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Abstract 

 

With the escalating demand for efficient traffic management and the increasing complexity of traffic control, diverse sensor 

technologies have been implemented to measure traffic in real-time. The road-side LiDAR emerges as a novel technology addressing 

the data gap in multimodal traffic analyses. LiDAR sensing return time to precisely capture distance and reflectivity, generating point 

cloud data encompassing all traffic trajectory information. It overcomes challenges posed by illumination conditions like light, dust 

and fog, which often affect camera sensor performance. In addition, LiDAR sensing minimises the effect of changing object position 

and angles, simplifying object detection and recognition. 

This paper tackles the challenges of analysing LiDAR-derived traffic data by proposing a method for traffic trajectory data enrichment. 

The methodology followed includes creating a semantic map, bridging the physical space and raw data, transforming from a local to a 

standard Coordinate Reference System (CRS) and enriching data trajectory representation. Three use cases are presented based on the 

dataset obtained after enrichment: object classification, permissible directions violation detection, and traffic flow density. The 

proposed method is validated using traffic data from a LiDAR system of 6 sensors located in one of the busiest intersections in Sofia, 

Bulgaria. The raw sensor data is processed by a fusion box called the Augmented LiDAR Box, delivering time series frames with 

labelled moving objects in .osef format. The results prove that the proposed data enrichment method successfully transforms the 

trajectories into semantic sequences, opening up new avenues for trajectory analysis and intersection traffic micro-modelling. 

 

 

1. Introduction 

Intelligent transport systems (ITS) have undergone rapid 

development in recent years. Data plays a crucial role in 

evaluating transportation system performance and facilitating the 

development of innovative solutions to address traffic-related 

challenges. However, the acquisition and processing of traffic 

data, as highlighted by Barceló et al., present inherent challenges 

(2011). While synthetic error-free data is valuable for theoretical 

research, its limited practical applicability necessitates a shift 

towards the labour-intensive task of collecting, formatting and 

processing real-world data. Such data is derived from various 

measuring tools, a recent but promising one being Light 

Detection and Ranging (LiDAR) sensors, which allow for all-

traffic object tracking and detecting road boundaries, road 

facilities, and traffic lanes (Lakshmanan, 2023). Despite its 

commercial availability, there's a gap between the data it 

provides and actionable insights, highlighting the need for 

methodologies to analyse and utilise LiDAR-derived traffic 

trajectory data effectively. 

 

With the escalating demand for efficient traffic management and 

the increasing complexity of traffic control, diverse sensor 

technologies have been integrated into networks to measure the 

actual traffic state. Barceló et al. list conventional measuring 

tools for traffic analysis. LiDAR laser light return time to capture 

distance and reflectivity precisely, generating point cloud data 

encompassing all traffic trajectory information. This differs from 

traditional sensors, like radars, induction loops or infrared 

detectors, which offer limited macro-level vehicle or pedestrian 

data. LiDAR sensors exhibit high accuracy and frequency in 

detecting surrounding objects, overcoming challenges posed by 

illumination conditions like light, dust and fog that often affect 

camera sensor performance. Unlike camera sensors, LiDAR is 

minimally affected by changing object positions and angles, 

simplifying object detection and recognition. 

 

Beyond technical capabilities, LiDAR addresses privacy 

concerns in data-driven ITS. As highlighted by Zhang et al. 

(2011b), the field must adopt privacy awareness and a people-

centric approach for widespread acceptance of data-driven ITS. 

LiDAR data, being entirely anonymous, alleviates concerns 

related to the collection and storage of private information, 

enabling a shift towards human-centric analyses focusing on 

interactions and behavioural understanding rather than punitive 

actions. 

 

The potential of LiDAR technology in various use cases has 

spurred significant research efforts in processing point cloud data 

and refining object detection and recognition algorithms (Zhang, 

2021a; Xu, 2018; Song, 2020). These advancements have led to 

the commercial availability of LiDAR sensor systems from 

various vendors, equipped with embedded programming for real-

time object clustering, classification, and metadata provision, 

effectively tracking vehicle and pedestrian movements. Despite 

the market presence of 3D LiDAR sensors with preprocessors 

packaged as user-friendly plug-and-play spatial intelligence 

solutions, the output, micro-traffic object trajectories, often lacks 

interpretability and straightforward insights, falling in the gap 

between data and actionable knowledge. 

