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Abstract: 
Data organization is essential for effective analysis of the spatial relationships between rooms and walls. Segmentation in successive 
stages plays a crucial role in this process since dividing the data set into smaller sets makes its analysis easier. The proposed approach 
starts with the segmentation of buildings by storeys using a three-dimensional point cloud and is carried out by detecting peaks in 
histogram of Z frequency. Subsequently, each storey is segmented into rooms using three-dimensional mathematical morphology 
techniques, which allows the delimitation of the interior spaces. The third and final step consists of identifying elements within each 
room, such as doors, ceiling, floor, and walls. During this process, connectivity and adjacency of building elements are studied to 
automatically derive topological graphs. This methodology results in a deeper and more systematic analysis of three-dimensional 
spaces, providing a solid basis for the subsequent interpretation and manipulation of the data obtained. The proposed method has been 
tested in two real cases and the results are shown respectively. 

1. Introduction

The construction industry, when compared to sectors like media, 
finance, and others, continues to be one of the least digitized 
industries (Hu et al., 2022), resulting in its well-documented 
issues with project delivery and meeting budgets. In research 
conducted by KPMG (2015), Multiproject (2021) and GoCodes 
(2023) the organizations found that major hurdles are present in 
the pursuit of successful projects. KPMG says over 50% of 
organizations had a project underperform while only 25% were 
completed within 10% of the original deadline. GoCodes 
reported that 60% of contractors experienced project delays and 
50% of projects were completed within their timeframe and 
budget. Further, Multiproject found 69% of projects exceeding 
their budgets by more than 10%, impacting both profitability and 
completion. To address these challenges, the construction 
industry has increasingly adopted Building Information 
Modeling (BIM). BIM captures a building's lifecycle digitally, 
including 3D design, materials, and crucial data.  

Scan-to-BIM is one of the main current trends in digital 
construction. It consists in a process that converts point cloud 
data from laser scanning and photogrammetry into detailed 3D 
models of existing building, encompassing both Manhattan 
(arranged along orthogonal directions and right angles) and non-
Manhattan World structures (lacks rigid regularities, displaying 
diverse shapes, irregular arrangements, and varied orientations). 
Recognizing this difference between MW and non-MW 
structures is crucial for selecting appropriate processing 
techniques, segmentation strategies and modelling approaches. 

The process of Scan-to-BIM has typically multiple stages, 
including data capturing, which involves obtaining precise 
geometrical details about the real world surrounding using 
technologies such as Light Detection and Ranging (LiDAR) 
scanners or photogrammetry and may require data registration to 
align several scans within one coordinate system. Subsequent, 
pre-processing steps are performed to clean and prepare the raw 
point cloud data for further analysis. This may involve noise 
removal, outlier detection, and data normalization to ensure 
accuracy and reliability. Segmentation techniques are then used 
to divide point cloud into meaningful subsets based on shared 

characteristics such as geometric properties or semantic 
attributes. In some instances, classification or semantic 
segmentation methods are employed to label individual point’s 
enrichment the data with meaningful contextual information. 

Even though it has a promising potential, Scan-to-BIM 
approaches have their own challenges. For instance, most Scan-
to-BIM efforts heavily depend on manual labelling (Xiong et al., 
2023) which results in a lack of robustness between models and 
their corresponding buildings. One major hurdle is how to 
effectively process large amounts of point-cloud data in an 
efficient manner given the complexity and size of the data. 
Moreover, occlusions, environmental factors and inconsistencies 
in data quality can hinder interpretation and processing 
considerably. 

In response to these challenges, this paper proposes a top-down 
hierarchical approach for the automatic segmentation of indoor 
point clouds, enabling the direct retrieval of topological graphs. 
The method is based on the implementation of 3D mathematical 
morphology and relies on the study of the indoor empty space. 
Unlike individual building elements like walls, ceilings, and 
floors, rooms constitute a higher-level hierarchical structure that 
provides insight into the configuration of indoor environments, 
and doors represent the connection between spaces. This 
information plays a vital role in the comprehension of indoor 
space configuration, which is fundamental for reconstructing 
topologically-coherent models, and for performing tasks related 
with indoor navigation and path-finding. In this context, the 
contribution of this research lies in two key aspects: 

(1) A 3D mathematical morphology strategy for room and door 
segmentation based on the study of the empty space.
(2) A top-down approach enabling the automatic retrieval of
topological relationships.

