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Abstract

RGB-D sensors offer a low-cost and promising solution to streamline the generation of BIM models. This paper introduces a frame-
work designed to automate the creation of detailed and semantically rich BIM models from RGB-D data in indoor environments.
The framework leverages advanced computer vision and deep learning techniques to overcome the challenges associated with tra-
ditional, labour-intensive BIM modeling methods. The results show that the proposed method is robust and accurate, compared to
the high-quality statistic laser scanning TLS. Indeed, 58% of the distances measured between the calculated and the reference point
cloud produced by TLS were under 5 cm, and 82% of distances were smaller than 7 cm. Furthermore, the framework achieves
100% accuracy in element extraction. Beyond its accuracy, the proposed framework significantly enhances efficiency in both data
acquisition and processing. In contrast to the time-consuming process associated with TLS, our approach remarkably reduces the
data collection and processing time by factor of height .This highlights the framework’s substantial improvements in accuracy and
efficiency throughout the BIM generation workflows, making it a streamlined and time-effective solution.

1. Introduction

BIM has emerged as a cornerstone in architecture and con-
struction ((Cheng et al., 2020)), providing a digital represent-
ation of physical structures and their associated characterist-
ics. However, the creation and updating of BIM models are
essentially manual, time-consuming, error-prone and expensive
((Volk et al., 2014)), especially for existing buildings without
digital models. This challenges the widespread adoption of
BIM, consequently hindering the realization of its full poten-
tial and expected benefits.

One popular approach for BIM modeling is to use TLS (Ter-
restrial Laser Scanner) to capture detailed 3D point clouds of
buildings or structures. However, this method can be time-
consuming and costly, especially when dealing with large or
complex structures ((Chen et al., 2018); (Tang et al., 2019)).
In addition, the accuracy of the resulting BIM models can be
affected by many factors such as scan resolution, noise levels,
and registration errors. In contrast, Simultaneous Localization
and Mapping (SLAM) systems offer a more cost-effective al-
ternative to TLS systems and allow for a comprehensive scan-
ning of the scene with centimeter-level precision ((Li et al.,
2020)). However, the cost of certain SLAM systems can reach
several thousand dollars, making them unaffordable for some
users. Additionally, most of them require an external battery,
which is cumbersome and not user-friendly for data collec-
tion. Researchers further explore sensor fusion, like LiDAR
(Light Detection and Ranging) and photogrammetry combina-
tions, to improve the accuracy and efficiency of BIM model-
ing. For example, a study by ((Zhang et al., 2022)) combined

LiDAR and photogrammetry data to create detailed BIM mod-
els of buildings. The authors demonstrated that this hybrid ap-
proach could improve the accuracy and completeness of BIM
models compared to using a single sensor technology. A more
recent development in BIM modeling is the use of panoramic
images taken from ground-based or aerial platforms ((Lu and
Lee, 2017)). Within this area, researchers have proposed vari-
ous methods to extract 3D information from 2D images using
computer vision techniques like SfM (Structure from Motion)
((Konolige and Agrawal, 2008); (Westoby et al., 2012)) and
((Ortiz et al., 2018)). However, to extract 3D information from
two-dimensional (2D) images, an extensive post-processing is
needed, including image matching and pose estimation, which
are time-consuming, and especially suffer from dark environ-
ments, poorly textured areas, and motion blurs ((Lee et al.,
2023)).

A recent advancement in BIM modeling is the use of affordable
low-cost RGB-D sensors that provide synchronized color and
depth information. Various researches have shown the prom-
ise of RGB-D sensors in as-built BIM modeling ((Wang et al.,
2012); (Henry et al., 2012)). However, these approaches have
exhibited limitations in terms of scalability, robustness, and
handling dynamic scenes. A more recent research by ((Henry
et al., 2012)) proposed an automatic framework to generate as-
built BIM model from RGB-D sensor, however this approach
remains applicable to regular and small-scale scenes.

Expanding on recent developments in BIM modeling, a further
evolution involves the integration of Deep Learning (DL) meth-
ods to enhance and automate the generation of BIM models,
though it remains in its early stages ((Zabin et al., 2022)). The
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utilization of deep neural networks and Convolutional Neural
Networks (CNNs) has shown promise in various aspects of
BIM, such as semantic segmentation, object recognition, and
scene reconstruction.