 

This paper proposes a method for effectively processing LiDAR-

derived traffic trajectories to analyse vehicle traffic flow. It aims 

to utilise simple, straightforward, and maximally relevant tools 

and approaches to the field. GIS tools and machine learning 

modelling are combined to provide interpretability not only in the 

results but also in the working process followed. The 

applicability of the proposed method is shown by three use cases, 
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including object classification, permissible directions violation 

detection, and traffic flow density. 

 

The remainder of this paper is organised as follows: section 2 

gives a brief overview of the current state of the field, section 3 

describes the area and the data used for this study, section 4 

discusses the methodology employed for the elaboration of the 

proposed method, results and conclusions are presented in 

sections 5 and 6 respectively. 

 

2. Related Work 

A significant amount of research has been done in processing 

motion trajectory data. Much of the work is focused on macro-

scale GPS-derived data like flight or ship trajectories; notable 

contributions focus on analysis based on distance measures, 

geometric features and heading (Laube, 2005; Rintoul and 

Wilson, 2015). These traditional features are less effective at 

micro-scale trajectories where motion is regulated, smoother and 

of varying lengths. Xi et al. propose a novel feature, a trajectory 

directional histogram (TDH), and effectively implement 

dominant-set clustering on micro-traffic intersection trajectory 

data (2006). Using spectral clustering, Xin et al. employ the TDH 

method to hierarchically cluster unreliable raw motion 

trajectories from micro-traffic video sequences (2011). Xu et al. 

iteratively shrinks trajectories to their cluster means to increase 

robustness and cluster separation, given incompleteness and 

noise in the data (2018). 

 

The most established methods operate within an abstract data 

space, solely considering trajectory properties in relation to other 

trajectories. Few researchers have delved into connecting data to 

the physical space and analysing it within its real-world context. 

Extracting video sequence-derived data poses challenges, and 

aligning it with real-world features can be problematic due to 

factors like camera angles and depth. 

 

In contrast, trajectories derived from LiDAR data extracted from 

point clouds offer accurate and consistent distance 

measurements, ensuring more precise mapping to real spaces 

(Gao, 2023). This characteristic of LiDAR-derived trajectories 

facilitates a simpler, more intuitive approach that connects 

trajectories to the spatial geometry of traffic intersections. 

Enriching trajectory data with semantic information tied to real-

world spatial contexts simplifies trajectory processing and 

analyses. This approach diversifies clustering and classification 

problems by offering new data representation methods. 

Leveraging LiDAR's contextual information is close to how 

humans think of vehicle motion, making traffic flow analysis 

accessible without deep statistical or machine learning expertise. 

This is especially useful for interdisciplinary projects like ITS 

and data-driven urban planning. For example, a field experiment 

was conducted to collect high-precision vehicle trajectories using 

roadside LiDAR devices (Cao, 2024). A high-definition digital 

map of an urban road without signalised intersection in the city 

of Chengdu is created. The proposed method accurately divides 

lanes for 97.83% of trajectory points. The sensitivity analyses 

show that it is robust to the noise in trajectory data and the error 

of calibrating the roadside LiDAR devices. 

 

The roadside LiDAR systems are sensitive to misdetections, 

resulting in discontinuous and shortened trajectories of objects. 

To address this, a Joint Detection And Tracking (JDAT) scheme 

is proposed to mitigate miss-detections at the vehicle detection 

stage (Zhang, 2022). The road users are separated by moving 

point semantic segmentation and instance clustering. Then, 

object detection and object tracking are conducted in parallel. 

The trajectories are identified from the object detection results 

using only a certain number of representatives for each trajectory. 

