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Abstract

Autonomous driving and traffic flow simulation requires a realistic and accurate representation of the environment. Therefore, this
research focuses on the semantic segmentation of aerial images for simulation purposes. Initially, a dataset was created based on true
orthophotos from 2019 and Kempten’s street cadaster, with true orthophotos being fully rectified aerial images. The chosen classes
were oriented towards the subsequent conversion and usage in simulation. The proposed labeling workflow used cadaster data and
demonstrated significant time efficiency compared to state-of-the-art datasets. Subsequently, a neural network was implemented
that was trained and tested on the dataset. In addition, the network was also trained only on the lane markings to compare the
network’s performance. Both cases demonstrated excellent segmentation results. The generalizability was then tested on true
orthophotos from 2021. The results indicated a solid generalizability, but still needs to be improved. Finally, the aerial information
was converted into a 3D environment, that can be used in simulations. Our results confirm the usage of aerial imagery and street
cadaster data as a basis for the simulations.

1. Introduction

Autonomous driving simulation has increased in popularity in
recent years. Such simulations facilitate the examination of
corner cases and reduce the need for driving extensive kilo-
meters in real-world testing (Lemmer, 2019). Consequently,
the market value of automotive simulation is estimated to reach
a volume of approximately $2.9 billion USD in 2025 (Firm,
2018). Autonomous driving simulation requires a detailed rep-
resentation of the environment and traffic areas. High-definition
(HD) maps provide such information, including information
about streets, the different types of lanes, and lane markings
(HERE, 2024). Another field of simulation is the area of smart
cities concepts designed to make cities more livable and sus-
tainable (Batty et al., 2012). One significant component of a
smart city is traffic-flow simulation, which also requires a rep-
resentation of the environment and traffic areas. Driving simu-
lation aims to identify the major congestion points and provide
possible solutions (Lemmer, 2019).

Various data sources contribute to traffic analysis. For instance,
HD maps are mainly recorded with mobile mapping systems
and can be highly accurate depending on the sensors used.
Conversely, open-source data such as OpenStreetMap (OSM)
provide different information, however with varying precision
(OpenStreetMap, 2024). Additionally, geographic information
system (GIS) data and digital twins have recently been receiv-
ing increased attention. GIS involves acquiring, administrating,
analyzing, and presenting spatial data (Lange, 2013), whereas
a digital twin is a city’s digital representation. For example,
the town of Kempten has a digital twin, consisting of objects
and shapes, such as street areas, walking paths, and buildings.
The database also contains true orthophotos of Kempten (Fehr
and Schneider, 2020). True orthophotos are fully rectified aer-
ial images without hidden areas (Amhar et al., 1998). Further-
more, aerial images have recently been used for map creation

due to the increasing development of remote sensing (Azimi et
al., 2019b; Fischer et al., 2018; Azimi et al., 2019a). Remote
sensing represents objects at or close to the earth’s surface cap-
tured from a distance (Read and Torrado, 2009). The most sig-
nificant advantage of remote sensing data is its scalability be-
cause of the vast area covered during recording. Through the
combination of GIS data, open-source data, true orthophotos,
and deep learning, further investigation of semantic segmenta-
tion of aerial images for simulation purposes can be made.

Therefore, a major contribution of this work lies in utilizing ca-
daster data for fast and efficient labeling of aerial imagery data.
Subsequently, we present a dataset for generating a 3D traffic
simulation environment. Building on this dataset, we built and
evaluated a neural network for semantic segmentation. Finally,
the transformation into a 3D environment is shown as an ex-
ample.

2. The KemptenCity Dataset

Kempten has a 3D city model and an extensive cadaster, cata-
loging elements such as street areas, manhole covers, and walk-
ing paths. Furthermore, true orthophotos were recorded in 2019
and 2021. However, the data is irregularly maintained so that
no reliable statement can be made about its accuracy. Addi-
tionally, Kempten’s cadaster lacks information about lane mark-
ings. Therefore, we had the idea to use the orthophotos to gen-
erate the necessary information in combination with cadaster
data.

