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Abstract:  
 
The Urban Heat Island (UHI) phenomenon results in higher temperatures in urban areas compared to less urbanized regions. This is 
due to the concentration of urban infrastructure, which absorbs and then releases solar radiation. Given its significant role in 
exacerbating the climate crisis, the UHI phenomenon demands urgent attention. While traditional physics-based simulations for 
studying UHI are accurate, they require substantial resources, which limits their practical application in urban planning. Previous 
research by the authors highlighted the capability of data-driven models as a practical alternative for assessing UHI. Such models, 
however, depend on the availability of extensive high-resolution datasets. Building on this prior work, the current study explores 
utilizing UHI’s seasonality to narrow the required data scope for effective data-driven UHI modelling. By strategically targeting data 
collection on specific seasons, it is possible to capture UHI’s intricate and dynamic nature more efficiently. This approach involved 
using street-based clustering to identify common seasonal patterns in Surface UHI (SUHI) and Canopy UHI (CUHI). Findings show 
notable seasonal fluctuations in SUHI, especially during summer. The training of Random Forest (RF) models employed varying data 
set proportions: 45% for summer and spring, 65% for autumn, and 75% for winter. Despite the challenges of smaller training datasets, 
the models achieved high accuracies, with CUHI models attaining an R² of 0.85 and SUHI models an R² of 0.74. These outcomes 
highlight the efficacy of strategic data collection, indicating its potential to enhance urban heat resilience and mitigate UHI effects. 
 

1. Introduction 

In recent years, escalating climate crises have led to increasingly 
unpredictable weather patterns in urban areas. In 2023, Europe 
experienced temperatures above average for 11 months, with air 
temperatures peaking at around 45 °C (Copernicus, 2023). This 
trend has exacerbated the Urban Heat Island (UHI) effect, an 
urban problem that urgently needs to be addressed (Peng et al., 
2012). The UHI effect, which results in higher temperatures in 
urban areas compared to their rural surroundings, is primarily 
caused by the concentration of buildings, roads, and other 
infrastructures (Oke, 1982). These structures absorb and re-emit 
solar radiation. As climate change worsens, UHI is further 
amplified, posing severe challenges to the liveability in cities and 
public health, as well as increasing energy consumption and 
carbon emissions (Akbari et al., 2016). The consequences of UHI 
are far-reaching and demand immediate attention especially as 
global temperatures persist in setting new records.  
 
Over the years, researchers and experts worldwide have tried to 
deepen their understanding of the UHI mechanisms and 
formulate strategies to counter its adverse effects (Akbari et al., 
2016). A significant research avenue involves physics-based 
approaches that try to simulate thermodynamic processes within 
urban areas (Jandaghian and Berardi, 2020). These high-
resolution simulations, which incorporate variables like 
construction materials, urban layout, and local climate, provide 
nuanced insights into urban temperature variations (Grimmond 
et al., 2011). While insightful, these simulations require 
specialized skills and high computational resources, making their 
practical application challenging (Mirzaei and Haghighat, 2010). 
Furthermore, the static nature of these solutions often fails to 
adapt to the dynamic nature of UHI and unpredictable climatic 
conditions, hindering their effectiveness in rapidly changing 
urban environments. 
 

To complicate matters, UHI is grouped mainly into two types; 
Canopy UHI (CUHI) and surface UHI (SUHI). CUHI refers to 
air temperatures above the surface and below the canopy 
measured by weather stations placed strategically to avoid 
interference from urban elements. SUHI refers to the increased 
warmth of urban surfaces, measured on a large scale by using 
thermal infrared data from remote sensors in satellites or aircraft. 
CUHI are directly related to human exposure, where outdoor 
thermal comfort is crucial, making them a significant factor in 
human health. However, air temperatures are captured by 
weather stations usually placed outside the built area. This 
significantly compromises the spatial resolution of the 
measurements, i.e., only a few measurement points per city. In 
contrast, SUHI is derived from satellite datasets, resulting in a 
higher spatial resolution but very low temporal resolution. This 
dichotomy creates problems in accurately assessing and 
responding to urban heat, which are multifaceted and have far-
reaching implications (Pena Acosta et al., 2023a). For instance, 
strategies that reduce surface temperatures, such as reflective 
building materials or urban greening, can also influence air 
temperatures by increasing humidity and decreasing thermal 
comfort and overall public health. 
 