To address the occlusions of vehicles caused by the location of 

the installation on the lamppost, Lakshmanan et al. propose a 

robust vehicle detection model based on LiDAR sensor data 

(2023). A synthetically augmented transfer learning method is 

employed, and a synthetic LiDAR data generation tool is 

implemented, delivering a variety of vehicle shapes offered by 

the ShapeNet dataset along with ray casting. A rule-based method 

to identify a partially occluded vehicle in the parking lot is 

proposed by Thornton et al. (2014), considering any object with 

a length less than a predefined threshold, such as 2.5 meters, as 

an occluded vehicle. The occlusion might also be identified by 

checking whether the background curve can be seen between a 

given pair of vehicles (Lee, 2012). If not, the farther vehicle is 

suspected of being occluded. A similar approach is applied to 

detect pedestrians and estimate their trajectories from the 

occlusion time, not to observe the background points (Saki, 

2019). The proposed method makes it possible to detect more 

pedestrians located far from sensors and in rather crowded 

situations compared with an existing scheme based on point 

clouds. 

 

 

3. Study Area and Data 

This project focuses on the traffic intersection of “Cherni Vruh” 

Bulevard and “Sreburna” Street in Sofia, Bulgaria. This 

intersection is one of the busiest in the capital city, connecting 

the ring road with Lozenets District, a large residential and 

downtown area. The neighbourhood is densely populated and 

undergoing intensive regeneration, making it a constant hotspot 

in the city. There are a big shopping mall, a hypermarket, 

multiple office buildings, multiple public transport stops and a 

large park in immediate proximity to the intersection. The road 

has 13 lanes for incoming traffic and 9 for outgoing traffic with 

intricate alignments. 

The intersection regularly experiences congestion, particularly 

during rush hours. Furthermore, there are frequent accidents of 

different magnitudes, ranging from minor infractions and 

disregarding right-of-way to extreme speeding and illegal street 

racing. 

 

The data comes from a LiDAR sensor system based on remote 

measurement technology used to track the movement of both 

pedestrians and motor vehicles. This technology operates by 

emitting infrared (invisible spectrum) laser light towards targets 

and measuring the time it takes for the reflected light to return to 

the sensor. By detecting variations in reflection times, instances 

of the laser beam, and different wavelengths, it generates point 

cloud data for the identified targets. 

 

The LiDAR system comprises 6 sensors – one Ouster OS1 (Gen 

2) Mid-range 128 and five Ouster OS1 (Gen 2) Mid-range 64s. 

The sensors are strategically placed at different traffic poles 

around the intersection. The raw point cloud data collected by the 

sensors is processed by a fusion box called the Augmented 

LiDAR Box (ALB). The software used for the fusion process 

groups points and recognises objects based on a 5% sample of 

the point cloud (Outsight, 2021). It distinguishes between static 

and moving objects. Figure 1 shows a visualisation of the static 

objects in the intersection. 
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Figure 1. Point cloud visualisation of static objects in the 

intersection. 

 

The data output by the preprocessor of the fusion box is organised 

into time series frames, each containing object IDs that persist 

across frames. In addition to IDs, each object in a frame is 

labelled with its class (such as car, truck, unknown, pedestrian, 

or two-wheeler), coordinates, estimated speed, volume, and 

more. Timestamps are according to the GMT time zone, while 

the local time zone is GMT+3; x, y, z coordinates are in a local 

coordinate reference system (CRS). The pre-processed data 

adheres to a format defined by Outsight (Open SErialization 

Format or OSEF), a nested Tag-Length-Value (TLV) tree, and 

can be downloaded in real-time via VPN through a TCP stream. 

Following the download, binary files can be parsed into a 

standard .csv format by traversing the TLV tree. The TLV tree 

with the actual node names is shown in Figure 2. 

 

 
Figure 2. Reconstruction TLV tree. 

 

The dataset used for this study is a 7-minute sample from 10:01 

to 10:08 on Monday, January 9, 2023. The dataset contains 

information about 2260 unique detected objects’ trajectories 

described by 379 927 points. These objects, presented in Table 1, 

include vehicles and pedestrians. Among them, 1142 objects are 

consistent, including 11 cars, 3 persons, 1 truck, and 2 two-

wheelers, and 1125 objects are unknown. 

 

 Car Truck Two-wheeler Person Unknown 

consistent 11 1 2 3 1125 

recognised 676 13 82 254 - 

undefined - - - - - 

total 687 14 84 267 1125 

 

Table 2. Dataset description. 

 

Since the Fusion box only samples 5% of the collected data for 

metadata production, the dataset has inaccuracies. This leads to 

issues such as most objects labelled as 'unknown', inconsistent 

object recognition (e.g., object initially labelled as 'person' then 

'car' then 'two-wheeler'), incomplete trajectories, fluctuating 

volumes, etc. 