2.1 Data Annotation

The combination of true orthophotos and cadaster data inspired
us to develop a labeling workflow. The first step involved de-
fining the necessary classes. Secondly, the proposed labeling
workflow is explained.
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2.1.1 Classes An accurate representation of the environ-
ment is necessary for autonomous driving and traffic simula-
tion. Researchers have developed a six-layer architecture for
such simulations that structures objects to simulate scenarios
(Pegasus, 2019). The most critical are the road and the road
furniture layers. Layer one, the road layer, provides inform-
ation about the topology and road geometry. Layer two, the
road furniture layer, focuses on the infrastructure and objects,
such as traffic signs, vegetation, guard rails, and manhole cov-
ers. Both layers are significant because traffic simulation would
be impossible without a definition of the road and the infra-
structure. Given the limitation of true orthophotos in providing
enough information to extract traffic lights or signs, we focused
on layer one. Therefore, the classes were oriented toward the
Kempten Street cadaster to reduce the labeling time. Addition-
ally, given the cadaster’s limited information about parking lots,
we decided to include only parking information about parking
areas along the street and not parking lots. Moreover, manhole
covers were annotated. This led to the following eight classes:
street, traffic island, walking path, lane marking, parking, bus
stop, manhole cover, and the background.

2.1.2 Labeling workflow Figure 1 illustrates the developed
labeling workflow from top to bottom. The Kempten street
cadaster and the true orthophotos served as input. The city
of Kempten provided the street cadaster as a georeferenced
shapefile, and the true orthophotos were provided in .tiff file
format. First, the Kempten Street cadaster needed to be checked
and adjusted. Therefore, the inputs were placed on top of
each other. Next, each type of polygon (street, walking path,
and more) was adjusted manually, meaning the polygon was
manually adapted to the corresponding visual area from the
true orthophoto. Afterwards, the classes were cross-checked
against each other. For example, after straightening the street
polygon, the walking path was adjusted and checked against
the street. This process of adjusting and cross-checking with
other labels was repeated for every class. Since the Kempten
Street cadaster lacks information for the lane markings, a sep-
arate labeling process was needed. Therefore, we developed
an automated labeling process to provide precise lane mark-
ing labels. This suits image-processing algorithms since lane
markings stand out from the street in color and shape. Lane
markings are located either on the street or on the walking
path. Because of that, both were extracted from the ortho-
photos. This step reduced the influence of areas outside the
traffic area. Subsequently, image-processing algorithms were
applied. The computer-vision-based code uses the HSV color
space as a solution to seek brightness-independent colors. The
chosen method provides lane-marking labels based on the HSV
color space. Finally, the lane-marking polygons were corrected
manually.

2.2 Comparison with State-of-the-Art Datasets

There are several datasets, such as SkyScapes (Azimi et al.,
2019b), Potsdam (ISPRS, 2022), Vahingen (ISPRS, 2022), and
AerialLanes18 (Azimi et al., 2019a), that are comparable with
the annotated KemptenCity dataset. Table 1 presents a compar-
ison of these datasets. The datasets of Vahingen and Potsdam
are open-source and provide labels for classes such as imper-
vious surfaces, buildings, vegetation, and more. They distin-
guish the number of images, image size, ground sample dis-
tance (GSD), and aerial coverage. The datasets were manu-
ally labeled (ISPRS, 2022). The AerialLanes18 dataset consists
of 20 RGB images of size 5616 x 3744 pixels with a GSD of

Figure 1. Labeling workflow for the KemptenCity dataset using
Kempten’s cadaster data. First, the cadaster data is adjusted to

extract all classes except the lane markings. Next, the traffic area
was extracted and the lane markings were detected. After the
lane markings were manually corrected, the final mask was

extracted.

13 cm/pixel. Experts labeled the data with pixel accuracy and
provided lane marking labels (Azimi et al., 2019a). In contrast,
SkyScapes has pixel-accurate labels for 31 classes, including
several classes for the different road types and lane markings,
and it differentiates five tasks (Azimi et al., 2019b):

• SkyScapes-Dense: 20 classes with multiple (sub-) classes
merged into a single category.