Current research methods that investigate SUHI and CUHI with 
high spatial and temporal resolution are somewhat limited. 
Studies by Du et al. (2021), Hu et al. (2019), Peng et al. (2022), 
and Venter et al. (2021) highlighted the tendency to overestimate 
SUHI intensity, especially in comparison to CUHI, and pointed 
out discrepancies between satellite and ground-based 
observations. Sun et al. (2019) further emphasized the 
importance of combining both air and surface. Sheng et al. (2017) 
found notable differences in UHI intensity in Hangzhou, China, 
depending on whether air temperature or Land Surface 
Temperature was used for measurement. Wang et al. (2020) 
underscored the necessity of integrating CUHI and SUHI 
analyses to fully comprehend urban thermal environments. In this 
context, the authors previously introduced a framework for 
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simultaneously evaluating SUHI, CUHI, and a wide range of 
socio-economic and morphological parameters at a micro (street) 
resolution (Pena Acosta et al., 2023b). Also, to reduce the data 
collection requirement, the authors have looked into the 
possibility of using street typologies, i.e., a set of representative 
streets that exemplify the behaviour of larger street groups (Pena 
Acosta et al., 2024). This research demonstrated the high 
potential of using street typology as a means to develop a more 
strategic and efficient data collection regime. However, the 
previous research did not consider the seasonality of UHI. It is 
known that the mechanisms deriving UHI can change during 
different seasons (Schatz and Kucharik, 2014; Zhou et al., 2013). 
It is hypothesized that focusing on specific seasons could 
optimize data collection efficiency while ensuring a 
comprehensive analysis of UHI mechanisms, rather than 
maintaining continuous monitoring of the built environment. On 
this premise, this paper delves into the seasonal dynamics of UHI 
and tries to generate insights into UHI dynamics and the 
development of more resilient and heat-adaptive urban 
environments.  
 
This paper is organized as follows: Section 2 details the research 
methodology. Section 3 presents the obtained results. In Section 
4, these results are discussed in the context of existing 
knowledge. The paper concludes with a summary of findings and 
directions for future research. 
 

2. Research Methodology 

The research methodology for this study is organized into four 
main phases. The initial stage involves an analysis of the dataset 
previously collected by the authors, which encompasses a diverse 
range of socioeconomic, morphological, and environmental 
features for different streets. This step includes the cleaning and 
structuring of data to prepare for subsequent phases. In the 
second phase, the seasonal analysis, which is the examination of 
data across various seasons to identify significant variations or 
patterns, is conducted. The focus is on determining how different 
the time series of each street per season is. Dynamic Time 
Warping (DTW) is used in this stage for its effectiveness in 
comparing and measuring the similarity between time series of 
varying lengths and shapes. The third stage involves a cluster 
analysis per season, in which each season is analysed to find 
common patterns and characteristics of streets, to group them into 
one category of typology of street per season. The last stage of 
this methodology encompasses a validation process, where the 
hypothesis that selecting a particular set of streets during a 
specific season can encapsulate the behaviour of the entire 
dataset  will be tested. 
 
2.1 The data 

The authors have constructed a comprehensive dataset to 
investigate the complex interplay between urban elements and 
the UHI (Pena Acosta et al., 2022; Pena Acosta et al., 2023b). To 
ensure thoroughness in this paper, a concise overview of the 
dataset is included here.  
The dataset was collected in the city of Apeldoorn, the 
Netherlands. Apeldoorn is the 11th largest municipality in the 
Netherlands, and encompasses an area of about 34,115 hectares, 
of which 33,986 hectares are land and 129 hectares are water 
bodies. It has a population of 165,611 as of 2022, and it is divided 
into 12 residential areas, 16 districts, and 95 neighbourhoods, 
housing a total of 75,979 households. Its moderate oceanic 
climate, coupled with a unique urban layout, renders Apeldoorn 
a good site for studying UHI. The dataset comprises two primary 

components: Publicly Available cadastral datasets, and time-
dependent environmental parameters. 
 