 

4. Methodology 

Figure 3 shows the workflow of the proposed method for traffic 

trajectory data enrichment with three potential use cases outlined. 

 
Figure 3. Data enrichment workflow. Rectangle shapes present 

actions, and obround boxes denote results. 

 

4.1 Semantic Map 

Bridging physical space and raw data involves digitising the 

space by creating a semantic map encompassing areas of interest. 

A semantic map comprises geometric objects such as polygons, 

points, or polylines, each annotated to represent specific features 

like stop lights, sidewalks, lanes, traffic islands, and more. 

Geometric features are outlined using satellite imagery with high-

resolution satellite images of urban areas freely available online. 

The outlined geometries are extracted as polygons as follows: 

 𝑃 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2) … (𝑥𝑛 , 𝑦𝑛)},  (1) 

 

where  (𝑥𝑖 , 𝑦𝑖) = longitude and latitude in a known CRS. 

 

4.2 Local to Standard CRS Transformation 

A trajectory of a tracked object is a set of n positions, sampled at 

some rate, and can be represented as follows: 

 

 𝑇 = {𝑡1, 𝑡2, … 𝑡𝑛} = {(𝑥1, 𝑦1), (𝑥2, 𝑦2) … (𝑥𝑛, 𝑦𝑛)}, (2) 

 

where  (𝑥𝑖 , 𝑦𝑖) = centroids of the object at the time i. 

 

The coordinates are in respect to a local CRS. Given the precision 

and consistency of LiDAR measurements, the transformation 

between different CRS is a linear one. In the context of CRS 

transformations, an affine transformation involves a combination 

of translations, rotations, scaling and shearing, represented by a 
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matrix multiplication followed by a vector addition. Let's 

consider a basic 2D affine transformation matrix: 

 

 [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
0 0 1

],    (3) 

 

To transform the trajectory T, the transformation matrix is 

applied to each position (𝑥𝑖 , 𝑦𝑖) as follows: 

 

 (
𝑥𝑖

′

𝑦𝑖
′

1

) = [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
0 0 1

] (
𝑥𝑖

𝑦𝑖

1
),   (4) 

 

The transformed positions (𝑥𝑖
′, 𝑦𝑖

′) constitute the trajectory in the 

new coordinate system. The parameters a, b, c, d, e and f depend 

on the specific transformation. A minimum of three reference 

points are needed to derive the transformation matrix between 

two CRS. These points are pairs whose coordinates are known in 

both coordinate systems. Given original points (𝑥1, 𝑦1), (𝑥2, 𝑦2),  
(𝑥3, 𝑦3) and transformed points (𝑥1

′ , 𝑦1
′ ), (𝑥2

′ , 𝑦2
′ ), (𝑥3

′ , 𝑦3
′ ), a 

system of equations is set based on the general affine 

transformation equation: 

 

 (
𝑥1

′ 𝑥2
′ 𝑥3

′

𝑦1
′ 𝑦2

′ 𝑦3
′

1 1 1

) = (
𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

1 1 1
) (

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
0 0 1

), (5) 

 

Solving the system of equations gives the values of a, b, c, d, e 

and f. The inverse of the transformation matrix M represents the 

reverse transformation. 

 

 𝑂𝑟𝑜𝑔𝑜𝑛𝑎𝑙 = 𝑀−1 × 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑,  (6) 

 

This is assuming that the matrix M is invertible, which is 

generally the case for valid affine transformations. 

 

Well-Known Text (WKT) is a text representation format used to 

describe spatial objects and their geometries in the context of 

Geographic Information Systems (GIS). WKT provides a 

standardised way to represent and exchange spatial data as it 

includes the coordinate system and map projection needed to 

accurately interpret spatial data. For a local CRS, its definition 

can be encoded into WKT-CRS format using the transformation 

matrix M aligning it with known CRS standards such as 

EPSG:3857 or EPSG:4326, widely adopted by platforms like 

Google Earth and OpenStreetMap. This encoding process is 

easily done through GIS software like QGIS or Python's pyproj 

library. 

