket & 
Customers 

Yes No CityGML 3.0 in 
3DCityDB 

Berlin and Potsdam & 
White Storks 

Yes Yes 

University Campus & 
Bus 

Yes (OD in 
CityGML 3.0) 

Yes 

London & London 
Tube 

Yes (OD in 
CityGML 3.0) 

Yes 

New York and 
Philadelphia & Osprey 

No Dynamizer in 
CityJSON 

Yes 

Table 4. Combinations of case study datasets and their 
compatibility with each implementation. 
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6. Evaluation of the Two Methods 

6.1 Compatibility with Movement Data 

Although possible, neither method seems to be designed to store 
information for moving entities. The process is not as intuitive 
as it would be for numerical or attribute data. 
 
6.1.1 Movement in FROST-Server: While it is possible to 
simply store locations as a string in an Observation, 
semantically, SensorThings requires the location of Things to be 
defined as a fixed Location property at the time of creation.  
This Location property can be updated, and previous locations 
can be stored as HistorialLocation properties. However, by 
storing it in this way, the location of the object is not treated as 
an Observation, and is not as intuitive to retrieve, nor is it 
possible to assign any additional properties. One workaround 
method that the developers recommend, is to instead link each 
Observation to a FeatureOfInterest entity which can be assigned 
its own location (OGC SensorThings API, 2017). In this way, 
the position of the sensor can be retrieved from each 
Observation alongside any other properties it may have. But this 
results in a large amount of additional entities and an extra step 
in the data retrieval process. 
 
6.1.2 Movement in CityGML Dynamizer: While the 
Dynamizer does have geometry as an option for the value it is 
replacing, it can only replace one value from one input source. 
This may work fine for updating a property value such as a 
temperature reading, but if it is used to update the location of an 
object, the entire poslist of the object has to be replaced. This is 
additional processing work as location is not collected and 
stored in such a manner. Even for a point, if the location is 
stored as seperate latitude and longtitude or x, y and z values, 
they will need to be combined first before they can be linked via 
the Dynamizer. If the entity is more complex, the data that 
needs to be replaced becomes significantly larger and more 
work to process as well.  
 
6.2 Retrieval Flexibility 

FROST-Server supports the use of request parameters that, 
when added to the url used to request data from the server, can 
provide additional processing of the return data. These include 
sorting, filtering and specifying how many entities to return. If 
requesting data from FROST-Server separately, this allows for a 
lot more flexibility in accessing the data. 
 
With CityGML Dynamizer, the data is more or less fixed within 
the CityGML file. Even for external links, the url is specified 
directly in the CityGML file. Therefore, although a url to 
FROST-Server can be used in the description of a Dynamizer 
object, it is fixed. One could alter this url before retrieving any 
data but it would not be intuitive as this data is designed to be 
retrieved in the background. Any changes would have to be 
reflected in the CityGML file itself or upon the actual data 
being linked. Otherwise, any sort of processing to the data 
would have to be implemented and performed separately upon 
the retrieved data afterwards . 
 
6.3 Input Flexibility 

SensorThings and the FROST-Server implementation were 
designed for streamed real- time sensor data. In order to POST a 
new observation to the server, a timestamp is required, 
otherwise it is automatically set to the time at the time of 
sending the request. In this case, the movement data in the form 

of timestamped positions would be easy to input. Meanwhile, 
aggregated data such as Origin-Destination data would not be as 
intuitive to input. A user-defined timestamp would have to be 
assigned based on the time period the data is from.  
 
On the other hand, CityGML Dynamizer supports the input of 
data in a number of different ways. One such way is 
CompositeTimeseries. It allows one to define recurring patterns 
of data, such as repeating daily or weekly data patterns. This 
allows for more flexibility in storing aggregated data. The 
downside of this is that the data is more difficult to use due to a 
lack of support. For example, it would be necessary to 
reconstruct timestamps from the patterns found in 
CompositeTimeseries in order to use them for visualization or 
analysis. A summary of the evaluation of the two methods is 
shown in Table 5.  
 