This paper is organized as follows: Section 2 provides a 
comprehensive review of indoor point cloud segmentation and 
topology extraction focused on rooms and doors. Section 3 
elaborates on the developed approach, while Section 4 shows the 
experiments and results obtained from applying the method to 
real case studies. Lastly, Section 5 is devoted to conclude this 
work.  
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2. Related Work 

2.1 Room segmentation 

In the realm of indoor building analysis, while numerous 
segmentation strategies have been developed for directly 
classifying building elements such as walls, ceilings, floors, 
windows and furniture, most existing literature primarily focuses 
on directly segmenting detected building components using 
various techniques such as Point-to-point, Point-to-surface, or 
taking advantage of different object’s features (Hu & Brilakis, 
2024). However, there is a notable gap in addressing room 
segmentation specifically. Many authors take several main 
assumptions when detecting the permanent structures 
(Nikoohemat el al., 2020). As an example, a segment would be 
categorized as a floor if its normal direction is vertical, its 2D 
area exceeds a specific threshold and its height is below the 
average z-value of a point cloud (Xiong et al., 2023). 
 
Many authors have developed different methods to assess room 
segmentation, for example, Frías et al. (2020) convert point 
clouds in voxels to extract indoor empty spaces by the building 
contour, and they apply 3D morphological erosion to identify 
empty spaces by room semantics and morphologically dilate by 
segmentation of a point cloud. In contrast, Mura et al. (2014) 
developed an algorithm to process 3D point cloud data of indoor 
spaces that makes the assumption of vertical walls in consistent 
registration, to generate polygonal representations for closed of 
each room by combining 3D and 2D operations. Nikoohemat et 
al. (2020) employed regularized Boolean operations on 
reconstructed permanent structures to delineate room volumes, 
integrating semantic information for flexible space subdivision. 
Ochmann et al. (2016) introduced a segmentation technique that 
need prior information about the scanning positions and is 
grounded in Bayesian theory, where the quasi-conditional 
probability is computed by considering the mutual visibility of 
points and iteratively adjusting point allocations within rooms. In 
comparison, Xiong et al. (2023) method does not require any 
prior knowledge and is based on the assumption that a room is an 
enclosed space surrounded by the main structure of a building. 
First the point cloud is semantically segmented into different 
components (walls, beams, floors, ceilings, and clutters) and 
wall-beam centreline is employed and segmented for then refined 
using an optimization method. 
 
2.2 Door segmentation 

In the context of analysing an indoor environment, door detection 
is a critical component that has applications in navigation 
systems, building mapping, and even interior design because they 
act as the connecting element between adjacent rooms (Frías et 
al., 2020). Detecting doors is easy when they are open, as they 
create a hole in the wall. However, when closed, detection 
becomes more challenging due to the lack of descriptive features 
because objects with similar sizes and shape to doors can be 
mistakenly identified as doors, increasing false positives 
(Flikweert et al., 2019). For example, Díaz-Vilariño et al. (2015) 
developed an image-based algorithm utilizing the Generalized 
Hough Transform (GHT) for identifying potential door locations 
within orthoimages. Then Díaz-Vilariño et al. (2016) determined 
wall planes treating them as binary images where pixels indicate 
one or zero depending on whether points fall inside the pixel or 
not. However, these methods rely on predefined door sizes and 
shapes and are also vulnerable to detecting false positives. To 
address this challenge, if a MLS is used for data capture, 
trajectory can be used to help in the process of door detection. 
For instance, Nikoohemat et al al. (2018) utilize ray-casting from 

the trajectory to recognize apertures in walls, classifying holes as 
a door when the trajectory passes nearby its midpoint. Other 
approaches can only detect doors passed through. Flikweert et al. 
(2019) implement the 3DMAT algorithm which allows for the 
generation of medial sheets that can act as dividers between 
furniture, walls and voids within walls. It is aimed at creating 
spaces in indoor environment for voxel detection and separate 
floor regions. In Elseicy et al. (2018), the trajectory is employed 
to highly accurate localization of potential door locations after 
extracting laser points in close proximity and then checking the 
door width along the trajectory, thus enabling detection of 
opened, semi-opened, and closed doors during scanning. In Díaz-
Vilariño et al. (2017), doors are detected by extracting a vertical 
profile of the point cloud along the trajectory followed by the 
MLS but is limited to doors that are not at the same height as the 
ceiling. Another approach detects open doors and door passes 
from a voxel-based labelling approach (Okorn et al., 2010), 
where doors are considered as openings in the wall structures. 
 
