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Abstract

In the realm of autonomous systems and smart-city initiatives, accurately detecting and localizing pole-like objects (PLOs) such
as electrical poles and traffic signs has become crucial. Despite their significance, the diverse nature of PLOs complicates their
accurate recognition. Point cloud data and 3D deep learning models offer a promising approach to PLO localization under varied
lighting, addressing issues faced by camera systems. However, the distinct characteristics of different street scenes worldwide
require infeasibly extensive training data for satisfactory results because of the nature of deep learning. This prohibitively increases
the cost of lidar data capture and annotation. This paper introduces a novel few-shot learning framework for the classification of
outdoor point cloud objects, leveraging a minimalistic approach that requires only a single support sample for effective classification.
Central to our methodology is the development of Pole-NN, a Non-parametric Network that efficiently distinguishes between
various PLOs and other road assets without the need for extensive training datasets traditionally associated with deep learning
models. Additionally, we present the Parkville-3D Dataset, an annotated point cloud dataset we have captured and labelled, which
addresses the notable scarcity of fine-grained PLO datasets. Our experimental results demonstrate the potential of our approach
to utilize the intrinsic spatial relationships within point cloud data, promoting a more efficient and resource-conscious strategy for
PLO classification.

1. Introduction

In the rapidly evolving landscape of autonomous systems and
smart-city technologies, the accurate recognition and localiza-
tion of pole-like objects (PLOs) have emerged as a key chal-
lenge and research focus. These objects, encompassing util-
ity poles, street lamps, and traffic signs, serve as indispensable
components within complex urban environments. They have
numerous applications, from vehicle localization in autonom-
ous driving (Dong et al., 2023) to infrastructure maintenance
(Cabo et al., 2014) and 5G network planning (Gholampooryazdi
et al., 2017). Despite their ubiquity and functional significance,
PLOs pose unique challenges in terms of accurate detection and
localization because of their diverse forms, varying sizes, and
complex surroundings. Using point cloud data is one of the
ways to detect and localize PLOs (Luo et al., 2023). Scanned by
Light Detection and Ranging (lidar) sensors, point cloud data
can provide accurate depth and spatial information that lends
itself well to tasks requiring precision localization and identi-
fication of structures in the environment. Among all lidar types,
Mobile Laser Scanning (MLS) data prove particularly crucial to
our research topic, given its ability to capture point cloud data
while moving on the road. Its active sensing nature ensures re-
liable performance under various lighting conditions, overcom-
ing a key limitation of camera-based systems, which can suf-
fer from over or under-exposed imagery in high-contrast scenes
and various weather conditions (Yeong et al., 2021). However,
previous studies show that the recognition accuracy of PLOs is
always relatively low among other street assets on point cloud
data (Thomas et al., 2019; Luo et al., 2020; Nie et al., 2022;
Boulch et al., 2020).

Most point-cloud PLOs recognition studies still use non-learning-
based traditional methods. Those methods highly depend on

prior knowledge and hand-crafted features leading to the prob-
lem that they cannot widely apply to all types of PLOs (Luo
et al., 2023) and can not describe the PLO well enough (Li
et al., 2019b). Those problems can be mitigated by applying
deep learning techniques, which can extract learned features,
enabling a comprehensive representation of the properties in-
trinsic to PLOs (Plachetka et al., 2021).

Street scenes differ significantly across global locales. As such,
current deep-learning methods often require an influx of fresh
training samples to produce satisfactory results in unfamiliar
new environments. Even though some available datasets cap-
ture street scenes in point clouds, they are not ubiquitous be-
cause lidar technology is relatively recent, and the cost of sensors
remains prohibitively high. A survey review reveals that the
primary constraint hindering the widespread application of deep
learning on point cloud data is the cost of capturing data (Luo et
al., 2023). That presents a unique challenge in applying and de-
veloping deep learning techniques in different environments for
lidar-based PLO recognition, underlining the need for creative
strategies that maximize the utility of data.