2.1.1 Cadastral datasets: The cadastral datasets captured 
critical characteristics of the built environment and socio-
economic factors within Apeldoorn. These encompassed five 
main categories: (1) Building information: details regarding the 
types of buildings, land use across different areas within the city, 
and population density; (2) Urban morphology: attributes such as 
street width, height-to-width ratio (H/W), and street use 
percentages for bicycles, vehicles, and pedestrians: (3) Building 
characteristics: properties such as average height, maximum 
height, and standard deviation of height; (4) Spatial densities: 
data pertaining to the densities of buildings, vegetation, and water 
bodies across the city; and (5) Socio-economic parameters: 
Features like street materials, surface colours, land use 
classifications, and population counts. 
 
2.1.2 Time-dependent environmental parameters: The 
time-dependent environmental parameters crucial to this study 
were gathered through a mobile unit developed by the 
researchers. This unit was built to capture geo-referenced and 
time-stamped air and surface temperature data. The mobile unit 
was equipped with a versatile sensor kit, comprising components 
such as a GPS rover, thermologger, display, thermal camera, and 
data processing unit responsible for data storage. This ensemble 
of sensors allowed for precise and real-time temperature 
measurements. The measurements were taken at a consistent 
interval of one second while maintaining a constant cycling speed 
of 8 km/h. This setup resulted in a spatial resolution of 2 meters, 
ensuring granularity in the collected data for both surface and air 
temperatures. The measurements were conducted with a 
frequency of three times per day, precisely at 5:30 UTC, 10:30 
UTC, and 16:30 UTC. This high-frequency approach enabled the 
study to see the evolution of diurnal temperature patterns, from 
the morning to afternoon and early evening. Between the months 
of March and September 2021, data collection occurred twice a 
week, while between October 2021 and February 2022, it 
transitioned to once a week. The data collection campaign 
followed an 8 km-long route, ensuring a diverse selection of 105 
streets within Apeldoorn, each characterized by distinctive urban 
morphology and socioeconomic parameters. This comprehensive 
data campaign resulted in the acquisition of a total of 137,325 
temperature measurements, providing a rich dataset for the 
subsequent analyses and findings presented in this study. 
 

 
 

(a) Bicycle-based mobile (b) Heatmap of Apeldoorn 

Figure 1. (a) Bicycle-based mobile urban data-gathering 
station; (b) Heat map of Apeldoorn, NL, illustrating the fixed 
route followed for the data collection campaign. The heatmap 
includes the temperature reference location. 
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2.1.3 SUHI and CUHI measurements: To calculate surface 
and canopy UHI, the authors took a point within the data 
collection area circuit to provide detailed temperature data at both 
the surface and canopy levels as shown in Fig. 1 (b). This was 
done to ensure that the street-level comparison of CUHI and 
SUHI could be done at the same spatio-temporal resolution. The 
chosen point was identified as the coolest based on average LST 
over the summers of 2019 to 2021 (Pena Acosta et al., 2023b).  
 
2.2 Seasonal analysis 

To investigate the seasonal dynamics of UHI patterns at a street 
resolution, the initial step involves plotting the time series data 
by season and grouping the series data into the four main primary 
seasons, i.e., winter (December to February), spring (March to 
May), summer (June to August), and autumn (September to 
November). From here, the next steps involve a detailed analysis 
of the time series data corresponding to each season. This step is 
crucial for identifying and understanding the specific UHI 
patterns that emerge during different times of the year. The focus 
is not only on the overall trends within each season but also on 
the variances and anomalies that may provide deeper insights into 
the UHI. This is done by implementing the Dynamic Time 
Warping (DTW) (Sakoe and Chiba, 1978; Witten et al., 2017). In 
a nutshell, the DTW algorithm enables the comparison of two 
time-series data that are not aligned. For example, two streets 
may experience the same mechanisms of UHI, but due to 
differing mechanisms, they may exhibit distinct patterns. By 
measuring the similarity between the two time series, DTW can 
detect and quantify the shifting patterns of UHI intensity 
throughout the season. This is particularly useful in the context 
of UHI because it enables the identification of not only the 
magnitude of UHI but also their temporal dynamics (similarity or 
divergence) observed in different streets within the same season. 
 