The performance of semantic segmentation algorithms has not-
ably advanced due to the adoption of deep neural networks
and extensive RGB-D datasets. In enhancing segmentation
accuracy, these models utilize depth information from scene
depth sensors alongside the conventional RGB image, as high-
lighted by ((Barchid et al., 2021)). While traditional CNNs have
demonstrated success in RGB-D semantic segmentation ((Long
et al., 2015); (Eftekhar et al., 2021); (Song et al., 2015); (Gupta
et al., 2014); (Su and Wang, 2016); (Wang et al., 2016); (Kam-
ran and Sabbir, 2018) and (Chen et al., 2017)), their computa-
tional needs can be daunting for resource-constrained platforms
like mobile devices.

Recent advancements in As-Built BIM generation face chal-
lenges related to scene dimension and complexity when using
RGB-D sensors. In this area, the computational and time de-
mands associated with DL techniques like FCN and CNN, un-
derscore the need for alternative approaches. Exploring light-
weight architectures, transfer learning, and pre-trained models
can offer efficient alternatives that balance accuracy while min-
imizing computational overhead, when dealing with complex
indoor scenes.

In this research, an automatic system for indoor As-Built BIM
generation has been developed. This system autonomously car-
ries out four distinct steps: acquisition and preprocessing of
RGB-D data, semantic segmentation, 3D reconstruction, and
BIM generation. The proposed framework is designed to not
only overcome the limitations of traditional methods but also
address the challenges posed by irregular scenes. By lever-
aging innovative techniques such as lightweight deep learn-
ing architectures and transfer learning, computational efficiency
has been optimized and accuracy has been enhanced, making
this system a robust solution for indoor As-Built BIM genera-
tion.

The experimental results underscore the efficacy of this ap-
proach. Utilizing an RGB-D camera, the system demonstrates
commendable accuracy in handling noisy data. This accuracy,
when combined with a significantly reduced processing time
compared to TLS (16 minutes as opposed to 134 minutes for
TLS), emphasizes the practicality and efficiency of this method.
This makes it a viable option for real-world applications where
both accuracy and processing speed are of paramount import-
ance. However, it is acknowledged that this approach requires
further enhancements, particularly in handling highly complex
scenes with numerous occlusions.

The paper is organized as follows: Section 2 presents related
work in RGB-D semantic segmentation with deep learning and
3D reconstruction. Section 3 provides a comprehensive de-
scription of the methodology. In Section 4, we present exper-
imental findings, and Section 5 concludes with insightful dis-
cussions and outlines future development prospects.

2. Related Work

This section discusses research related to automating BIM gen-
eration using RGB-D data. Our proposed framework incorpor-
ates two key steps: semantic segmentation and 3D reconstruc-
tion. Therefore, we will explore relevant work in both areas.

2.1 Semantic Segmentation with RGB-D Data

Semantic Segmentation involves analyzing each pixel in the
RGB image and assigning it a semantic label, such as ”wall”,
”floor,” ”window,” etc. The performance of semantic segmenta-
tion algorithms has notably advanced due to the adoption of DL
networks and extensive RGB-D datasets (Barchid et al., 2021).
While traditional CNNs have succeeded in RGB-D semantic
segmentation, their computational demands are challenging for
devices like mobile phones. In contrast, FCNs are considered
as standard models in deep learning, allowing for flexible input
and output sizes.

However, FCN’s semantic segmentation result isn’t detailed
enough, even when combining information from its high and
low layers (Li et al., 2020). To address these challenges, re-
search has focused on lightweight and efficient architectures.
(Chollet, 2017) proposed depth-wise separable convolutions for
building lightweight encoders. (Yin et al., 2023) further ex-
plored this concept by introducing D-Former, a pre-training
framework utilizing a Transformer-based encoder with depth-
wise convolutions specifically designed for RGB-D data. This
approach achieves state-of-the-art results while maintaining
computational efficiency.

2.2 3D Reconstruction from RGB-D Data

3D reconstruction is the process of creating a three-dimensional
representation or model of an object or scene; it is a crucial
step in as-built BIM creation using low cost RGB-D sensors.
This process typically involves several steps, including feature
detection, feature matching, camera pose estimation, global and
refined registration, and point cloud colorization.