 

4.3 Enriched Data Trajectory Representation 

Once the CRS transformation is applied, connecting the data with 

the space is as simple as a point-to-polygon check. Given 

polygons of interest 𝑃1, 𝑃2, … 𝑃𝑛, T can be expressed as 𝑇 =

{𝑡1 ∈ 𝑃𝑖 , 𝑡2 ∈ 𝑃𝑖,, … 𝑡𝑛 ∈ 𝑃𝑖  }. A short-hand 𝑇 = {1,1,1,0, … 1} 

can be interpreted as the tracked object is in polygon 1 for 3 

timesteps, then it moves to polygon 0, and so on. Given that the 

trajectories represent the movement of objects at a traffic 

intersection, where regulated movement in lanes is expected, the 

object's motion within a polygon can be inferred.  

A semantic map should have detailed and comprehensive 

annotations. For instance, lane annotations could encompass 

attributes like street affiliation, cardinal direction, entry or exit 

points at intersections, permissible turns, and other relevant 

characteristics. These annotations contribute to a richer dataset 

allowing for diverse data representations and classification based 

on pattern recognition. 

 

For example, entering and leaving the intersection can be 

encoded as a binary variable. Then trajectories crossing the 

intersection are expected to follow the pattern 𝑅 =
{1, … 1,0,0, … } in their representation, denoting being present in 

a lane headed toward the intersection, then moving in a lane 

exiting the intersection. A right or a left turn can be detected 

based on cardinal directions by detecting a shift in direction. For 

example, a trajectory representation 𝑅 = {… 𝑁, 𝐸, 𝐸, … } 

constitutes a right turn. 

 

4.4 Vehicle and Pedestrian Classification 

At an intersection, vehicles are anticipated to adhere to traffic 

regulations. Objects of different classes tend to occupy specific 

areas within the intersection. For instance, vehicles typically use 

roads, while pedestrians are expected to be on sidewalks or 

crosswalks. Thus, an object's class (vehicle or pedestrian) can be 

inferred from the path. It's important to note that in this scenario, 

classification is simplified into two categories – vehicle or 

pedestrian – without distinguishing between specific vehicle 

types (such as a truck or a car). 

 

Given the noisy nature of the data, where trajectories can be 

unclear, and objects like pedestrians and cars might stray from 

their designated areas (e.g., pedestrians not strictly sticking to 

sidewalks), a practical approach for classification is to set a time 

threshold for an object's presence in a pedestrian or non-

pedestrian area. The classification is based on heuristics aiming 

to perform a cheap-and-easy distinguishing of pedestrians and 

vehicles. Setting a threshold of 75% road area for vehicles (that 

is, if an object spends 75% or more of its time on the road area, 

it is classified as a vehicle) can produce a seemingly good 

classification. Since the crosswalk trajectories might be mostly 

located on the road, some of the pedestrian objects might be 

labelled as vehicles. 

 

Vehicle trajectories can be recognised by following some legal 

paths. A complete vehicle trajectory is a trajectory that begins in 

an incoming lane and ends in a lane leaving the intersection. If 

such a trajectory is detected, the object it belongs to is labelled as 

a vehicle. The remainder are either pedestrian or incomplete. 

 

4.5 Permissible Directions Violation Detection 

Beyond sequence patterns that are generally true across all traffic 

intersections, trajectories can be screened for patterns based on 

intersection-specific rules. Mapping out lanes’ permissible 

directions allows for violation screening and detection. The 

permissible directions for each lane were gathered from the lane 

markings as seen in recent satellite images. One assumption was 

that if, for example, a turn is permissible, then any outgoing lane 

to the left is a legal terminating lane for the turn. 

 

Based on the known intersection rules, a hash table of valid 

patterns can be created. Any pattern not found in the hash table 

is flagged as illegal. Such analyses bring attention to lanes where 

drivers violate the permissible directions frequently and spur 

further investigation of the cause such as poor signage, poor 

infrastructure, or high traffic density. 

 

4.6 Traffic Flow Density 

Traffic flow quantifies the volume of traffic in relation to road 

length. It's determined by the number of objects n observed in a 
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specific lane Li at a given time t. As trajectories in the dataset may 

differ in length, origin, and endpoint, and considering the non-

uniform nature of lane geometries, road length assessment should 

be conducted lane by lane. 