Inspired by cutting-edge advancements in few-shot learning re-
search, this paper introduces a novel, training-free method for
road object classification. Our method, named Pole-NN, incor-
porates multiple non-trainable feature extraction components.
Those components enable Pole-NN to effectively distinguish
pole-like objects from other road entities and further categorize
them into specific types of poles. To empirically validate Pole-
NN’s efficacy, we present experiments focusing on its one-shot
learning performance. Remarkably, Pole-NN achieves classi-
fication accuracy comparable to that of previous deep learning
methods, which traditionally rely on extensive training datasets.
This achievement is particularly noteworthy considering that
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Pole-NN was provided with only a single example as a sup-
port case, starkly contrasting with the data-intensive require-
ments of preceding models. The principal innovation of Pole-
NN lies in its training-free architecture, which empowers it to
accurately classify outdoor 3D objects with minimal support
samples, demonstrating high classification accuracy even with
the use of a single example. This approach marks a signific-
ant step forward in the efficient and rapid deployment of object
classification models in dynamic outdoor environments.

In addressing the critical gap in the availability of dense, out-
door, street-scene point cloud datasets for PLO recognition, this
work also introduces the Parkville-3D dataset1. Parkville-3D
stands as a dense and accurate dataset, offering a fine-grained
semantic segmentation of urban elements. This contribution not
only enriches the domain with a much-needed resource but also
sets the stage for enhanced performance testing of deep learn-
ing models in outdoor environment applications, particularly in
the precise recognition of various PLOs.

The structure of the paper is as follows. In Section 2, we will
provide a background of previous PLO classification methods.
Section 3 introduces our newly devised framework for PLO
classification, along with a detailed exposition of a typical im-
plementation. Section 4 details the experimental setup, includ-
ing evaluations conducted on both publicly available bench-
mark datasets and custom datasets, created to address the lack
of detailed pole-type labels in existing datasets. Finally, Section
5 discusses the outcome and future directions.

2. Related Work

In this section, we will introduce two categories of PLO clas-
sification: the Hand-crafted Feature-based Approach and the
Learning-based Approach. Subsequently, we will explain the
methodologies previously employed in few-shot Learning.

2.1 PLO Classification based on Hand-crafted Features

Yan et al. (2017) employed a shape-matching technique for cat-
egorizing PLOs into eight distinct groups. They utilized the
Ensemble of Shape Functions (ESF) to extract various shape
features such as point distance, area, and angles, represented in
a 64-bin histogram. The classification is achieved by comparing
the shapes of their histograms. An alternative approach, as de-
scribed by Hao et al. (2018), leverages the distinctive horizontal
point densities characteristic of various poles for classification
purposes.

However, as noted in multiple studies (Li et al., 2019a; Kang et
al., 2018; Shi et al., 2018; Huang and You, 2015; Li et al., 2018;
Wang et al., 2022), devising a comprehensive method capable
of classifying a broad spectrum of pole types or their subcat-
egories remains challenging.

In response, there has been a shift towards machine learning
methods for classification, employing algorithms such as Ran-
dom Forest (Li et al., 2019a; Wu et al., 2017; Yan et al., 2017;
Yuma et al., 2018; He et al., 2017) and Support Vector Machine
(SVM) (Li et al., 2019a; Wu et al., 2017; He et al., 2017). To
construct a machine learning-based PLO classification model,
Li et al. (2019a) extracted three types of features: size, eigenvalue-
based, and radiometric. Those features were then input into

1 https://github.com/Cipher-zzz/Parkville-3D

various classifiers including SVM, Random Forest (RF), Gaus-
sian Mixture Model (GMM), and Naı̈ve Bayes (NB), with Ran-
dom Forest demonstrating superior performance. Ferrin et al.
(Ferrin et al., 2018) similarly trained a neural network using
eigenvalue-based features for pole classification.

Despite these advances, the limits of hand-crafted features have
been noted, especially in accommodating diverse scenes and
pole characteristics in different geographical locations (Li et al.,
2019a; Dong et al., 2023; Ferrin et al., 2018; Wu et al., 2017;
Wang et al., 2022), posing a challenge in developing universally
applicable hand-crafted feature-based methods.

