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Abstract

Thermal point clouds integrate thermal radiation and laser point clouds effectively. However, the semantic information for the
interpretation of building thermal point clouds can hardly be precisely inferred. Transferring the semantics encapsulated in 3D
building models at Level of Detail (LoD)3 has a potential to fill this gap. In this work, we propose a workflow enriching thermal
point clouds with the geo-position and semantics of LoD3 building models, which utilizes features of both modalities: model point
clouds are generated from LoD3 models, and thermal point clouds are co-registered by coarse-to-fine registration. The proposed
method can automatically co-register the point clouds from different sources and enrich the thermal point cloud in facade-detailed
semantics. The enriched thermal point cloud supports thermal analysis and can facilitate the development of currently scarce deep
learning models operating directly on thermal point clouds.

1. Introduction

A thermal point cloud combines synchronized thermal radiation
data and the laser point cloud, effectively capturing the thermal
characteristics of objects. In the case of building objects, the
radiation and temperature differences can be caused by build-
ing operation, material variation, aging, and physical damage.
Therefore, thermal point clouds of buildings can be applied
in hidden structure detection, energy inspection, and heritage
protection (Ramón et al., 2022). When interpreting a build-
ing’s thermal point cloud, we must consider the element types
and comprehensive geometric descriptions. Notably, geometry-
induced thermal variations such as cracks and distortions can be
estimated from dense point clouds. However, directly inferring
facade elements, such as doors, windows, roofs, and walls, from
thermal point clouds proves challenging.

Semantic information can be obtained by manually labeling
thermal point clouds or by performing semantic segmentation.
Directly projecting TIR images to a 3D building model for
thermal point cloud generation will render unrelated objects,
such as vehicles and pedestrians, to the facade, leading to mis-
information. Therefore, it is crucial to synchronize and align
the laser point cloud with TIR images to ensure accurate ra-
diometric representation. However, directly labeling the laser
point clouds is time-consuming and requires extensive famili-
arity with the study area. Additionally, existing methods for
point cloud semantic segmenting facade elements often lack ac-
curacy, especially for categories like clutter and windows (Su et
al., 2022, Matrone et al., 2020). Given these challenges, it is ad-
visable to augment the facade-level semantic information with
data from reliable sources.

A potential to fill such data-scarcity gap exhibit worldwide-
available semantic 3D city models. Rich building-related se-
mantics are encapsulated in semantic 3D building models at
LoD3, characterized by highly-detailed and object-wise se-
mantics at the facade level (Gröger et al., 2012, Kolbe and
Donaubauer, 2021). Moreover, such LoD3 models possess
highly accurate absolute georeferencing accuracy, reaching up

to the cm-level (Roschlaub and Batscheider, 2016). Recent
trends imply growing availability of LoD3 building models,
since there are new LoD3 datasets emerging 1 as well as novel
methods investigating automatic LoD3 reconstruction (Wyso-
cki et al., 2023b, Hoegner and Gleixner, 2022, Huang et al.,
2020).

Assuming the infrequent occurrence of substantial structural
and morphological changes in urban architecture, we believe
thermal point clouds can be semantically enriched by fusion
with LoD3 models. However, three factors need to be con-
sidered. First, the LoD3 model and point clouds are organized
in different data formats (Abreu et al., 2023). The structured
LoD3 geometric representation frequently follows the boundary
representation (B-Rep), as per the CityGML standard (Gröger
et al., 2012). In contrast, point clouds are commonly represen-
ted as a set of unstructured points (x, y, z). Second, the shared
overlap is different. The LoD3 model contains envelopes of
the complete building, including all the outer-observable de-
tails. The buildings in the point clouds may be incomplete due
to occlusions and scanning platforms. Besides buildings, point
clouds include all the objects in the scene, such as vehicles,
traffic signs, and pedestrians. Moreover, the objects’ geometric
features are represented differently. Although the LoD3 models
are highly detailed, they represent a generalized building geo-
metry. In contrast, point clouds provide non-generalized, raw
data representing events and states occurring only at the time of
recording, such as opened doors and blinded windows, which
is also crucial for thermal analysis.