• SkyScapes-Lane: 12 different lane marking classes and a
non-lane marking class.

• SkyScapes-Dense-Category: 11 classes, such as nature,
driving area, parking, and road features.

• SkyScapes-Dense-Edge-Binary: Binary edge detection for
fine-grained segmentation.

• SkyScapes-Dense-Edge-Multi: Multiclass edge detection
for fine-grained segmentation.

All datasets, including SkyScapes and Vahingen, cover the
street area extraction. The Potsdam and Vahingen datasets seg-
ment aerial images into only a few classes, such as buildings
or vegetation, although neither provides classes for parking or
lane markings. Conversely, the KemptenCity dataset covers an
area of 7.5 km² and consists of 30 images with a size of 5000
x 5000 pixels. Furthermore, the datasets combine urban and
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KemptenCity SkyScapes (Azimi et al., 2019b) AerialLanes18 (Azimi et al., 2019a) Potsdam (ISPRS, 2022) Vahingen (ISPRS, 2022)
Classes 8 31 1 6 6
Images 30 16 20 38 33
Dimension [pixel] 5000x5000 5616x3744 5616x3744 6000x6000 2493x2063
GSD [cm/pixel] 10 13 13 5 9
Coverage [km²] 7.5 5.69 N/A 3.42 1.36

Table 1. Comparison of the KemptenCity dataset with current datasets. The table compares the number of classes and images, the
dimension, GSD, and the coverage.

rural regions (highways). The true orthophotos have a GSD of
10 cm/pixel. We introduced two datasets: a multiclass dataset
providing ground-truth labels for eight classes relevant for re-
constructing the traffic area and a binary KemptenCity dataset
that only provides pixel-accurate lane marking labels. For ex-
ample, one simulation scenario involves a pedestrian crossing
a street in front of a car. In this case, it is necessary to have
information about the street, lane markings, traffic island, and
walking path. The motivation behind the binary dataset was to
produce better segmentation results. Compared to state-of-the-
art datasets, the labeling time is the most significant difference.
For instance, the whole labeling process for SkyScapes took ap-
proximately 3200 hours (Azimi et al., 2019b). In comparison,
the KemptenCity dataset was completed in about 500 hours,
providing pixel-accurate lane marking labels and approximately
two-pixel accuracy for the other classes.

3. Semantic Segmentation

This section first introduces the metrics for evaluation and then
discusses state-of-the-art segmentation networks.

3.1 Evaluation Metrics

The evaluation of semantic segmentation models requires spe-
cific metrics, with the most common metric being the Intersec-
tion over Union (IoU). The intersection between the target and
the prediction is the number of correctly classified pixels. The
union is the number of pixels in the prediction or the mask. The
IoU describes the overlapping region between the ground truth
and the predicted label. Precision and recall are additional met-
rics. Precision represents the number of predicted objects with
corresponding ground truth, while recall compares the number
of objects annotated in ground truth with the positive captured
predictions. The general rule is that higher values of precision
and recall indicate better model performance. Equal values
of both metrics are ideal. If the precision exceeds the recall,
the model predicted reasonably well, but the total number is
small. In contrast, lower precision and higher recall suggest
the model predominantly classifies correctly but also includes
many wrong predictions.

3.2 State-of-the-Art Segmentation Networks

Semantic segmentation of aerial images is a common task for
which there are various approaches. The most common ones
are presented in the following section.

3.2.1 Semantic Segmentation Networks The U-Net archi-
tecture is the most widely used segmentation network intro-
duced by (Ronneberger et al., 2015). It consists of an encoder
(downsampling) and a symmetric decoder (upsampling) con-
nected through skip connections. Among other things, the au-
thors reduced the parameters and achieved reliable segment-
ation results. Thus, the U-Net architecture has been widely
extended to other networks such as FPN (Lin et al., 2017),
PSPNet (Zhao et al., 2017), and Deeplapv3+ (Chen et al.,