2.2 PLO Classification based on Learned Features

Seeking a more comprehensive feature extraction approach, pre-
vious studies have turned to deep learning networks for pro-
cessing point cloud data. One of the earliest such endeavours,
PointNet (Qi et al., 2017a), directly consumed point cloud data.
The first end-to-end deep learning pole recognition network was
introduced in 2021 (Plachetka et al., 2021), incorporating ele-
ments from PointPillars (Lang et al., 2019), VoxelNet (Zhou
and Tuzel, 2018), and concluding with a classification head
from SSD (Liu et al., 2016). Due to the lack of a public data-
set with PLO labels, they created their own dataset for train-
ing and evaluation, achieving a classification accuracy of 0.93,
excluding billboard poles. While deep learning networks of-
fer improved recognition accuracy, they are heavily reliant on
extensive training datasets (Plachetka et al., 2021; Dong et al.,
2023). That highlights the urgent necessity to develop methods
that can effectively learn from limited training instances.

In summary, the hand-crafted features used in traditional meth-
ods cannot describe and differentiate PLOs well enough, while
the current deep-learning feature extraction requires a large amount
of training data. Therefore, a PLO classification method which
ables to extract high-level features but requires a few training
samples needs to be developed.

2.3 Few-shot Learning

Few-shot learning holds substantial significance and poses not-
able challenges in the deep learning field. It aims to solve the
problem that traditional deep learning models typically require
massive amounts of supervised samples to ensure their general-
ization capabilities.

Data augmentation is an intuitive method to increase the num-
ber of training samples and enhance data diversity. For ex-
ample, we can crop and add noise to point cloud as basic aug-
mentation operations. Previous studies have designed more com-
plex network models to generate better data, such as encoder-
decoder augmentation networks (Schwartz et al., 2018; Chen et
al., 2019) and generative adversarial networks (GAN) (Gao et
al., 2018; Antoniou et al., 2017). In point cloud data, another
viable approach to accomplish few-shot Learning involves ini-
tially training a model on a large volume of synthetic data and
then fine-tuning it with a limited number of real point cloud
scenes (Chitnis et al., 2021; Huang et al., 2023).

Meta-learning, also known as ”learning to learn”, is a recent
subfield of few-shot Learning, where the central idea is to design
models that can learn new skills or rapidly adapt to new envir-
onments with little input after training. During training, a meta-
learning model is exposed to various tasks, each with a small
amount of training and testing data. The model is trained not
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just to perform the inference but to learn a strategy for learning
the tasks. That enables the model, after training, to adapt when
it encounters a new task (Finn et al., 2017).

Unsupervised learning, a branch of deep learning, is character-
ized by its ability to learn from data without reliance on human-
labelled data. It can significantly reduce the cost of labelling
data and thus can be considered a few-shot Learning approach.
For instance, an autoencoder can be trained without reliance
on any labelled data (Yang et al., 2021). It comprises an en-
coder and a decoder. The encoder’s role is to encode the input
into a feature vector, while the decoder’s function is to recon-
struct the original input from this feature vector. The autoen-
coder does not necessarily need to comprehend the specifics of
the input data, its purpose is to learn how to encapsulate the
essence of the input and leverage that distilled feature repres-
entation for accurate input reconstruction. Following this pro-
cess, the well-trained encoder can serve as the backbone for
other tasks, such as classification or segmentation. Similar to
that self-reconstruction, we can assign the autoencoder to learn
from masked input (randomly hide) and ask it to train on the
completion task (Yu et al., 2022) or random sample the input
and ask it to up-sample back to the original input (Remelli et
al., 2019).

Another intuitive and effective few-shot Learning method is
metric learning. The key idea of such methods is to classify the
unknown sample by its similarity to the learned dataset. Sim-
ilar pairs of samples can obtain higher similarity scores, while
dissimilar pairs receive lower scores. Metric Learning utilizes
training datasets to establish a similarity measure and then gen-
eralizes this to the test set of tasks. The similarity measure can
range from a simple distance measurement (Ye and Guo, 2018;
Scott et al., 2018) to complex networks (Koch et al., 2015) or
any other viable algorithms which able to estimate the similar-
ity between features.