Considering all the factors, we propose a workflow to transfer
the semantic information from the LoD3 model to the thermal
point clouds. We first transfer the LoD3 model to semantic
point clouds and then co-register the point clouds. The se-
mantic labels are enriched in thermal point clouds according to
registered building models. The enriched thermal point clouds
disclose thermal attributes for different building elements for
analysis. The co-registered point clouds, on the other hand, can

1 https://github.com/OloOcki/awesome-citygml
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help to validate the geometric information of LoD3 models and
enrich the details. The contributions of our work include:

• We propose a feasible workflow to enrich the semantic in-
formation of point clouds from LoD3 models.

• We propose an algorithm to automatically co-register the
laser point clouds and point clouds from the LoD3 model.

• Our experiments validate the results of enriched inform-
ation from the model and application to the thermal ana-
lysis.

The structure of this paper is organized as follows: In Section 2,
we summarise the related work, and our proposed methods are
presented in detail in Section 3. Then, the data and experiments
are described in Section 4, and then the results are discussed in
Section 5. Finally, some conclusions are drawn in Section 6.

2. Related work

2.1 Semantic 3D building models

Semantic 3D city models comprehensively describe structures,
taxonomies, and aggregations on a city, regional, and even
national scale. Internationally, the standard CityGML, es-
tablished by the Open Geospatial Consortium (OGC) (Kolbe,
2009, Gröger et al., 2012, Kolbe et al., 2021), is utilized for the
representation and management of city models. CityGML fa-
cilitates the modeling of urban objects with their 3D geometry,
appearance, topology, and semantics at four different LoD. The
latest data model of CityGML 3.0 adheres to the ISO 191xx
series of geographic information standards, and CityGML data-
sets are commonly encoded using either the Geography Markup
Language (GML) or CityJSON (Kutzner et al., 2020, Ledoux et
al., 2019).

Since urban dwellings are the cornerstone of each city, most
existing semantic 3D city models comprise buildings (Biljecki
et al., 2015). LoD1 and LoD2 building models are currently
widely available, as underscored by the example of approx-
imately 220 million models available in Germany, Japan, the
Netherlands, Switzerland, the United States, and Poland 2. This
broad adoption owes mainly to the robust 3D reconstruction al-
gorithms and available building footprints combined with aer-
ial observations (Roschlaub and Batscheider, 2016, Haala and
Kada, 2010). Although LoD1 and LoD2 possess building se-
mantics, they lack detailed facade semantics, which is pivotal
for facade-level point cloud labeling. This gap can be filled by
LoD3 building models, characterized by descriptive facades,
composed of objects such as windows, doors, balconies, and
even underpasses (Wysocki et al., 2022). Currently, the auto-
matic LoD3 reconstruction is an active field of research propos-
ing various promising methods and input datasets to solve the
challenge (Wysocki et al., 2023b, Hoegner and Gleixner, 2022,
Huang et al., 2020).

2.2 Model to Point Clouds Registration

Registration of 3D models and point clouds is typically done by
feature matching. Point clouds offer accurate and detailed geo-
metry information about existing structures. Therefore, they are
widely used as data providers for 3D model reconstruction and

2 https://github.com/OloOcki/awesome-citygml

manual modeling. Extracted planes are used as features for co-
registration due to their relatively simple representation and fre-
quent occurrence in man-made objects. (Bosché, 2012) propose
the semi-automatic method to register construction sites with
Building Information Modeling (BIM) models. Three corres-
ponding planes are required to be manually selected for coarse
registration. (Gruner et al., 2022) also focus on planes but gen-
eralize BIM faces as terrestrial laser scanning (TLS) patches
with a point and a normal vector. The detected faces and planes
are organized manually by connected relation. Then, the model
faces are co-registered to the point cloud patches for monitor-
ing the construction process. Besides man-involved work, auto-
matic methods are also investigated. (Sheik et al., 2022) group
the detected parallel planes as descriptors to register as-built
point clouds and as-plan BIM models. The use of planes avoids
setting control points for registration, but a sufficient number
and unique patterns are required. Another often-used set of
primitives is lines. (Kaiser et al., 2022) propose a fully auto-
mated method to register photogrammetric point clouds to a
building model with lines for the indoor scene, where sufficient
and well-distributed corresponding line features from images
are required. (Chen et al., 2022) conducts a coarse-to-fine re-
gistration from BIM to the point cloud. Raw camera poses are
used to coarsely align the model, and then an adopted iterative
closest point (ICP) to achieve the fine registration.