2.3 Cluster analysis per season 

In this step, the analysis now shifts towards optimizing data 
collection, by looking at the streets that best represent the 
mechanisms of UHI in different seasons of the year. This analysis 
employs the Time Series K-Means clustering (Aghabozorgi et al., 
2015). This clustering technique is particularly suited for 
grouping time series data based on similarity in patterns, which, 
in this context, means streets exhibiting similar UHI 
mechanisms. Unlike traditional clustering methods that might not 
account for temporal dynamics effectively, Time Series K-Means 
leverages the distances calculated by the DTW to identify the 
natural groupings of time series data. 
 
2.4 Validation 

The last step in this methodology is the validation phase, here the 
hypothesis of this research is tested as follows. First, clusters for 
each season, identified in section 2.3, undergo a training process 
using a Random Forest (RF) machine learning algorithm 
(Roßbach, 2018). This algorithm is adept at handling complex 
and non-linear data, which is characteristic of UHI. Then, the RF 
model is incrementally trained on subsets of data per cluster, 
starting with 15% and scaling up to the full dataset. In each 
increment, the model’s performance is evaluated. Clusters that 
demonstrate the highest predictive accuracy with the smallest 
subsets, measured by R-Squared, are selected for further analysis. 
Finally, these optimally performing clusters form a new, 
streamlined dataset used to train a new RF model. The predictive 
accuracy of this model, based on a reduced dataset, is then 
benchmarked against the original model for each season. The 
underlying hypothesis being tested is that the streamlined dataset 

will have a predictive performance that is on par with that of the 
original dataset. In other words, the reduced dataset can capture 
the mechanism of each season. If this hypothesis holds, it 
suggests that a smaller, more focused dataset can indeed capture 
the complex dynamics of UHI effectively. 
 

3. Results 

3.1 Seasonal analysis 

Fig. 2 illustrates the patterns of the UHI for both CUHI and SUHI 
across the seasons in the city of Apeldoorn. The plots 
demonstrate the seasonal variability of heat intensity, revealing 
the fluctuations of UHI throughout the year. The similarities 
between the streets in terms of both CUHI and SUHI are 
quantified over the year using DTW distances, as explained in 
Section 2.3. This visual and statistical analysis has revealed 
elevated intensities during the summer and reduced intensities in 
the winter months, consistent with the expected patterns of 
temperature fluctuation. The SUHI time series plots for each 
season exhibit greater variability compared to the CUHI plots. 
Regarding the average DTW distances, CUHI consistently 
displayed a lower DTW score compared to SUHI. This indicates 
that the CUHI time series are more similar to each other, as the 
cumulative distance between corresponding points in the two 
series, after alignment, is smaller. This suggests that the overall 
patterns of CUHI are more closely matched. In spring, the 
average DTW distance score for CUHI is 5.75, while for SUHI, 
it is 17.47, indicating that SUHI experiences approximately three 
times more variability. During summer, the variability widens 
further, CUHI has an average DTW score of 7.01, in contrast to 
SUHI with nearly five times more variability (DTW score of 
35.21). In autumn, CUHI’s DTW score is notably lower at 1.75, 
compared to SUHI’s 12.49, suggesting about seven times more 
variability. Lastly, in winter, both CUHI and SUHI show a 
reduction in variability with scores of 1.75 and 5.54, respectively, 
indicating that during this period, the SUHI across all streets 
behaved more uniformly. However, this reduced variability was 
primarily observed during the months of December and January 
by the end of February. The increase in variability, as illustrated 
in Fig. 2(f), highlights a distinct shift in the SUHI patterns as the 
season progresses. The DTW scores demonstrated the significant 
seasonal effects on CUHI and SUHI, revealing a notably higher 
degree of variability in SUHI across identical urban 
infrastructures over the course of the year. These findings are of 
particular interest at this resolution level, as they underscore a 
potential discrepancy between mitigation strategies formulated 
on the basis of CUHI observations and those suitable for 
addressing SUHI. 
 