 𝑈(𝑙𝑖) = 𝑚𝑎𝑥(𝑥,𝑦),(𝑢,𝑣)∈𝑃𝑑𝑖𝑠𝑡((𝑥,𝑦),(𝑢,𝑣)),  (7) 

where  𝑈(𝑙𝑖) = the maximum distance between two points 

 in the set of points Pi within lane Li. 

This mitigates differences in sensor range in respect to each lane. 

 

5. Results 

This section presents the results of the data enrichment workflow, 

including constructing a semantic map, object classification, 

violation detection and visualisation of traffic flow density. 

 

5.1 Semantic Map 

The constructed semantic map contains information about 12 

incoming and 10 outgoing traffic lanes, 4 crosswalks, 7 metro 

exits, 3 traffic islands and 1 bus bay (Figure 4). All features are 

annotated with several properties, described in Table 2. 

 

 
 

Figure 4. Visualisation of the semantic map of “Cherni Vruh” 

Boulevard and “Sreburna” Street intersection. 

Features are color-coded by type. 

 

The semantic map is exported as a geoJSON file, which can be 

easily opened and manipulated in GIS software as a vector layer 

and in Python using geopandas. Using the transformation derived 

above, the geometry of the intersection is available both in 

standard EPSG 3857 and local CRS. 

 

Property Description 

id Unique ID of the polygon 

type "lane", "crosswalk", "island", “intersection”, “bus-

bay”, “metro-exit”, “metro-elevator” 

street Name of the street the polygon belongs to 

direction Cardinal direction of the lane 

to_inter Lanes: 1 if moving toward the intersection, 0 

otherwise 

left_turn Lanes: 1 if left turn is legal, 0 otherwise 

right_turn Lanes: 1 if right turn is legal, 0 otherwise 

straight Lanes: 1 if continuing straight is legal, 0 otherwise 

 

Table 2. Properties of polygons of interest, included in the 

semantic map. The properties are focused on 

describing vehicle movement. 

 

Having the semantic map, each point of the data can be located 

within the outlined geometries, giving context to the trajectories 

in the physical intersection. 

 

5.2 Local to Standard CRS Transformation 

To check the accuracy of the local to standard CRS 

transformation, a 2D projection of the LiDAR data, presenting 

the static objects of the intersection is used. Figure 5 shows that 

the static objects’ points well map out to actual physical objects 

at the intersection, proving the transformation WKT is 

sufficiently accurate. 

 

 
 

Figure 5. A 2D projection of a 50 000-point sample from the 

point cloud with static geometry transformed from a 

local CRS to EPSG 3857. 

 

5.3 Vehicle and Pedestrian Classification 

The initial dataset of 2260 objects were filtered to separate out 

the complete vehicle trajectories. Such trajectories contain the 

pattern {1,0} of heading direction relative to the intersection area 

(to_inter). The filtered dataset consisted of 78 vehicles (Figure 

6a) and was used in the use cases, presented in the next sections. 

The remaining trajectories were split based on location among 

two groups: incomplete vehicle trajectories (Figure 6b) and 

pedestrian trajectories (Figure 6c). For the incomplete vehicle 

trajectories, only the entry and exit lane is known. Note, there are 

no crosswalk trajectories in Figure 6c, since they are likely 

classified as incomplete instead of pedestrian. 

 

 

(a) 
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(b) 

 

 

    

 

(c) 

 

 

    

Figure 6. Trajectories color-coded based on normalised 

interpolation between the start (purple) and end 

(yellow). (a) Complete vehicle trajectories; (b) 

Incomplete vehicle trajectories; (c) Pedestrian 

trajectories. 

 

5.4 Permissible Direction Violations 

The 78 complete trajectories were compared to a list of 

permissible patterns. Out of them, 3 were flagged as illegal, 

constituting 2 illegal straights and 1 illegal right turn. All 3 

violations belonged to the same incoming street, highlighting a 

potentially problematic area (Figure 7). 

 

 
 

 

Figure 7. Detected violations in the data sample. Trajectories are 

color-coded based on normalized interpolation 

between start (purple) and end (yellow). All three 

violations (two illegal straight and one illegal right 

turns) occur on the northbound entry lanes of the 

intersection. 