The first step in creating a point cloud is to detect features in
the RGB-D images. Features are distinctive points or areas in
an image that can be reliably and robustly detected. Many al-
gorithms have been used for this purpose, such as SIFT (Lowe,
2004), SURF (Bay et al., 2006), and ORB (Rublee et al., 2011).
Once features have been detected in the images, the next step is
to match these features across different images. This involves
finding pairs of features that correspond to the same point in the
scene. Feature matching can be done using various methods,
such as brute-force matching, FLANN-based matching (Muja
and Lowe, 2009).

After features have been matched, the next step is to estimate
the pose of the camera for each image. This involves determ-
ining the position and orientation of the camera relative to the
scene. There are several methods for pose estimation, such as
(Perspective-n-Point) PnP (Pan and Wang, 2021) and its vari-
ants.

These steps result in a set of 3D points, known as a point cloud,
which represents the 3D structure of the scene. The process of
point cloud optimization begins with global registration, which
provides a rough alignment of the RGB-D images. This is typ-
ically achieved using feature-based methods that identify and
match distinctive points in the images. This involves the use
of RANSAC (Fischler and Bolles, 1981), a robust estimation
technique that can handle a significant proportion of outliers.
RANSAC iteratively estimates the parameters of a mathemat-
ical model from a set of observed data points in a way that
maximizes the number of inliers (Zhou et al., 2018). The ex-
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pected number of iterations in RANSAC can be expressed as:

E(k) =

∞∑
i=1

i× p(i) =

∞∑
i=1

i× ai−1 × b = b×
∞∑
i=1

i× ai−1

Where a is the probability that a point is an inlier and b is the
probability that at least one of the randomly selected points is
an outlier.

However, global registration alone is often insufficient for ac-
curate 3D reconstruction due to noise and other inaccuracies.
To refine the alignment, a secondary process known as refine
registration is employed. The ICP algorithm is used to min-
imize the difference between two clouds of points (Chen and
Medioni, 1992). ICP iteratively revises the transformation (ro-
tation and translation) needed to align the points in one cloud
with corresponding points in the other cloud. This results in a
fine-grained alignment of the RGB-D images.

3. Methodology

This section describes the methodology followed to generate
an As-Built BIM model from indoor scenes captured with an
RGB-D sensor. The workflow proposed as shown in Figure
1 comprises four key stages: in the first stage, we capture in-
door scenes with Kinect Azure RGB-D sensor then we proceed
to depth image processing. The second stage consists of se-
mantic segmentation which involves classification of the scene
into distinct objects or surfaces. This is crucial for identifying
walls, floors, ceilings, furniture, and other elements within the
scene. To do this, a DL model is employed to perform semantic
segmentation on the preprocessed data. In the third stage, a
point cloud is generated by fusing the depth data with the RGB
information, providing a rich representation of the scene’s geo-
metry. This point cloud is fused with predictions resulting from
the second stage to give a semantically rich point cloud which
acts as the foundation for the final stage, where BIM model gen-
eration takes place. Finally, the predictions are compared to the
ground truth in order to assess the results

3.1 Data Acquisition and Preprocessing

The first step involves capturing indoor scenes using a RGB-D
camera. The device used in this paper is Kinect azure, an RGB-
D sensor offering high-resolution (1920x1080) synchron-ized
RGB and depth images at 30 fps. Its portability and ability to
be mounted on tripods or robots makes it ideal for capturing
diverse indoor environments.

This approach is particularly valuable in the context of RGBD
data, as it allows for the reconstruction of depth information
in areas where it may be incomplete or unavailable. By in-
ferring depth values based on surrounding color cues, the al-
gorithm contributes to creating a more comprehensive and de-
tailed dataset. Figure 2 shows the difference between the raw
depth and the processed depth map. As a result, the filled depth
image seems to be more comprehensive and refined, providing
a more seamless and accurate representation of the indoor en-
vironment. This enhancement is valuable for subsequent stages
of the BIM generation framework.

3.2 2D Semantic Segmentation

In order to optimize the performance of D-Former, a two-step
training process was employed. Initially, the model underwent

Figure 1. The Methodological workflow.

Figure 2. Example of (a) RGB image, (b) Raw depth, (c) filled
depth

training on the NYU depth v2 dataset (Silberman and Fergus,
2011), a widely used dataset for RGB-D semantic segmentation
tasks. This initial training phase allowed D-Former to learn
fundamental features and patterns from a diverse set of depth
information.