Despite registering point clouds to BIM models, which targets
to monitor and detect the changes, only a limited number of
research groups have delved into the realm of coregistration
between street-level point clouds and semantic 3D city models
in our extensive investigation.(Goebbels et al., 2019) primar-
ily centers around point clouds generated from images through
the structure from motion (SfM) algorithm, utilizing radiomet-
ric features for prefiltering, which may inadvertently eliminate
valid building features. (Goebbels and Pohle-Fröhlich, 2018)
detect the footprint of buildings from point clouds and LoD
model. A mixed integer linear program is employed to identify
correspondences between 2D lines and points. In these cases,
sufficient line and point features are necessary to form unique
patterns for registration. (Lucks et al., 2021) consider only
façades points by random forest and register to LoD1 model
for trajectory optimization. This approach, however, requires
training data and initial transformation information.

2.3 Point cloud co-registration

Point cloud registration has long been a research topic. It in-
volves aligning point clouds from different sources, with low
overlap, or from metrically inaccurate datasets. The standard
registration, such as ICP (Segal et al., 2009), can deal with com-
mon situations with sufficient overlap and similar point dens-
ity but can hardly handle complex situations. Using control
points (targets) could solve this issue leading to a high and
traceable accuracy (Janßen et al., 2022, Janßen et al., 2023),
but requires manual field work and is thus not scalable to large
data sets and it lacks autonomy. Therefore, most point cloud re-
gistration pipelines inherently have a workflow containing two
steps: coarse registration for initial transformation and refined
transformation with denser correspondences (Xu et al., 2023).
The coarse transformation uses sparse feature-based corres-
pondences, and it is crucial for non-georeferenced point clouds.
Key points (Barnea and Filin, 2008), lines (Chen and Yu, 2019),
and planes (Li et al., 2022) can all be used as features for regis-
tration. Moreover, a combination of the features is also used,
like 4PCS (Aiger et al., 2008) and Super4PCS (Mellado et al.,
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2014). When the initial relative poses are given by global navig-
ation satellite system (GNSS) or manually processed, the coarse
registration is typically unnecessary. The fine registration can
adjust the geometric transformation to achieve better accuracy.
It usually iteratively updates the transformation matrix to min-
imize the point distances with denser correspondences. The
ICP method is widely adopted in the field owing to its simpli-
city and efficiency. Numerous algorithms have stemmed from
the ICP framework, exemplified by references such as (Yang
et al., 2015). Recently, deep learning (Lu et al., 2019, Zhang
et al., 2022) methods have become increasingly prevalent for
point cloud registration. However, a notable challenge persists
in managing the intricacies of large study areas and meeting the
demand for extensive training datasets. This issue underscores
the current limitations in the application of deep learning tech-
niques to point cloud registration, particularly in addressing the
complexities posed by expansive geographical contexts.

3. Method

Our work aims to transfer the semantic information from the
LoD3 model to the corresponding thermal point clouds. The
general workflow is shown in Figure 1. First, the point clouds
are generated from laser point clouds and TIR image sequence,
and an LoD3 model respectively. Then, thermal point clouds
are aligned to the model point clouds to obtain the transform-
ation matrix. After registration, the semantic information from
model point clouds is transferred to the thermal point clouds for
analysis.