2018). Long et al. (2015) introduced fully convolutional net-
works (FCNs) for end-to-end, pixel-to-pixel image segmenta-
tion. FCNs accept arbitrary-sized images and generate a cor-
respondingly sized output. The authors were able to produce
pixel-wise segmentation results. Chen et al. (2014) first in-
troduced DeepLab. DeepLab adapts deep convolutional neural
networks (DCNNs) with a fully connected conditional random
field (CRF) to achieve better localization properties. It also util-
izes atrous convolution instead of deconvolutional layers for up-
sampling. Atrous convolution uses the dilation rate for a wider
field of view, thereby allowing effective upsampling without in-
creasing the computation time or the number of parameters.
According to Chen et al. (2014), DeepLab has three benefits:
speed, accuracy, and simplicity. Chen et al. (2017a) further de-
veloped the basic DeepLab version and proposed a DeepLab
architecture with an atrous spatial pyramid pooling (ASPP)
layer for extracting multiscale features. DeepLabv3 enlarged
the ASPP layer and integrated ResNet as a backbone (Chen et
al., 2017b). The latest version, DeepLabv3+, uses atrous sep-
arable convolution, which combines depth-wise and point-wise
convolution. It uses a modified Xception model as a backbone.
DeepLabv3+ achieved a notable 89.0% mean intersection over
union (IoU) score on the 2012 PASCAL VOC challenge (Chen
et al., 2018).

3.2.2 Semantic Segmentation of Aerial Images Xin et al.
(2019) introduced a binary road network segmentation method.
Liu et al. (2019) developed RoadNet, a multitask CNN that
solves three tasks to extract the road: Surface segmentation,
edge detection, and centerline extraction. Kaiser et al. (2017)
compared OSM data for labeling with highly accurate, manu-
ally labeled aerial images for road and building extractions.
Their findings indicated that using automatically labeled im-
ages for training led to better segmentation performance and
increased generalization if the data was used on a large scale.
Additionally, they observed that OSM data could replace manu-
ally annotated data without a decrease in accuracy. Fischer
et al. (2018) developed a computer vision-based algorithm for
lane-marking extraction. They trained a random forest classifier
based on the color and texture of lane markings. Since most aer-
ial images contain vast areas of irrelevant background informa-
tion, the authors applied a mask derived from OSM data. Azimi
et al. (2019a) presented Aerial LaneNet, a novel network for
binary lane-marking segmentation. Aerial LaneNet is based on
a symmetric, fully convolutional neural network with wavelet
decomposition. The LaneNet is an encoder-decoder architec-
ture with a VGG 16 model as the encoder. The VGG16 was pre-
trained on the ImageNet dataset to overcome overfitting prob-
lems. Azimi et al. (2019b) also introduced SkyScapes, a data-
set annotating 31 classes, including roads, buildings, and lane
markings; it also consists of 12 (sub-) classes of lane markings.
Finally, Azimi et al. also developed SkyScapesNet for feature
extraction. SkyScapesNet is a multitask segmentation network
with three branches: dense semantic segmentation, multi-edge
detection, and binary-edge detection. FC-DenseNet is used as
a primary baseline. Due to the significant variance in the size
of the SkyScapes classes, the authors concentrated on feature
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extraction. For example, they developed a CRASPP module
inspired by atrous spatial pyramid pooling (ASPP). They re-
versed ASPP and concatenated it with the original ASPP to ob-
tain receptive fields for small and large objects (Azimi et al.,
2019b). In summary, these diverse architectures solve similar
segmentation problems. The knowledge gained from state-of-
the-art methods is combined and further developed to segment
the traffic area.

4. Experiments

This section explains the process of finding the model. The
dataset was split into three subsets: 50% for training, 30% for
validation, and 20% for testing. The true orthophotos were
cropped into 512 x 512-pixel patches. The model for the mul-
ticlass segmentation was trained for 30 epochs using a learning
rate of 1× 10−5 and a batch size of 1. Moreover, the Adam op-
timizer, ReLU (El-Amir and Hamdy, 2019), and the dice loss
(Crum et al., 2006) function were used. For data augmentation,
the images were cropped with a 50% overlap horizontally and
vertically. Additionally, the patches were flipped, rotated, and
sharpened, and the contrast-limited adaptive histogram equaliz-
ation (CLAHE) (Pizer et al., 1987) algorithm was applied. Dur-
ing the training of the binary problem, the learning rate was
changed to 1× 10−4, without data augmentation. The network
was trained on a Tesla V100.