The second stage consists of semantic segmentation wich is per-
formed using a D-Former model (Yin et al., 2023). In order
to optimize the performance of D-Former, a two-step training
process was employed. Initially, the model underwent training
on the NYU depth v2 dataset (Silberman and Fergus, 2011), a
widely used dataset for RGB-D semantic segmentation tasks.
This initial training phase allowed DFormer to learn funda-
mental features and patterns from a diverse set of depth inform-
ation.

Following the pretraining on NYU depth v2, the model was
fine-tuned using our preprocessed dataset. This dataset consists
of 167 RGB-D images captured using a Kinect sensor from a
variety of diverse architectural styles, encompassing both mod-
ern and historical structures from different cities. We are cur-
rently working on making this dataset publicly accessible for
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broader use. The depth maps were preprocessed using coloriz-
ation algorithm (Levin et al., 2004). The images are annotated
with labels using LabelMe (Russell et al., 2008) and split into
70% for training and 30% for testing.

Results are depicted in Figure 3 and show an increase in Mean
Intersection over Union (mIoU) and a decrease in training loss
after the training of D-Former on our preprocessed dataset.
These metrics are representative of the model’s segmentation
performance and learning convergence. Both indicators are de-
scribed below.

• Mean Intersection over Union (mIoU): The rise in mIoU
indicates that the model has become more adept at accur-
ately segmenting and assigning semantic labels to pixels in
the RGB images. mIoU is a metric that measures the inter-
section between predicted and ground truth segmentation
masks, normalized by the union of these masks. A higher
mIoU reflects a better alignment between the predicted and
actual segmentation, signifying enhanced overall semantic
segmentation accuracy.

• Training Loss: The reduction in training loss signifies
that the model has successfully minimized the discrep-
ancy between its predicted outputs and the ground truth
labels during the training process. As the model iteratively
refines its parameters, the loss decreases, indicating im-
proved convergence and alignment with the training data.

This enhanced performance is crucial for the subsequent steps
in the BIM framework, where precise semantic understanding
of structural elements is essential for generating detailed and
semantically rich 3D models. Examples of segmented images
illustrating these improvements are presented in Figure 4.

Figure 3. Training Loss during training (a) and MIoU during
training Progress (b).

Figure 4. Example of segmentation results.

3.3 3D Reconstruction

In 3D reconstruction stage, we employed the Open3D library.
Initially, feature detection was conducted to identify distinctive

points in the captured images. Subsequently, feature matching
was performed to establish correspondences between points in
different images. Through camera pose estimation, the relative
positions and orientations of the cameras capturing the scene
were determined. The global registration between the different
fragments is performed by the RANSAC algorithm, followed
by refined registration to further improve the alignment accur-
acy. Following the alignment stage, the point cloud data was
obtained through a process of triangulation. This involved pro-
jecting the features identified in the images onto their corres-
ponding positions in 3D space, using the camera parameters
estimated during the camera pose estimation step. The triangu-
lated points were then merged into a single point cloud repres-
entation of the scene.

Finally, the process continues with the superposition of the res-
ults from segmentation and the point cloud to achieve a color-
ized point cloud representation of the scene. Figure 5 bellow
show an example of 3D point cloud and colorized point cloud.

Figure 5. Example of (a) 3D Point Cloud, and (b) 3D semantic
point cloud

3.4 BIM Generation

The final stage is the generation of the BIM model from the
semantic 3D point cloud, guided by semantic labels. This pro-
cess involves transforming the enriched point cloud, where each
point carries semantic information, into a comprehensive and
detailed BIM.

In this step, we dissect the point cloud into its constituent struc-
tural elements. However, point cloud data often suffer from
noise, incompleteness, and irregularity, which pose challenges
for accurate and efficient boundary extraction.

Several methods have been proposed to address this problem,
which can be broadly classified into two categories: image-
based methods and feature-based methods.

Image-based methods convert the point cloud data into 2D im-
ages and apply edge detection algorithms to find the boundary
points. For example, (Xi et al., 2016) proposed a method that
divides the point cloud data into different patches based on the
coplanarity condition, and then converts each patch into a 2D
image according to the depth dimension. An improved Laplace
image edge detection method is then applied to each image to
extract the boundary points. This method is fast and robust,
but it may lose some 3D information due to the projection and
discretization of the point cloud data.