Figure 1. The general workflow

3.1 Point cloud generation

To cope with the cross-domain gap, we opt to homogenize
the two distinct representations. The approach of generaliz-
ing the point cloud feature to match the model primitives is
challenging, as shown by the 3D building reconstruction re-
search (Wysocki et al., 2023b). The occlusion and incomplete-
ness of laser point clouds lead to inefficiency and false match-
ing. Therefore, LoD3 geometry is sub-sampled to a set of points
corresponding to the representation of the thermal point cloud.

Thermal point cloud generation The thermal point clouds are
generated by projecting the thermal texture from TIR images
onto the mobile laser scanning (MLS) point clouds with po-
sition information (Zhu et al., 2023). The MLS point clouds
and TIR image sequences are captured with the same platform.
When the relative poses of the thermal camera are estimated,
the points in the point clouds find its corresponding points in
the TIR image by co-lineary equation (eq. 1) (Zhu et al., 2021).

ui = K[R|T ]Xi (1)

where ui = image coordinates
Xi = point cloud coordinates
K = camera parameters, including aspect ratio s,

focal length f and principle points (cx, cy)
R = 3× 3 rotation matrix
T = translation matrix

K =

s · f 0 cx
0 f cy
0 0 1

R =

α11, α12, α13

α21, α22, α23

α31, α32, α33

 , T =

t1t2
t3

 (2)

When the matrix K, R and T are obtained from pose para-
meters, the corresponding intensity values of point clouds are
calculated from the image and rendered to the point cloud.

Model point cloud generation The semantic 3D building
models follow the paradigm of boundary representation (B-
Rep), where each modeled object has its geometrical, outer-
observable surface explicitly described by a set of vertices
(Kolbe and Donaubauer, 2021). Moreover, each object in the
model has assigned semantics and shall not overlap with other
objects. As illustrated in Figure 2, we leverage these traits

Figure 2. Semantic LoD3 building model hierarchy comprises
LoD2 (orange boxes) and LoD3 (green boxes) features, where
each object has a unique identifier (id) and class (label). Our
object-level sampling approach is shown on a WallSurface in

purple, where lines indicate the distance (sr) between
surface-sampled points. Adapted from (Wysocki et al., 2023a)

to our advantage by performing object-oriented point surface
sampling on a regular grid (purple) at the given sampling rate
sr; the parameter is chosen accordingly to the expected thermal
point cloud density. Each sampled point inherits the semantic
class of a leaf object labeli and its associated unique identifier
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idi. This results in a point cloud MCi extended by a scalar
value labeli and idi, as in Equation 3.

MCi = [xi, yi, zi, labeli, idi] (3)

3.2 Co-registration

Owing to the point cloud generation step, we formulate the
alignment as the cloud-to-cloud co-registration problem. In our
work, only rigid transformations between point clouds are con-
sidered, as shown in eq. 4.

MCi = [Rp|Tp]TCi (4)

where TCi = coordinates of thermal point clouds
MCi = points in the model point clouds

Considering the limited overlapping areas, the features and de-
tails of building facades are important for co-registration with
point clouds. Unlike LoD1 and LoD2, the LoD3 building
models comprise 3D facade elements (Kolbe and Donaubauer,
2021). The increased information makes it possible to locate
the corresponding features with point cloud facades, especially
in highly repeated patterns. However, the features of the win-
dows and doors may not have the same representation in meas-
ured point cloud and the model point cloud of the LoD3 model.
One-to-one corresponding features cannot be guaranteed. Un-
der this condition, we propose a coarse-to-fine registration by
combining a feature-based method using Fast Global Regis-
tration (FGR) (Zhou et al., 2016) and our adopted version of
plane-based ICP (Rusinkiewicz and Levoy, 2001, Wysocki et
al., 2021) as fine registration.