 

5.5 Traffic Flow Density 

The count of objects passing through a lane is used as a proxy for 

traffic density. This analysis includes all 2260 objects, 

recognising that even incomplete trajectories contribute to traffic 

flow. The object locations are compiled to count the number of 

vehicles passing through each lane. The resulting counts are 

visualised in a heatmap (Figure 8). Traffic lanes’ object count 

ranges from 20 to 70 vehicles over the whole period. Some of the 

busiest lanes are the northeast- and north-bound outgoing lanes 

of the intersection. This could be due to the fact that both of these 

directions have only 2 outgoing lanes that need to handle the 

traffic coming from 3 or 4 incoming lanes. 

 

 
 

Figure 8. Heatmap of lane traffic density for an interval of 7 

minutes. 

 

6. Conclusion and Future Work 

This data enrichment process transforms trajectories into 

semantic sequences, opening up new avenues for trajectory 

analysis. Particularly with advancements in language processing, 

this becomes an intriguing area for researchers. In these three use 

cases, subsequence search techniques are employed to detect 

semantic patterns. This method facilitates the identification of 

abnormal behaviours and accident-prone zones by leveraging 

predefined rules of the intersection. 

 

The proposed method for data representation rests upon the 

assumption that objects generally follow the same motion within 

different polygons. This is not an unreasonable assumption for 

large and highly-regulated intersections when tracking vehicle 

traffic. However, its applicability may not translate to pedestrian 

trajectories, which tend to follow less strict patterns. 

 

The effectiveness of the proposed methods is strongly influenced 

by the presence of noise in the data. Despite the theoretical high 

accuracy and precision of LiDAR measurements, the 

preprocessing steps, such as object detection and tracking, 

introduce notable errors. To enhance computational efficiency, 

preprocessors often operate on partial data extracted from the 

original point cloud, which can result in misdetection and other 

issues. Recalculating the object's centroid at each frame 

contributes to noisy trajectories. 

 

To address complex intersections or multiple intersections 

simultaneously, there is considerable potential in exploring 

unsupervised machine learning models to infer traffic regulations 

directly from the data without the need for manual encoding. 

Noisy data can be mitigated by applying polyline simplification 

algorithms or smoothing filters, such as the Kalman filter. 
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Finally, the data sample used for this study covers a very short 

time period of 7 minutes. More data is required to further explore 

and make conclusive statements about traffic patterns at the 

intersection, including comparing data from different times of 

day. This could cover rush hour, workday and weekend 

dynamics, and illegal nighttime racing. 
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Appendix 

Table 2 presents the optical performance of the Long-Range 

High-Resolution Imaging LiDAR sensors used for data 

acquisition. 

 

Characteristic Description 

Range (80% 

Lambertian reflectivity, 

2048 @ 10 Hz mode) 

100 m @ >90% detection 

probability, 100 klx sunlight 

120 m @ >50% detection 

probability, 100 klx sunlight 

Range (10% 

Lambertian reflectivity, 

2048 @ 10 Hz mode) 

45 m @ >90% detection probability, 

100 klx sunlight 

55 m @ >50% detection probability, 

100 klx sunlight 

Minimum Range 0.3 m for point cloud data 
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Characteristic Description 

0 m - 0.3 m blockage detection flag 

to indicate object within 0.3 m (v2.0 

beta feature) 

Range Accuracy ±3 cm for lambertian targets, ±10 cm 

for retroreflectors 

Precision (10% 

Lambertian reflectivity, 

2048 @ 10 Hz mode, 1 

standard deviation) 

0.3 - 1 m: ± 0.7 cm 

1 - 20 m: ± 1 cm 

20 - 50 m ± 2 cm 

>50 m: ± 5 cm 

Range Resolution 0.3 cm 

Vertical Resolution 32, 64, or 128 channels 

Characteristic Description 

Horizontal Resolution 512, 1024, or 2048 (configurable) 

Field of View Vertical 45° (+22.5) 

Angular Sampling 

Accuracy 

Vertical: ±0.01° / Horizontal: ±0.01° 

False Positive Rate 1/10,000 

Rotation Rate 10 or 20 Hz (configurable) 

Number of Returns 1 (strongest) 

 

Table 2. Optical performance of the Long-Range High-

Resolution Imaging LiDAR sensors. 
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