3. Pole-NN

Rather than relying on extensive training datasets to develop
a deep neural network, we focus on a non-parametric meth-
odology capable of extracting and interpreting features from
a limited support set instead of a huge amount of training set.
Drawing inspiration from the 2D segmentation method SG-One
(Zhang et al., 2020), as well as from established metric learning
methodologies (Ye and Guo, 2018; Scott et al., 2018), we have
conceptualized a feature similarity-based classification frame-
work. Within that framework, we introduce our pole-like ob-
jects feature extractor, Pole-NN, which is inspired by the prin-
ciples of Point-NN (Zhang et al., 2023). This approach signifies
a strategic shift towards more efficient and adaptable outdoor
point cloud classification in situations where data availability is
limited.

Building on the preceding discussion, this section will first provide
an overview of our proposed framework. After this introduct-
ory exposition, we will delve into a detailed description of the
framework, with a particular focus on explaining the rationale
behind our selection of several critical components. That will
illuminate the strategic decisions that underpin the choice of its
key elements, thereby offering a comprehensive understanding
of our methodological approach.

3.1 Feature Similarity-based Classification

Figure 1 shows our feature similarity-based classifier which in-
volves two key sections: ’Supporting feature preparation’ and

’Inference’. In the ’Supporting feature preparation’ phase, each
distinct object is passed through a feature extraction unit which
extracts its unique feature representation. Those features are
then categorized for creating a comprehensive support feature
database. It’s important to note that ’Supporting Feature Pre-
paration’ encompasses a broader concept than the traditional
’Training’ phase in deep learning. Specifically, when employ-
ing a trainable feature extractor, this phase aligns with conven-
tional ’Training’. Conversely, when leveraging a pre-trained
feature extractor or training-free methods, this phase is not ’train-
ing’ but building up the features that support the classifica-
tion in the ’Inference’ phase. Following the preparation phase,
the ’inference’ phase utilizes the same feature extraction unit
to extract features from the query input. Those features are
then compared against the established support feature database.
The category of the most similar feature in the database is then
defined as the inferred result.

This framework allows for flexibility in the choice of feature ex-
traction and similarity measurement units. The feature extrac-
tion component can be many methods ranging from pre-trained
models, and training-free models, to even traditional methodo-
logies such as Principal Component Analysis (PCA). The crit-
ical requirement is that the chosen method should efficiently
interpret the point cloud object and compress this information
into a compact feature vector. On the other hand, the similar-
ity measurement unit, which is pivotal in gauging the similarity
among feature vectors, can vary from straightforward distance
measurements to more intricate network-based algorithms or
any other effective algorithms that can accurately estimate the
similarity between features.

In line with previous studies, we employ the notations X and Y
to represent the number of support cases and query cases, re-
spectively. The C-way K-shot learning task is utilized to define
the few-shot learning where C denotes the number of classes,
and K represents the count of support samples per category
(Lu et al., 2023). The primary objective of this research is
to identify a combination of a feature extraction method and
a similarity measurement that achieves the best performance.
The goal is to attain high-accuracy classification with the least
possible reliance on the number of K, irrespective of the size of
Y.

3.2 Training-free Feature Extraction

Given the point cloud of a separate outdoor object, our feature
extraction approach is designed to produce a feature embedding
that effectively encapsulates the characteristics of the captured
object. Our objective is for feature embeddings of identical
objects to be closely aligned in the feature space, distinctly
separated from those of different categories. That separation
facilitates the classification of those objects through a feature
similarity-based approach, as detailed in Section 3.1.

Considering the variability in the number of points constituting
different objects’ point clouds, our initial step involves boot-
strapping 512 points from each object’s point cloud. This ran-
dom sampling process ensures uniformity in the input size, and
the choice of 512 points has been validated for its efficacy in
point cloud classification (Dovrat et al., 2019). Subsequently,
we employ a hierarchical point cloud encoding strategy, in-
spired by Pointnet++ (Qi et al., 2017b). The initial encoder
is tasked with capturing broad, general features from the point
cloud, operating with a full receptive field. The subsequent en-
coder focuses on mid-level features, utilizing a half-sized re-
ceptive field. Since it covers only a portion of the point cloud at
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Figure 1. Feature similarity-based classification

Figure 2. Pole-NN

a time, it operates twice, thereby doubling the size of the locally
extracted features compared to the first encoder. The final en-
coder concentrates on extracting more precise, narrow features.
We then aggregate those three multi-level features using both
max-pooling and average-pooling to synthesize a comprehens-
ive global feature representation.