2.3 Connectivity detection 

In 2014, the Open Geospatial Consortium (OGC) standardized 
IndoorGML with the Node-Relation Graph (NRG) to model 
indoor spaces for navigation. The graph models represent the 
geometric relationships between rooms and corridors, which are 
crucial for understanding indoor layouts and developing 
navigation and mapping algorithms. These relationships can be 
classified into three categories: Adjacency, Connectivity, and 
Accessibility. Adjacency specifies edges between two adjacent 
spaces, Connectivity specifies edges between two spaces 
connected by doors, and Accessibility provides information on 
traversability. NRGs can either use a thin wall model where 
spaces are nodes, and edges link spaces to one to the other, or a 
thick wall model where spaces are nodes; there are also nodes for 
walls and doors to enhance navigation knowledge (Flitweert et 
al., 2019). In connectivity graphs, walls are normally removed, 
and the doors remain as nodes. Connectivity graphs are pivotal 
and it is on the process of graph extraction from point cloud 
processing that the true potential of indoor navigation emerges. 
Nikoohemat et al. (2020) enhanced indoor navigation by 
including features like doors and stairs in the graph, facilitating 
route planning. Flitweert et al. (2019) check connectivity 
algorithmically by door, stair, and slope nodes. It is assumed that 
the whole interior is connected with doors, stairs, and slopes. 
Stairs and slopes link to spaces or doors at the bottom and the top 
node, while the doors link two spaces or a floor and a stair/slope. 
A network arises by connecting points within spaces to points of 
doors and stairs. Drobnyi et al. (2024) classifies the connectivity 
between surface pairs from point cloud data directly using the 
PointNeXt-based model, addressing imbalance through filtering 
methods like Neighbour connection and Line-cast-based 
rejection. Tran et al. (2017) establishes connectivity between 
shapes based on adjacency and interior classification guiding the 
merge rule in the replacement of connected interior spaces. On 
the other hand, Tran et al. (2018) presents topological relations 
reconstructed among cuboid shapes by the grammar rules learned 
from the input point clouds that are to be used automatically and 
finally compensate for the missing points. 
 

3. Method 

Our method proposes a top-down hierarchical approach for the 
automatically segmentation and classification of indoor point 
clouds, taking advantage of the extraction of connectivity 
between entities for classification refinement towards an 
effective reconstruction of as-built buildings from point clouds.  

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W5-2024 
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W5-2024-289-2024 | © Author(s) 2024. CC BY 4.0 License.

 
290



 

3.1. Data preprocessing 

Data pre-processing aims to simplify the representation of three-
dimensional data prior to more sophisticated analyses. The 
proposed method uses subsampling algorithms to reduce the size 
and density of the point cloud as well as contour extraction 
techniques to remove outdoor points. Although the removal of 
outdoor points is often an initial step in point cloud processing, it 
is not always necessary. In general, in buildings that have 
floorplans of different sizes and shapes, it is advisable to 
implement an outdoor point removal stage prior to storey 
segmentation. 
 
The removal of outdoor points is based on DBSCAN and alpha 
shapes. First, the DBSCAN algorithm is applied to the point 
cloud of a storey. At this stage only points belonging to the 
largest cluster detected by DBSCAN are retained. Points from 
smaller clusters are discarded together with the points labelled as 
noise by DBSCAN. The density criterion is defined through two 
parameters, namely eps, which is the maximum distance between 
two points for being considered neighbours, and min_samples, 
which is the minimum number of neighbours a point must have 
to belong to a cluster (instead of being considered noise). 
 
Then we extract the storey contour by creating a 3D alpha shape 
of the largest cluster returned by DBSCAN. The alpha shape 
associated with a set of points is a generalization of the concept 
of convex hull. Alpha shapes are strongly influenced by 
parameter α, as an alpha shape has an edge between two members 
of the point set whenever there exists a generalized disk of radius 
1/α containing none of the point set and the two points lie on its 
boundary. The second stage of outdoor points removal is 
completed by filtering out those points that are outside the alpha 
shape. 
 
3.2 Storey segmentation 

As previously mentioned, our top-down approach starts by 
segmenting the building point cloud by storeys, from which a 
topological connectivity graph is automatically derived. On one 
hand, subdividing original point clouds into smaller datasets 
enhances the computational efficiency of subsequent processing. 
On the other hand, the extraction of connectivity is fundamental 
for the complete representation of the building as a topological 
graph representing relationships between entities and spaces.  
 