Feature-based methods use geometric or topological features
of the point cloud data to classify the boundary points. For ex-
ample, (Dey et al., 2021) proposed a method that uses Delaunay
triangulation and distance from the mean point of the neigh-
borhood to extract both inner and outer boundary points of the
building point cloud. This method can preserve the 3D informa-
tion and detect both concave and convex boundaries, but it may
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be computationally expensive and sensitive to the point density
and distribution.

To generate automatic as-built BIMs from low cost RGB-D
sensor data (Li et al., 2020) uses an iterative plane detection
algorithm to detect the planes from the point cloud, and then
computes the normal vector and distance to the fitted planes
for each point. The points that have a large normal vector dif-
ference or distance difference with their neighboring points are
considered as boundary points. This method can generate ac-
curate and efficient BIMs from low-quality point cloud data, but
it may not be suitable for complex indoor environments with
curved or non-planar walls.

The low-quality point cloud generated by RGB-D sensors
can be a challenge for extracting structural elements such as
walls. For identifying walls, we use a wall boundary extrac-
tion method proposed by (Li et al., 2020). Figure 6 displays
the result obtained after extracting the walls. It can be observed
that the result is not refined, and the polygon is not closed. To
address this issue, we employed the algorithm suggested in the
same article, called ”wall boundary refinement.” To extract win-
dows and doors it is sufficient to provide the center, width, and
the height of the element, the width and height are extracted
from the projection on the floor and wall planes, then the center
is extracted from the same projections. These information are
subsequently integrated into Revit, a BIM software facilitating
the creation of accurate and detailed BIM models developed by
Autodesk.

Figure 6. Wall Boundary Extraction Workflow.

4. Experimental Tests and Discussion

Two experiments were conducted in distinct scenes: the first
involved an irregular room with a small corridor , while the
second featured a complex scenario comprising two adjacent
rooms, as shown in Figure 7. We captured videos using the Kin-
ect Azure camera, systematically scanning the walls and details
by moving in a unidirectional manner and incorporating upward
movements to ensure comprehensive coverage of the floor and
ceiling.

To assess the performance of our proposed framework, we com-
pared the results with those obtained from the same scenes us-
ing a Leica RTC 360 (TLS), which are considered as the ground
truth. This evaluation focuses on three key aspects: geomet-
ric quality assessment, semantic segmentation and elements ex-
traction accuracy and the efficiency of 3D reconstruction and
BIM generation.
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Figure 7. Captured scenes (a) Irregular room (b) Adjacent rooms

4.1 Geometric Quality Assessment

To evaluate the geometric quality of low-cost image-based 3D
reconstruction, we compare the results obtained from TLS and
RGB-D sensors, which generated two separate point clouds.,
Table 1 shows details on the dataset gathered from the two ex-
periments using both the TLS and RGB-D Sensor. Following
this, a co-registration process was conducted to align and com-
pare the point clouds. The co-registration was performed manu-
ally in Cloud Compare.

The point-to-point distances provide a reliable metric for as-
sessing the consistency between these two modeling tech-
niques. The obtained result is illustrated in Figure 8.

The comparative analysis reveals that our method generates a
point cloud comparable to that obtained through laser scanning.
Specifically, more than half of the distances (57,7%) measured
were under 5 cm, and the majority of distances (82%) were
smaller than 7 cm as shown in Figure 8. The attained accur-
acy, with such a high percentage of distances falling within the
5-8 cm range, is deemed satisfactory for various modeling ap-
plications, such as documentation, visualization, virtual reality
simulations, augmented reality overlays, and spatial analysis.

Experiment Sensor Stati-
ons

Fram-
es

Raw
Points
(M)

Sampled
Points
(M)

Irregular
room

TLS
(RTC360) 1 - 31.15 1.57
Kinect
Azure - 3528 7.12 1.10

Adjacent
rooms

TLS
(RTC360) 2 - 39.97 1.12
Kinect
Azure - 6600 13.20 0.80

Table 1. Acquisition details from TLS and RGB-D Sensor.

Figure 8. Histogram of distance between reconstructed point
cloud and TLS.

In order to evaluate the presence of odometry effect, we over-
laid the point clouds obtained from the RGB-D sensor and TLS,
as illustrated in Figure 9. The observed errors along the edges
of details are likely attributed to the limited capture angles. Un-
fortunately, capturing objects, especially smaller ones, from all
possible angles is impractical using RGB-D sensors.