 CityGML 

Dynamizer 
FROST-Server 

Compatibility with 
movement data 

Requires additional 
processing into right 
format for geometry 

Requires additional 
entities and 
additional retrieval 
step 

Retrieval flexibility Data will be retrieved 
as defined in 
CityGML file / data 
source 

Supports processing 
of data before 
retrieval by adding 
parameters to url 

Input flexibility Supports recurring 
data patterns, 
allowing some 
storage of aggregated 
data 

Requires timestamp 
for each observation, 
not suitable for 
aggregated data 

Table 5. Comparisons between the use of CityGML Dynamizer 
and FROST-Server. 

 
7. Discussion and Conclusion 

7.1 Conclusion 

Dynamic data is becoming more relevant in urban digital twins, 
and its support has been growing thanks to the development of 
the infrastructure such as the Dynamizer module in CityGML. 
However, the integration of movement data in 3D city models 
has not been been subject of research so far. This paper 
explored the process of integrating movement data with 
CityGML in two different ways. One using the CityGML 
Dynamizer module to integrate the movement data directly into 
CityGML and the other using FROST-Server to provide the 
movement data alongside the CityGML model. 
 
Overall, the Dynamizer provides a more flexible way of 
representing the movement data, allowing the definition of 
repeating patterns and aggregated data. However, it is more 
static and restrictive when it comes to accessing and utilising 
the data. It also has less software support.  
 
FROST-Server, on the other hand, has a more restrictive 
structure for representing data that does not support moving 
locations and aggregated data well. However, accessing the data 
is more flexible, with the ability to request for data with filtering 
or sorting. In this case, there is support for the data and models 
separately, but support for integration is not as accessible.  
 
7.2 Support and Integration 

As noted in the report for the 3D IoT Platform for Smart Cities 
Pilot (Coors, 2020), existing data models and APIs to support 
3D city models and dynamic data do not integrate well. This is 
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especially so for movement data. More commonly used 
software and methods of handling city models do not support 
dynamic values. While Dynamizer allows the inclusion of 
dynamic data, support for it is limited.  
 
On the other hand, for sensor data, commonly used APIs like 
SensorThings API that handle streams of dynamic data do not 
support any form of feature representation or geometry. While it 
has ways to specify geometric locations, these do not work well 
with constantly changing locations.  
 
7.3 Visualization and Utilization 

With almost all the methods studied in literature, CityGML is 
visualised after conversion into other formats rather than using 
its geometric data directly.  
 
When it comes to large datasets, conversion into a tiled format 
like 3D Tiles or a tiled collection of KML, COLLADA or glTF 
files (through 3DCityDB) allows for more efficient loading of 
the model in smaller batches as needed. When converting into 
such formats, most ways combine all the geometry at a 
CityObject level, such as the Building level, with all the 
separation below that level removed.  
 
This is the same for properties and attributes found in 
CityGML. Most implementations have all the information 
extracted into a separate tabular dataset or retrieve the 
information to be viewed from a completely external 
datasource. In such implementations, the information is also 
often exported only from the Building level, or completely 
absent from the city model to begin with.  
 
7.4 Future Work 

One way that CityGML is being developed to make it more 
user-friendly is by expanding on its encoding formats, such as 
CityJSON for more compact and developer-friendly files. They 
have also been exploring other encoding formats such as 
CitySQL for database storage and management and glTF for 
ease of visualisation with existing software (Open Geospatial 
Consortium CityGML Standards Working Group, 2022). At the 
same time, SensorThings API is also working towards their 2.0 
version, including updates that could help with the retrieval and 
visualisation of moving objects as a trajectory or collection of 
points. With these new possibilities, utilising movement data 
and CityGML in conjunction may be more accessible. It would 
be interesting to see how they integrate moving forward.  
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