3.2.1 Encoder The encoding mechanism in our classifier
was adopted the encoder design from Point-NN (Zhang et al.,
2023). Based on Pointnet++ (Qi et al., 2017b), Point-NN uses
farthest point sampling (FPS) to create a set of key points. For
each of those key points, it considered the k nearest neighbours
to represent its local features. A notable aspect of Point-NN is
its unique approach to positional encoding for 3D point cloud
data, mirroring the concept used in the original Transformer

architecture (Vaswani et al., 2017). This process involves mul-
tiplying the extracted features with a global positional embed-
ding, which aids in representing the inter-relations among all
the 3D points. This step is followed by a max-pooling layer,
which serves to compress the feature vector, thereby reducing
its dimension while retaining critical information. Since Point-
NN is a fully training-free network, it effectively addresses the
over-fitting problem without needing extensive training data,
unlike traditional networks that rely on learnable parameters
and struggle with limited training samples. That shows the tre-
mendous potential usage of Point-NN in 3D point cloud few-
shot learning tasks.

Our Pole-NN was customized for outdoor point cloud object
classification, especially for the PLOs while the original Point-
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NN was developed and tested exclusively for small indoor ob-
jects. Although it shows great potential in few-shot learning
among indoor datasets such as ModelNet40 and ShapeNet, its
effectiveness diminishes when applied to outdoor street scene
point clouds. It failed to detect the thin but tall poles, indicating
that the receptive field of Point-NN is not large enough for large
outdoor objects.

Besides, the original datasets used in Point-NN are the point
clouds generated from the 3D objects, exhibiting smooth, or-
derly structures with minimal noise. In contrast, outdoor data-
sets are inherently noisier, with significant shifts in data due to
point cloud registration and vehicular disturbances.

Addressing those challenges, we modified the original Point-
NN architecture by reducing the layer of the encoders. That
adjustment encourages the model to ignore inessential details,
thereby mitigating the effects of noise. Furthermore, by modi-
fying the encoding complexity, we were able to broaden the
scope of k-nearest neighbours, effectively extending the recept-
ive field of the model, as the ’k’ value is the amount of k-nearest
points considered for each key point representation.

3.3 Similarity-based Classification

In the inference stage of our proposed method, we opt for Co-
sine Similarity as our primary metric for measuring feature sim-
ilarity. This decision is grounded in its widespread adoption
and proven effectiveness in numerous previous studies within
the field of few-shot learning (Lu et al., 2023). It measures the
cosine of the angle between two non-zero vectors, which can be
more informative than comparing the raw data values (Han et
al., 2022).

The cosine similarity is calculated by taking the dot product of
two vectors and dividing it by the product of their norms (As
shown in Formula 1). This results in a value between -1 and 1,
where a value of 1 shows the vectors are identical, and a value
of -1 shows the vectors are diametrically opposed. A value of 0
indicates that the vectors are unrelated or independent.

SIM(a,b) =
ab

∥a∥∥b∥ =

∑n

i=1
aibi√∑n

i=1
(ai)2

√∑n

i=1
(bi)2

(1)

4. Experiments and Results

4.1 Experiment Dataset

4.1.1 Parkville-3D Dataset Parkville-3D dataset is a street-
scene point cloud dataset we have captured by the Hovermap
lidar sensor. The dataset is an invaluable resource for explor-
ing deep learning models that deal with outdoor environments,
explicitly focusing on PLO recognition.

The motivation behind creating the Parkville-3D dataset stemmed
primarily from the noticeable dearth of dense, outdoor, street-
scene point cloud datasets. Existing datasets mainly consist of
unregistered frames designed with a specific focus on real-time
vehicle recognition, such as Kitti (Fritsch et al., 2013) and nuS-
cenes (Fong et al., 2021). Besides, there is no existing open-
sourced dataset that fine-grained classified PLOs.