FGR uses features to calculate the correspondences and estim-
ate the transformation matrix. It first calculates the FPFH (Fast
Point Feature Histograms) features of the point clouds. The
initial corresponding points are established by feature match-
ing with nearest neighbor pairs. It uses the Reciprocity test and
Tuple test to improve the inlier ratio of the correspondences set.
Due to the differences in feature representation, noisy corres-
pondences cannot be avoided. Then, the pose are optimized
such that distances between corresponding points are minim-
ized. The optimization function for the optimal transformation
matrix estimation is expressed as in (eq. 5):

E([R|T ]) = argmin
∑

(p,q)∈K

ρ∥pi − [R|T ] · qi∥ (5)

where pi = point coordinates in thermal point clouds
qi = corresponding point coordinates

in the model point clouds
ρ = robust penalty

FGR uses a scaled, well-chosen German-McClure estimator to
reduce the computation, and Black-Rangarajan duality is used
to optimize eq. 5 with a line process over the correspondences.
Then, the optimization objective can be turned into a least-
squares objective and the Gauss-Newton method is used to find
the solution.

After coarse registration, a fine registration is further updated by
point-to-plane ICP. Although the FGR provides the initial trans-
formation result, it is insufficient for detailed analysis due to

the false matching from different target and source point cloud
feature representation. We adopt the point-to-plane ICP vari-
ant (Rusinkiewicz and Levoy, 2001) and model-based height
rectification (Wysocki et al., 2021) with both height and center
point rectification. Assuming that the model and point clouds
are all related to the ground, the thermal point cloud is lifted
to the same basic height of the model. The same applies for
the center points of the planes. We leverage the algorithm to
align two point clouds while minimizing the distances between
corresponding points belonging to the target and source plane.
Since thermal point clouds only capture the facades of build-
ings, which follow planar-like shapes, the main plane of the
buildings are extracted as a base for the registration. We per-
form the plane extraction using RANdom SAmple Consensus
(RANSAC) algorithm (Schnabel et al., 2007) where the main
planes are detected in both point clouds. Our approach assumes
that the closest planes are detected and aligned from the coarse
registration. The algorithm initiates with an initial alignment
represented as identity matrix, where the target point cloud is
approximately aligned with the source point cloud using an
initial transformation matrix of from coarse registration. Sub-
sequently, a nearest neighbor search is conducted for each point
in the source cloud to find its closest counterpart in the target
cloud with optimization eq. 6

E([R|T ]) = argmin
∑

(p,q)∈K

∥pi − [R|T ] · qi∥np (6)

where np = normal of the point p

The maximal corresponding distance corresponds to the dmax.
The convergence criteria are met if the root mean squared error
(RMSE) reaches trmse (eq.7) threshold and performs tit itera-
tions.

trmse =

√√√√ 1

N

N∑
i=1

(di)2 (7)

Upon meeting these conditions, the algorithm concludes,
providing the final alignment result in the form of a transform-
ation matrix. The updated transformation parameters are used
to refine the position of the source point cloud.

3.3 Semantic enrichment

In Section 3.2, the transformation matrix is calculated to re-
gister the thermal point clouds to the model point clouds. The
geo-reference coordinates of thermal point clouds can be calcu-
lated by applying the estimated transformation matrix. After
the transformation, the thermal point cloud is aligned to the
model point cloud. Assuming there are no changes in build-
ing details for the laser point clouds and model; the semantic
labels for windows and doors will remain the same. Therefore,
the points in thermal point clouds should have the same labels
as in the model point clouds. Considering the differences in
sampling rate and locations, a threshold distance is set to min-
imize the false correspondence. For each point in the thermal
point clouds, the closest point in the model point clouds is cal-
culated, and the label is given to the laser point. If the nearest
neighbor points do not have corresponding labeled points in the
model point cloud within a certain threshold, they can be re-
garded as noise and labeled as ”unlabeled”. This avoids mis-
matched labels from other objects, such as trees and pedestri-
ans, while keeping the labels for the buildings.
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4. Data and Experiments