Given that buildings are typically composed of horizontally 
levelled storeys, many authors already explored the partition of 
the point cloud into storeys by analysing the frequency of Z 
values (Khoshelham & Díaz-Vilariño, 2014). Our method is also 
following this assumption. Accordingly, a histogram is 
calculated considering as parameter the number of bins, n, which 
is determined from a knowledge-based adjustment considering 
the nature of the data. For example, in the case of residential 
buildings, Scott's rule can be successfully applied to determine 
an optimal bin width and hence the number of bins in the 
histogram. This rule uses standard deviation and the number of 
observations in the data set as parameters. The rule formula 
indicates that the bin width (h) is calculated as 3.5 times the 
standard deviation of the data, divided by the cube root of the 
number of observations. This approach seeks to find a balance 
between smoothing the representation of the distribution and 
highlighting meaningful patterns.  
 
Next, the average of the frequencies of the Z-histogram is 
calculated and the peaks are identified. The highest k Z-
frequencies of the histogram are selected depending on the 

number of plants num_s. For example, in the case of 2 storeys, 
the 4 highest frequencies of the histogram are selected; similarly, 
for 3 storeys, the 6 highest frequencies are selected. In general, 
the number of histogram peaks to be detected is twice the number 
of plants, i.e. k = num_s * 2. 
 
Figure 1 shows an example of a three-storey building 
segmentation. The left-most peak represents the floor of the 
lower storey. This placement ensures the incorporation of all 
floor points into the storey during segmentation. The same 
reasoning applies to the higher storey placed at the right-most 
side of the histogram. The transition between the ceiling of one 
storey and the floor of the storey above is represented in figure 3 
by red lines in the middle of the corresponding pair of histogram 
peaks. 
 

 

Figure 1. Histogram of Z coordinates of the point cloud of a three-
storey building. 
 
Although the precise connection of storeys may be obtained from 
the location of stairs and elevators, a simple topological graph 
can be already derived from the storey-segmentation results 
(Figure 2). 
 

 

Figure 2. a) Point cloud segmentation by storeys, b) inter-storey 
connectivity graph. 
 
3.3. Room segmentation 

Room segmentation is performed following a 3D mathematical 
approach (Balado et al, 2020, Frías et al, 2020). Instead of using 
the point cloud itself, this approach is based on analysing the 
empty space of a building indoor, whose definition is more robust 
than wall segments, especially in case of low-quality point 
clouds.  
 
Our approach follows a classical morphological opening applied 
to a voxel structure. As the structuring element is also a cube of 
side l, the indoor point cloud is initially oriented such that its 
main axes are aligned with the coordinate axes (x, y, z). 
Afterwards, the point cloud is voxelized, with voxels classified 
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as occupied if they contain points, indoor empty if they do not 
contain points and are inside the building contour, and outdoor 
empty if they do not contain points and are outside the building 
contour. Indoor empty voxels are the ones selected for further 
processing. The voxel resolution should be carefully determined 
to ensure that the empty space within inner walls is not 
misrepresented by empty voxels.  
 
The room segmentation process involves erosion, 
individualization, dilation and point cloud classification. As 
previously mentioned, we use a 3D structuring element, modelled 
as a cube whose side l is determined based on the width of the 
doors. Erosion is performed to break the continuity of the empty 
indoor space through doors. Then, each room is individualized 
by using a 3D connected components algorithm.  
 
The parameter connectivity indicates the type of connectivity 
considered between the voxels. Using a connectivity of 26 
indicates that connections could be in all directions. The output 
is a labelled voxel structure where each component has its own 
unique label, providing an individualized representation of rooms 
in three-dimensional space. Next, dilation is applied using the 
same structuring element, a cube with side l. Finally, occupied 
voxels are further classified based on proximity to individualized 
clusters. Following this process, the initial point cloud is 
segmented in rooms (Figure 3).  
 

 

Figure 3. a) Erosion, b) Individualization, c) Dilation, d) Point 
cloud classification. 
 
The result of the described process is shown in Figure 4.a. The 
inter-room connection, Figure 4.b, is extracted after door 
detection following the approach presented by (Frías et al, 2020). 
This approach uses the continuity of the indoor space -indoor 
empty voxels- between adjacent rooms to detect open doors 
connecting rooms.  
 

 

Figure 4. a) Rooms, b) inter-room connectivity graph. 
 