Our dataset is currently semantically segmented into categor-
ies: unclassified, electrical pole, light pole, road sign, vehicle,
vegetation, building, and pedestrian. That segmentation was la-
belled to allow extracting separate street objects and testing the
classification performance of our proposed model.

4.1.2 Paris-Lille-3D Dataset The Paris-Lille-3D dataset, part
of the NPM3D benchmark suite, offers a rich collection of point
cloud data from urban environments in Paris and Lille, France
(Roynard et al., 2018). Captured using mobile lidar techno-
logy, this dataset encompasses a wide array of urban features
including buildings, vehicles, and pole-like objects, making it
an invaluable resource for research in 3D object recognition
and classification within urban landscapes. Compared with the
Parkville-3D dataset, Paris-Lille-3D does not contain subclasses
of PLOs but it has bollards and bins where not exist in Mel-
bourne.

4.2 Experiment and Analysis

To evaluate the proposed framework, we implement the model
with PyTorch and design two classification tasks with those two
datasets.

We first evaluate the performance of differentiating various types
of PLOs by an object classification task among 106 point cloud
objects in the Parkville-3D Dataset. Figure 3 shows the support
set, which contains five support samples provided to Pole-NN
for building the support features. Figure 4 presents the 106 test-
ing objects in the query set, that will be classified during the
inference stage.

Figure 3. 5-way 1-shot supporting data from Parkville-3D
Dataset

Figure 4. 5-way 1-shot query data from Parkville-3D Dataset

By using t-distributed stochastic neighbour embedding (t-SNE),
we visualize the dimension-reduced features extracted by the
Pole-NN. As shown in Figure 5, we can clearly see that the
three PLO categories stay closer to each other, while cars and
vegetation are farther away, which indicates that Pole-NN can
learn the general characteristics of objects with different shapes.
Table 1 shows the testing result matrix, it can be seen that Pole-
NN can distinguish well between PLOs and other road assets.

To verify our findings, we designed a similar classification ex-
periment in the Paris-Lille-3D dataset, which has five different
categories and different shapes of the same category objects.
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Parkville-3D Dataset Paris-Lille-3D Dataset
Number Precision Recall F1-Score Number Precision Recall F1-Score

Pole 41 0.79 0.73 0.75 34 0.47 0.79 0.59
Electrical pole 7 0.54 1.00 0.70 - - - -

Light pole 11 0.50 0.45 0.48 - - - -
Road sign 23 1.00 0.78 0.88 - - - -

Car 31 1.00 1.00 1.00 64 0.93 1.0 0.96
Vegetation 34 1.00 1.00 1.00 31 1.00 0.87 0.93

Bollard - - - - 81 1.00 0.51 0.67
Bin - - - - 21 0.54 0.95 0.69

Total 106 0.92 0.90 0.90 231 0.86 0.77 0.78

Table 1. 5-way 1-shot classification results

Figure 5. t-SNE visualization of Pole-NN extracted features on
Parkville-3D Dataset

Figure 6. t-SNE visualization of Pole-NN extracted features on
Paris-Lille-3D Dataset

As shown in Table 1 and Figure 6, despite a dip in the overall
F1-score observed in the second experiment, particularly within
the ’Bin’ and ’Bollard’ categories, the results continue to un-
derscore the effectiveness of our method. The noted decrease

in performance is largely due to the sub-sampling process, dur-
ing which the features of bin and bollard objects became nearly
indistinguishable, posing a challenge for accurate classification.

5. Discussions and Future Directions

The experimental outcomes demonstrate that our proposed meth-
odology is capable of effectively and efficiently distinguishing
outdoor point cloud objects, demonstrating its ability to classify
objects with minimal exposure to supporting samples. That rep-
resents a significant advancement over conventional deep learn-
ing approaches, which typically rely on extensive data labelling
and model re-training or fine-tuning to adapt to new environ-
ments. Our framework, by contrast, requires only a single la-
belled data point as a supporting sample, underscoring its effi-
ciency and practicality.