4.2 Semantic Segmentation and Elements Extraction Ac-
curacy

To validate the semantic segmentation and the accuracy of
structural element extraction in the proposed approach, a visual
assessment has been performed.

In the first experiment, the room has two doors, one window,
and ten distinct walls. The second experiment is more com-
plex with a scene that comprises two adjacent rooms, with two
windows, three doors, and twelve distinct walls.

Figure 9. Overlay of point clouds captured by TLS in green and
Kinect Azure in red, (a) Experiment 1, (b) Experiment 2.
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The findings demonstrate that the proposed method success-
fully identifies and extracts all existing structural elements in
the scenes as shown in table 2. Figures 10 and 11 shows
the BIM models generated by our proposed method alongside
manually generated ground truth from TLS.

Experiment Structural
Element

True
Number

Extracted
Number Accuracy

Irregular
room

Wall 10 10 100%
Ceiling 1 1 100%
Floor 1 1 100%
Door 2 2 100%
Window 1 1 100%

Two
adjacent
room

Wall 12 12 100%
Ceiling 2 2 100%
Floor 2 2 100%
Door 2 2 100%
Window 2 2 100%

Table 2. Results for the structural elements extraction compared
to the reference.

Figure 10. BIM Model Comparison (a) Proposed Method, and
(b) Ground Truth.

Figure 11. BIM Model Comparison (a) Proposed Method, and
(b) Ground Truth.

4.3 Efficiency of 3D Reconstruction and BIM Generation

To evaluate the efficiency of our framework, we assess com-
putational resources, processing time, and overall system per-
formance during 3D reconstruction and BIM generation. The
objective is to determine the framework’s feasibility for real-
world applications, considering its computational demands and
speed of operation.

As shown in Table 3, the time required for data collection,
data processing and BIM model generation is reduced from 134
minutes for two experiments with TLS, to 16 minutes with the
RGB-D sensor.

TLS RGB-D sensor
Irregular
room (s)

Two
adjacent
room(s)

Irregular
room(s)

Two
adjacent
room(s)

Acquisition ≈ 2400 3000 178 220
Processing 600 750 50 80
BIM Gen-
eration 600 720 200 250

Total 134 min 16 min

Table 3. Time comparison of data collection, processing, and
BIM Model generation: TLS vs. RGB-D Sensor.

4.4 Discussion

The experiment results indicate that our approach, utilizing an
RGB-D camera demonstrates acceptable accuracy for handling
noisy data. Over half (57.7%) of the measured distances fall
under 5 cm, highlighting its effectiveness for various model-
ing applications like documentation, visualization, and aug-
mented reality applications. This accuracy, coupled with sig-
nificantly reduced processing time compared to traditional TLS
(134 minutes vs. 16 minutes) emphasize the practicality and ef-
ficiency of our method, making it a viable option for real-world
applications where both accuracy and processing speed are cru-
cial considerations. However, this approach still requires im-
provements, particularly in scenes that are highly complex and
involve numerous occlusions.

For future endeavors, we strongly recommend:

• Incorporating Sensor Fusion: Combine RGB-D sensors
with other systems such as LiDAR or thermal cameras.
This integration proves particularly beneficial in overcom-
ing limitations related to the restricted capture angles of
RGB-D sensors.

• Investigating Online Learning and Adaptation: explore
methods for enabling the framework to continuously learn
and adapt to diverse scenes in real-time. This evolution
would significantly enhance the versatility and practical
applicability of the framework, addressing dynamic envir-
onmental conditions effectively.

• Large-Scale Scene Reconstruction: Investigating scalab-
ility for handling larger and more complex scenes will
push the boundaries of the method’s applicability and open
doors for broader use cases.

5. Conclusion

This paper proposes an automatic framework for cost-effective
as-built BIM generation using RGB-D sensors and advanced
Deep Learning techniques. The incorporation of D-Former for
2D semantic segmentation, combined with a 3D reconstruc-
tion pipeline, enables comprehensive scene understanding and
accurate extraction of BIM elements. The results highlight
the potential of our approach method for generating detailed,
semantically rich models across various applications. While
demonstrating effectiveness, challenges may arise in scenes
with high clutter, occlusions, and intricate architecture. Never-
theless, ongoing refinements and optimizations are anticipated
to make this framework a valuable and flexible tool for BIM
generation in different situations.
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