3.4. Envelope segmentation 

The next stage of the proposed processing pipeline is floor and 
ceiling segmentation. The candidates to be floor or ceiling are 
identified by estimating normal in the point cloud. This approach 
selects points which normal have a Z component greater than an 
adjustable threshold between 0 and 1, where a value closer to 1 
indicates an interest in detecting horizontal planes. The 

RANSAC algorithm is applied separately to the lower and upper 
parts of the point cloud of the storey in order to obtain the planes 
that best fit the floor and ceiling, respectively. 
 
Walls are detected by iteratively applying the RANSAC 
algorithm to the vertical planes, i.e. the points whose horizontal 
component of the normal vector is close to 0. Each time a new 
plane is fitted, its neighbouring points are discarded so that in the 
next iteration the RANSAC algorithm is applied only to the 
remaining points. The adjacency between pairs of detected walls 
can be established from the room segmentation results (see 
section 3.3). 
 

 

Figure 5. a) All walls, b) walls by room, c) walls in each room. 
 
For the segmentation to yield correct results, only the points 
corresponding to building elements must be fed to the 
classification algorithm, discarding the points corresponding to 
objects inside the rooms. This filtering operation can be 
performed by retaining only the points that are within a threshold 
distance from the convex hull of the walls. If a room has columns 
or objects located close to the walls, an additional refinement step 
is necessary. 
 
Since the lines formed on the point clouds tend to extend 
infinitely, an observation is made to determine if these lines are 
parallel or intersect. If they intersect, the angle of intersection is 
calculated and, if the angle is very small, the centroids of the 
point clouds involved are calculated. It is then determined 
whether these centroids are very close to each other, in which 
case only the largest point cloud is retained. On the other hand, if 
the lines turn out to be parallel, the distance between them is 
evaluated, and if it is less than a certain threshold, the largest 
point cloud is selected for subsequent analysis. 
 
To determine if two walls of the same room are adjacent, the 
following process is carried out: first, the intersection point of the 
lines that represent the walls of the room and that were previously 
obtained is calculated. Next, it is checked if they are adjacent by 
creating an area around the intersection point defined by a 
previously established radius. Finally, it is analysed which of 
those points are inside and it indicates which walls are adjacent. 
To determine if two walls of different rooms are parallel, the 
following procedure is employed.  
 
To determine the adjacency between two walls belonging to 
different rooms, the following procedure is used. Initially, the 
centroid of one of the walls is calculated. Subsequently, an 
orthogonal projection of said centroid is made on the plane of the 
other wall. The distance between the centroid and the projected 
point of the other wall is calculated. If this distance is less than a 
predefined threshold, the walls are established as adjacent. Figure 
6 shows this method. 
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Figure 6. a) Two parallel walls of different rooms, b) how 
calculated distance between centroids of walls. 

 
The intra-room adjacency of each wall can be seen in the Figure 
7. The black dotted lines denote the adjacency between walls 
inside each room, while the red dotted lines denote the adjacency 
between walls belonging to different rooms. 
 

 

Figure 7. a) Walls in rooms, b) inter / intra-room adjacency 
graph.   

 
 

4. Experiments and Results 

4.1. Case studies 

Case study 1 corresponds to a one-storey building composed of 
several rooms connected by one corridor, while case study 2 is a 
two-storey indoor scene containing multiple rooms. Figures 9 
and 10 show the input data, which a size of 43.919.562 points and 
1.918.295 points respectively. 
 

 

Figure 9. Figure of the case study 1. 

 
4.2. Experiments and results for case study 1 

The process starts with voxelization, applying a resolution of 0.1 
determined by the width between walls. Then a DBSCAN 
algorithm is applied for storey cleaning. For this case the values 
of eps, which corresponds with the maximum distance between 
two samples and of min_samples, which is the minimum 
neighbourhood size, are 0.3 m and 2 respectively. This process 
together with the contour extraction utilizing an alpha value of 

3.2 that implies a stricter connection between neighbouring 
voxels, yields the result in Figure 11. 
 

 

Figure 10. Case study 2: a two-storey building with multiple 
rooms. 

 

 

Figure 11. a) Initial point cloud, b) clean point cloud, c) contour 
extraction.   

 
In this case, segmentation by storeys will not be applied since 
there is only one storey. Now, the room segmentation process 
starts and voxels are classified as occupied, indoor empty and 
outdoor empty. A structuring element based in width of doors is 
used with a length of 11. The results of breaking the continuity 
of empty indoor voxels are shown in Figure 12.a) with 3D 
erosion. Then 3D connected components is applied using a 
connectivity of 26 that indicates that connections could be in all 
directions which is shown in Figure 12.b). After all of this, a 
dilation is applied with the same structuring element and its result 
is illustrated in Figure 12.c). Finally, classification of occupied 
voxels based on proximity to individualized clusters will result in 
the segmentation of the initial point cloud into rooms, as shown 
in Figure 12.d).  
 