Furthermore, the findings highlight the rich informational con-
tent inherent in the relational information among points. That
suggests a deeper understanding of objects can be achieved by
leveraging that relational information, rather than relying solely
on complex, trainable networks. Our approach, which focuses
on extracting positional relationships, prompts a reevaluation of
current strategies, advocating for the exploration of point cloud
data that moves beyond the application of computationally in-
tensive deep learning models, particularly those adapted from
2D computer vision paradigms.

Looking ahead, it is imperative to test and validate our method
across additional datasets featuring varying point densities to
further verify its efficacy. Moreover, integrating our framework
with other models to facilitate comprehensive object recogni-
tion and semantic segmentation represents a crucial avenue for
future research. That will not only broaden the applicability of
our method but also contribute to the ongoing advancement of
point cloud processing techniques.

6. Conclusion

We showcase a framework that classifies outdoor point cloud
objects with remarkable efficiency using just a single support
sample. We also introduce the Parkville-3D Dataset, a signi-
ficant contribution to PLO classification, with its detailed se-
mantic segmentation of road assets especially subclass labels
of PLOs. The effectiveness of our approach, which leverages
the rich spatial relationships within 3D point cloud data, marks
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a departure from traditional, data-intensive deep learning meth-
ods. Looking ahead, we aim to extend our validation across
varied datasets and explore the integration of our framework
with other methods for comprehensive object recognition and
semantic segmentation.
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mentation of road furniture in mobile laser scanning data. IS-
PRS Journal of Photogrammetry and Remote Sensing, 154, 98–
113. Publisher: Elsevier.

Li, F., Oude Elberink, S., Vosselman, G., 2018. Pole-like road
furniture detection and decomposition in mobile laser scanning
data based on spatial relations. Remote Sensing, 10(4), 531.
Publisher: MDPI.

Li, Y., Wang, W., Li, X., Xie, L., Wang, Y., Guo, R., Xiu,
W., Tang, S., 2019b. Pole-like street furniture segmentation
and classification in mobile LiDAR data by integrating multiple
shape-descriptor constraints. Remote Sensing, 11(24), 2920.
Publisher: MDPI.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-
Y., Berg, A. C., 2016. Ssd: Single shot multibox detector. Com-
puter Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11–14, 2016, Proceedings, Part
I 14, Springer, 21–37.

Lu, J., Gong, P., Ye, J., Zhang, J., Zhang, C., 2023. A survey on
machine learning from few samples. Pattern Recognition, 139,
109480.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W5-2024 
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W5-2024-333-2024 | © Author(s) 2024. CC BY 4.0 License.

 
339



Luo, H., Chen, C., Fang, L., Khoshelham, K., Shen, G., 2020.
MS-RRFSegNet: Multiscale regional relation feature segment-
ation network for semantic segmentation of urban scene point
clouds. IEEE Transactions on Geoscience and Remote Sensing,
58(12), 8301–8315. Publisher: IEEE.

Luo, Z., Gao, L., Xiang, H., Li, J., 2023. Road object detection
for HD map: Full-element survey, analysis and perspectives.
ISPRS Journal of Photogrammetry and Remote Sensing, 197,
122–144. Publisher: Elsevier.

Nie, D., Lan, R., Wang, L., Ren, X., 2022. Pyramid architecture
for multi-scale processing in point cloud segmentation. Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 17284–17294.

Plachetka, C., Fricke, J., Klingner, M., Fingscheidt, T., 2021.
DNN-Based Recognition of Pole-Like Objects in LiDAR Point
Clouds. 2021 IEEE International Intelligent Transportation
Systems Conference (ITSC), IEEE, 2889–2896.

Qi, C. R., Su, H., Mo, K., Guibas, L. J., 2017a. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 652–660.

Qi, C. R., Yi, L., Su, H., Guibas, L. J., 2017b. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. Ad-
vances in Neural Information Processing Systems, 30.

Remelli, E., Baque, P., Fua, P., 2019. Neuralsampler: Euc-
lidean point cloud auto-encoder and sampler. arXiv preprint
arXiv:1901.09394.