3.2 Cluster analysis per season 

Fig. 3, represents the clusters per season resulting from section 
2.2. During Spring (Fig. 3 (a)), all three clusters, cluster_0, 
cluster_1, and cluster_2 performed with a certain degree of 
stability in their R² values across the various proportions of 
sampled streets. This suggests that the spring dataset has an 
inherent consistency, regardless of the cluster or the sample size 
(this result aligns with the results from the previous analysis in 
Section 3.1).   
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In summer (Fig. 3 (b) the R² values for clusters 0, 1, and 2 are 
very flat, indicating that sampling more streets does not 
significantly change the model’s performance. Cluster_1, in 
particular, maintains a high R² value close to 0,85, suggesting 
robust model accuracy. Cluster_0 and cluster_2 are slightly 
worse, with very little variation across sample sizes. The flat 
performance across all clusters implies that for Summer, a 
minimal sample size might be just as effective as a larger one for 
capturing the behaviour of CUHI, and SUHI. 
Regarding autumn, as shown in Fig. 3 (c) there is more 
variability, particularly for clusters 1 and 2, which both exhibit a 
downward trend in R² values as the proportion of sampled streets 
increases. This result suggests that including more data does not 
necessarily translate to greater accuracy and may even introduce 
noise, due to overfitting. This directly challenges the general idea 
that the more data the better. Conversely, cluster_0 demonstrates 
variability in the proportion of data samples needed to achieve 
the highest predictive performance. This suggests that the 
optimal data sample size varies and is influenced by both the 
season in question and the specific urban context of the study. 
The winter season (Fig. 3 (d)) shows distinct trends for each 
cluster. Cluster_0 shows an initial improvement in R² with an 
increase in sampled streets, suggesting that a certain threshold of 
data quantity can enhance model accuracy. This indicates that a 
sample size of about 35% could be ideal for cluster_0 in Winter. 
In contrast, clusters 1 and 2 both show a gradual decrease in R² 
values as more streets are sampled, implying that a smaller 
dataset might be more suitable for these clusters during the cold 
season to avoid a decline in predictive performance. The 
diverging trends across clusters underscore the necessity to tailor 
the sample size to the specific context, even at the street level. 
 
3.3 Validation 

The original dataset comprised 17,325 data instances and a total 
of 105 unique streets. When the model was trained using the 
entire dataset, the maximum accuracy was achieved in terms of 
R2 of 0.82 for CUHI and 0.80 for SUHI. Based on the results 
from the previous section, the RF model was now trained per 
season using a sample of streets per cluster, Table 1, summarizes 
the total number of streets per cluster. To validate the hypothesis 
of the study, from these clusters, a percentage of data was 
selected to train the model per season. As summarized in Table 
2, for the summer and spring seasons, 45% of the dataset was 
used to train the models. The results show that the CUHI model 
achieved an R2 score of 0.84 in summer and 0.85 in spring, 
indicating a high level of accuracy in predicting outcomes based 
on the input variables. The SUHI model, on the other hand, 
showed a consistent R2 score of 0.74 for both seasons, suggesting 
a slightly lower but still substantial predictive accuracy compared 
to CUHI. for autumn and winter seasons, where a larger 
percentage of the dataset was used for training, 65% for autumn 
and 75% for winter. The need for this increased dataset size might 
be attributed to the seasonal low variability and therefore the need 
to capture a broader range of infrastructure. The CUHI model 
continued to outperform the SUHI model in these seasons as 
well, with R2 scores of 0.83 (autumn) and 0.93 (winter) for 
CUHI, and 0.72 (autumn) and 0.77 (winter). 
 