 

Figure 12. a) Erosion, b) Individualization, c) Dilation, d) Point 
cloud classification 
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For detecting walls, a vertical plane and RANSAC algorithm are 
used and the selected threshold to adjust planes is 0.05. Walls can 
be viewed separately in each room. In this case rooms are not 
complete rectangular due to the presence of occlusions such as 
projectors or lockers located in the corners. Figure 13 shows the 
adjacency between rooms and walls in each room that is 
represented by black lines and black dotted lines, respectively. 
Red dotted lines represent the adjacency between parallel walls 
of different rooms. 
 

 

Figure 13. a) Walls, b) topological relation graph. 
 
Currently, detailed information on room adjacency has been 
obtained, but the analysis of hallways has not yet been completed. 
For this reason, adjacency between room walls and hallways is 
not represented. 
 
4.3. Experiments and results for case study 2 
 
The segmentation by storeys has been done using a histogram 
with Scott’s rule, requiring only a parameter for the number of 
storeys, which in this case is 2. As a result, the point cloud has 
been divided into two storeys. 
 
Before proceeding with room segmentation in a storey, it is 
essential to carry out voxelization preprocessing step, utilizing a 
voxel size of 0.1 m and a contour extraction using an alpha value 
of 3.2. Once this step is completed, room segmentation process 
as shown in Figure 14 is executed. First, these voxels are 
classified as occupied, indoor empty and outdoor empty. A 
structuring element based in width of doors is used with a length 
of 7.  
 
Results of break the continuity of empty indoor voxels are shown 
in Figure 14.a) with 3D erosion. Then 3D connected components 
is applied using a connectivity of 26 that indicates that 
connections could be in all directions, which is shown in Figure 
14.b). After all of this, a dilation is applied with the same 
structuring element and its result is illustrated in Figure 14.c). 
Finally, classification of occupied voxels based on proximity to 
individualized clusters will make that the initial point cloud is 
segmented by rooms.  
 

 

Figure 14. a) Erosion, b) Individualization, c) Dilation, d) Point 
cloud classification.  

 
For room segmentation, the voxel resolution is important as it is 
chosen to ensure that the empty space of the interior wall is not 
represented by empty voxels. In this case there are interior walls 
with different sizes, so the room segmentation contains some 
errors. This can be solved by selecting the rooms with incorrect 
segmentation and changing its voxel size parameter. The selected 
value is 0.05, and the same process is repeated accordingly. 
Figure 15 shows how the rooms that were not correctly 
segmented are now correctly segmented. 
 

 

Figure 15. a) Segmentation with errors, b) segmentation after 
repeating the process. 
 
The same procedure as before is employed to detect walls, which 
can be viewed all together, by rooms, and within each room 
individually, as shown in Figure 16. 
 

 

Figure 16. a) All walls, b) walls for room, c) walls in each 
room.  

The presence of some errors in room segmentation means that 
wall segmentation is not completely accurate, which causes 
points that should be in one room to be in another adjacent room 
as illustrated in Figure 17. 
 

 

Figure 17. a) Room with errors, b) walls in room with errors.  
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Due to the large number of rooms, the relationship between the 
walls of the rooms corresponding to rooms 35 and 36 is shown in 
Figure 18. Black lines and black dotes lines represent adjacency 
between rooms and walls in each room, respectively. Red dotes 
lines represent adjacency between parallel walls of different 
rooms. Furthermore, due to the limited number of points or small 
room sizes, wall segmentation is not performed accurately in 
these cases. 
 

 

Figure 18. Topological relation graph between walls. 
 
 

5. Conclusions 

In this paper a top-down hierarchical approach for indoor 
segmentation and topology-graph retrieval is presented. This 
approach simplifies and improves the accuracy of room and 
element segmentation by progressively reducing the complexity 
of the building structures to be analysed. This strategy is 
demonstrated to be effective for the segmentation of MW 
building layouts, but non-MW could be addressed by 
implementing an isotropic structuring element, what would be 
considered for future work. Next steps will also explore the use 
of these topological graphs to building reconstruction, and 
special attention will be given to the reconstruction elements such 
as columns, beams, windows, or staircases.  
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