Roynard, X., Deschaud, J.-E., Goulette, F., 2018. Paris-Lille-
3D: A large and high-quality ground-truth urban point cloud
dataset for automatic segmentation and classification. The In-
ternational Journal of Robotics Research, 37(6), 545–557. Pub-
lisher: SAGE Publications Sage UK: London, England.

Schwartz, E., Karlinsky, L., Shtok, J., Harary, S., Marder, M.,
Kumar, A., Feris, R., Giryes, R., Bronstein, A., 2018. Delta-
encoder: an effective sample synthesis method for few-shot
object recognition. Advances in Neural Information Processing
Systems, 31.

Scott, T., Ridgeway, K., Mozer, M. C., 2018. Adapted deep em-
beddings: A synthesis of methods for k-shot inductive transfer
learning. Advances in Neural Information Processing Systems,
31.

Shi, Z., Kang, Z., Lin, Y., Liu, Y., Chen, W., 2018. Auto-
matic recognition of pole-like objects from mobile laser scan-
ning point clouds. Remote Sensing, 10(12), 1891. Publisher:
MDPI.

Thomas, H., Qi, C. R., Deschaud, J.-E., Marcotegui, B.,
Goulette, F., Guibas, L. J., 2019. Kpconv: Flexible and de-
formable convolution for point clouds. Proceedings of the
IEEE/CVF International Conference on Computer Vision,
6411–6420.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, \., Polosukhin, I., 2017. Attention is all
you need. Advances in Neural Information Processing Systems,
30.

Wang, J., Wang, C., Xi, X., Wang, P., Du, M., Nie, S.,
2022. Location and Extraction of Telegraph Poles from Im-
age Matching-Based Point Clouds. Remote Sensing, 14(3), 433.
Publisher: MDPI.

Wu, F., Wen, C., Guo, Y., Wang, J., Yu, Y., Wang, C., Li,
J., 2017. Rapid Localization and Extraction of Street Light
Poles in Mobile LiDAR Point Clouds: A Supervoxel-Based Ap-
proach. IEEE Transactions on Intelligent Transportation Sys-
tems, 18(2), 292–305. Conference Name: IEEE Transactions
on Intelligent Transportation Systems.

Yan, L., Li, Z., Liu, H., Tan, J., Zhao, S., Chen, C., 2017. De-
tection and classification of pole-like road objects from mobile
LiDAR data in motorway environment. Optics & Laser Tech-
nology, 97, 272–283.

Yang, J., Ahn, P., Kim, D., Lee, H., Kim, J., 2021. Progress-
ive seed generation auto-encoder for unsupervised point cloud
learning. Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 6413–6422.

Ye, M., Guo, Y., 2018. Deep triplet ranking networks for one-
shot recognition. arXiv preprint arXiv:1804.07275.

Yeong, D. J., Velasco-Hernandez, G., Barry, J., Walsh, J., 2021.
Sensor and sensor fusion technology in autonomous vehicles:
A review. Sensors, 21(6), 2140. Publisher: MDPI.

Yu, X., Tang, L., Rao, Y., Huang, T., Zhou, J., Lu, J.,
2022. Point-bert: Pre-training 3d point cloud transformers with
masked point modeling. Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 19313–
19322.

Yuma, M., Keisuke, K., Hiroshi, M., 2018. Classification of
pole-like objects using point clouds and images captured by
mobile mapping systems.

Zhang, R., Wang, L., Wang, Y., Gao, P., Li, H., Shi, J.,
2023. Parameter is not all you need: Starting from non-
parametric networks for 3d point cloud analysis. arXiv preprint
arXiv:2303.08134.

Zhang, X., Wei, Y., Yang, Y., Huang, T. S., 2020. Sg-one:
Similarity guidance network for one-shot semantic segment-
ation. IEEE Transactions on Cybernetics, 50(9), 3855–3865.
Publisher: IEEE.

Zhou, Y., Tuzel, O., 2018. Voxelnet: End-to-end learning
for point cloud based 3d object detection. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
4490–4499.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W5-2024 
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W5-2024-333-2024 | © Author(s) 2024. CC BY 4.0 License.

 
340