4. Discussion  

This study contributes to the broader debate on urban heat 
mitigation by emphasizing the critical role of seasonal dynamics, 
and the benefits of tailoring data collection methods. The 
seasonal analysis revealed that SUHI and CUHI intensities are 
pronounced during the summer and fade in the winter, aligning 
with expected temperature fluctuation patterns. As Schatz and 

Kucharik (2014) have discussed, this seasonal fluctuation 
highlights the significance of incorporating the temporal 
dimension into UHI studies to accurately assess and address the 
dynamic of UHI throughout the year. Furthermore, this research 
advances the field by quantifying the magnitude of these 
fluctuations at a granular, street-level resolution for both SUHI 
and CUHI. This not only highlights the complexity inherent in 
UHI phenomena but also stresses the need for simultaneous 
consideration of both CUHI and SUHI in research and urban 
planning strategies. To put it in context, in the spring for instance, 
the DTW distance for CUHI was markedly lower compared to 
SUHI, suggesting that SUHI experiences almost three times more 
variability. If urban heat mitigation strategies are predominantly 
based on air temperature measurements collected by weather 
stations, they might inadvertently prioritize CUHI dynamics. 
Such an approach risks underrepresenting the variability and 
intensity of SUHI, and ultimately rendering inadequate the 
mitigation measures. 
 

 Summer Spring Autumn Winter 
Cluster_0 23 34 51 59 
Cluster_1 33 21 25 19 
Cluster_2 49 50 29 27 

 
Table 1: Distribution of Street Clusters by Season. The table 
presents the total number of streets grouped into three distinct 
clusters (0, 1, and 2) for each season. 

 
 

 % Dataset Metric CUHI SUHI 

Summer 45 
R2 0,84 0,74 

MAE 0,23 1,21 

Spring 45 
R2 0,85 0,74 

MAE 0,26 0,96 

Autumn 65 
R2 0,83 0,72 

MAE 0,19 0,82 

Winter 75 
R2 0,93 0,77 

MAE 0,10 0,49 
 
Table 2: Comparative seasonal performance of CUHI and SUHI 
models. The table summarizes the R2 and MAE metrics reflecting 
the accuracy and error rates for CUHI and SUHI across four 
seasons, alongside the percentage of the dataset used for the 
models during each season. 
 
5. Conclusions 

By leveraging ML algorithms, this research introduces a 
methodology designed to optimize data collection efforts. This 
methodology shifts away from broad, indiscriminate data 
gathering towards a more focused collection of crucial data, 
specifically targeting street typologies that exhibit uniform UHI 
mechanisms. Demonstrating the effectiveness of this approach, 
the study effectively trained RF models using varying 
proportions of dataset sizes across different seasons: 45% for 
summer and spring, 65% for autumn, and 75% for winter. 
Despite the reduced size of the training dataset, the models 
achieved notable accuracies, with the CUHI model reaching an 
accuracy of 0.85 and the SUHI model achieving 0.74 in the 
predictive metrics. These results validate the hypothesis that a 
selective data collection strategy, informed by analysis of 
seasonal variations and street typology, can effectively capture 
the complex dynamics of UHI. Such a nuanced strategy does not 
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merely broaden our understanding of UHI. The dual advantage 
of this approach lies in its potential to minimize the resources 
allocated for data collection while concurrently increasing the 
accuracy and relevance of urban heat analysis, presenting cost-
effective and precise modelling. 
 
The methodology employed in this study showcased that 
utilizing a reduced dataset could still achieve high accuracy in 
modelling the mechanics of UHI based on street typologies. 
However, it is critical to acknowledge that the data collection was 
limited to a single city. For future research, incorporating data 
from a more diverse range of built environments is essential to 
enhance the robustness and applicability of the findings across 
different urban contexts. Additionally, the authors are currently 
exploring an intriguing research direction: the integration of 
physics-based and data-driven modelling. This approach implies 
that physics-based models, informed by data from collection 
campaigns, can simulate various scenarios. These simulations, in 
turn, could serve as valuable inputs for refining data-driven 
models, offering a synergistic framework that leverages both 
theoretical foundations and empirical insights to better 
understand and mitigate UHI. 
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