Figure 3. (a) Original MLS point cloud and (b) LoD3 model

The test site is around the main campus of the Techinical Uni-
versity of Munich (TUM). The thermal point clouds were gen-
erated by combining thermal image sequences and MLS point
clouds from the TUM-MLS dataset (Zhu et al., 2020).The
TUM-MLS dataset was measured using a mobile platform,
which includes two laser scanners and a thermal camera. The
poses of TIR images were estimated from the GNSS and the
inertial measurement units (IMU) system from the integrated
platform. The LoD3 model was selected from the TUM2TWIN
dataset 3. We selected one building from the test dataset close
to the main gate characterized by a partial coverage (the so-
called building 23), as shown in Figure 3. We set the sampling
rate at sr = 0.1, which resulted in a uniformly sampled point
cloud of a 0.1 m distance. Figure. 3(a) shows an example of the
TUM-MLS point cloud with intensity, and (b) demonstrates the
LoD3 building model.

The generation of thermal point clouds and semantic labeling
was done using c++ and pcl library(1.81) (Rusu and Cousins,
2011). With 32G RAM, and an i7-6000 @3.4 GHz CPU, it
takes approximately 346.06s for labeling. The FGR was per-
formed using the code from (Zhou et al., 2016). Further exper-
iments were performed using the Feature Manipulation Engine
(FME) version 2020.01 and Open3D (Zhou et al., 2018). The
implementation is available in a public repository4.

5. Result and Discussion

The generated thermal point cloud and model point cloud are
shown in Figure 4. Thermal point clouds (Figure. 4 (a)) in-
clude building facades and other objects in the TIR images,
such as traffic lights, pedestrians, and vehicles. Thermal point
clouds show the geometry of building elements including dif-
ferent shapes of windows. The moldings, balconies, and spe-
cial decorations are also recorded as they are. However, the
rooftop and some corners (e.g., the upper right corner) are miss-
ing due to scanning mode and height limitations. Compared
to the raw point clouds, thermal point clouds keep the original
3 https://github.com/tum-gis/tum2twin
4 https://github.com/tum-pf/LoD3toTCld

geometry features while attaching thermal attributes as intens-
ity for the points. The different intensities represent the temper-
ature and can reveal inner structures like heating pipes. The
higher intensity around windows shows wooden frames and
some indoor rooms with higher thermal temperatures. Model
point clouds (Figure. 4 (b)) generated from the LoD3 model de-
scribe the semantic information with different colors for win-
dows, doors, walls, roof, and ground. Unlike laser point clouds,
where the laser penetrates the window glasses and leaves empty
spaces, the model point clouds block the window areas with in-
depth planes. Moreover, all the functional segments are labeled,
but non-functional decorations are simplified compared to the
laser point clouds.

Figure 4. Generated point clouds. (a) Thermal point cloud. (b)
Model point cloud.

Then, we registered the thermal point clouds to the model point
cloud after point cloud processing. The results are shown
in Figure. 5. Figure. 5(a) illustrates the transformation of
thermal point clouds with initial pose after FGR. The trans-
formed thermal point cloud shows that it is roughly transformed
to the model point cloud within a certain overlap. Although
the thermal point cloud has mainly limited facades with occlu-
sions, the corresponding main planes with most of the windows
were attached. The redundant objects on the front street and
inner noisy point clouds of facades influenced the registration
result. Figure. 5(b) presents the results after fine registration
of the point clouds aligned with the model. After fine registra-
tion, the thermal point clouds are correctly aligned to the facade
of model point clouds. The corresponding windows with differ-
ent shapes are equivalent, showing a satisfactory co-registration
result.

fitness =
# inlier correspondences

# points in target
(8)

To estimate the co-registration result, we calculate the RMSE
distances (eq. 7) and the fitness (eq.8) (threshold = 2m). As
we show in Table 1, our fine-registration approach can reach
a high improvement rate. In the case of our tested sample,
the RMSE has decreased approximately five times (1.46m vs.
0.33m), while the fitness score has improved by approximately
65% (0.54 vs. 0.88). To further validate our result, a compar-
ison experiment was conducted by manually selecting corres-
ponding points and estimating the transformation matrix. Six
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Figure 5. Registration result (a) Transformation after FGR and
(b) after fine registration. Target: orange, model point cloud;

Source: blue, thermal point cloud.

corresponding points were manually selected from model point
clouds and thermal point clouds and were transformed with the
estimated matrix (Figure 6). The RMSE between the ground
truth and fine registration was 0.4m. Regarding the fitness and
RMSE, our proposed method achieved a comparable level of
accuracy and better fitness to the reference (Table 1).

Figure 6. Manual registration result. Target: orange, model point
cloud; Source: blue, thermal point cloud.

With the calculated transformation matrix, the thermal point
clouds can be enriched from semantic model point clouds.
By applying the transformation, the thermal point clouds are
aligned to the LoD3 model and georeferenced to the reference
coordinate system w.r.t. the LoD3 model. The semantic labels
for each laser point are calculated as described in Section. 3.3.
As shown in Figure. 7, the facades of the building are labeled
with semantic labels while the uncovered areas (from the street)
remain unlabeled. To further analyze the behavior of different
details in the building, the statistical number is calculated based
on the frequency for each class, as shown in Figure. 8. For
each classes, we calculate the average intensity and the stand-
ard deviation to investigate the thermal difference for different
classes, which correspond to different materials and structures,
in the same environment. The average intensity value and distri-
bution vary across the classes. The number of wall points and
windows were the prevalent classes in the point clouds. The
limited roof points below the eave show relatively lower tem-
perature and variance compared to walls and windows. The
windows show relatively higher changes with higher standard
deviation. The initial results from this experiment show that
thermal intensity varies for different materials, with potential
applications such as material differentiation and anomaly de-
tection.

Figure 7. Semantically enriched thermal point clouds.

Method vs. GT LoD3

Fitness ↑ RMSE ↓

FGR registration 0.54 1.46
Fine registration (ours) 0.88 0.33
Manually 0.87 0.33

Table 1. The co-registration results for our fine registration
approach (↑ indicates the more the better, ↓ otherwise).

Figure 8. Semantic analysis of thermal properties and the result.
The average intensity and standard deviation for each class are

calculated.

6. Conclusion

In this paper, we propose a feasible workflow to enrich the
semantic information of a thermal point cloud given a LoD3
model. The proposed method converts the LoD3 model to a
point cloud and registers a thermal point cloud to the model
through point cloud co-registration. With the proposed coarse-
to-fine registration, the thermal point clouds can be registered
to semantic model point clouds regardless of limited overlap
and feature differences. The co-registration results have com-
parable accuracy to the referenced manually registered results.
Finally, the semantic labels from the LoD3 model are assigned
to the thermal point clouds for analysis. This work is not lim-
ited to thermal point clouds but also to all the co-registration
tasks, from laser point clouds to building models requiring se-
mantic label transfer. The enriched results improve the point
cloud labeling pace by giving knowledge and enhancing the ef-
ficiency of semantic data generation. The thermal point clouds
with LoD3 labels can serve as supportive data for further urban
study and algorithm development, such as testing and training
deep learning models. With the given pose of the image, the
labels can be back-projected to the TIR images for processing
and supportive analysis, as shown in Figure 9. In this work, we
combine point cloud geometry for thermal anomaly interpreta-
tion, but also a bi-directional information exchange can be pur-
sued: The thermal properties might be mapped onto the LoD3
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Figure 9. Semantically enriched TIR image. (a) Original TIR
image. (b) Semantic enriched TIR image.

objects enriching the LoD3 in radiometric thermal features for
visualization and building operation monitoring (Biswanath et
al., 2023)

For future work, it is worth further investigation into the topic
of robust methods for model and point cloud co-registration,
especially in large-scale datasets. Though this work proposed
the initial tasks for single building co-registration and semantic
enrichment results, how to improve the efficiency is to be ex-
plored. How to use the features in the laser point clouds
and LoD3 model while minimizing the effect introduced by
different feature representations is still a problem. The co-
registration results can help enriching and fusing information
from different datasets or localize and compare the changes
from other models or time stamps.
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