4.1 Model finding

The developed model is based on knowledge from state-of-
the-art approaches and was further developed in this work,
with the network structure based on U-Net (Ronneberger et al.,
2015). U-Net’s basic encoder-decoder architecture allows for
easy implementation and adjustment, allowing the encoder to
be changed using a pre-trained model. As shown by Azimi et
al. (2019b,a), transfer learning improves the results and pre-
vents overfitting in small and unbalanced datasets. Transfer
learning could solve the biggest drawback of the Kempten-
City dataset: its unbalance. For this reason, the encoder of the
classic U-Net was replaced by a pre-trained model. Transfer
learning uses pre-trained weights from existing datasets. Azimi
et al. (2019a) used the ImageNet dataset for transfer learning
for lane-marking segmentation. Therefore, we used pre-trained
models on the ImageNet dataset and compared three pre-trained
encoders: ResNet101, VGG19, and DenseNet201. Table 2
shows the results of these trained models on the test dataset.
First, we compared the different pre-trained encoders with the
U-Net. The combination of DenseNet201 and U-Net reached
a mean IoU (mIoU) of 59.71%, significantly outperforming
the other configurations. For this reason, it was used in the
next step. The chosen pre-trained DenseNet-201 has 201 lay-
ers and was pre-trained on the ImageNet dataset (Huang et al.,
2017). Further experimentation involved adjusting the depth
of the DenseNet201-Unet combination (three, four, and five),
which was defined in our case by the number of downsampling

and upsampling steps. The DenseNet201-Unet, with a depth of
four, was already the best and, more importantly, did not over-
fit. These results can be further improved by incorporating an
ASPP layer as a local feature extractor, as shown in (Chen et al.,
2017a). The network reached a mean IoU of 69.21%. The final
network, DenseUnet ASPP, outperformed the original U-Net’s
performance by 17.03%.

4.2 Architecture of DenseUnet ASPP

The final architecture of the DenseUnet ASPP is shown in Fig-
ure 2. The true orthophoto is first cropped and fed into the
network from the left to the right. The encoder is based on the
pre-trained DenseNet201. The bridge, also called the bottle-
neck, consists of a dense block, the ASPP, and a dropout layer.
In contrast, each decoder block consists of a transpose convo-
lution, concatenation, dropout, and convolution block. Figure 2
illustrates the structure of the convolution block and the ASPP.
The convolution block contains convolution, batch normaliza-
tion, and ReLU activation.

Figure 2. Architecture of the DenseUnet ASPP.

5. Results

5.1 Multiclass Segmentation

The developed model was trained on the KemptenCity-
Multiclass dataset. The results are analyzed more deeply here.
Table 3 shows the IoU for each class of the DenseUnet ASPP,
illustrating that lane markings and the street were classified
well. Moreover, the NN also differentiated between the walk-
ing path and the street. However, other classes, such as man-
hole covers and parking, need further improvement. The un-
balanced dataset caused this unbalanced segmentation of the
classes. Figure 3 shows the RGB image (left), the ground-truth
mask (middle), and the predicted results (right). It can be seen
that the network’s results were quite close to the mask. The
results of the streets and the lane markings were especially ac-
curate.

Name Depth ResNet VGG DenseNet ASPP Mean IoU [%] Accuracy [%] Precision [%] Recall [%]
U-Net 4 - - - - 52.18 83.90 83.94 83.88
ResNet101 U-Net 4 X - - - 38.38 67.94 68.08 67.80
VGG19 U-Net 4 - X - - 48.30 82.33 82.70 82.12
DenseNet U-Net 4 - - X - 59.71 89.03 89.09 89.00
DenseNet U-Net 3 - - X - 43.01 52.35 52.38 52.33
DenseNet U-Net 5 - - X - 58.95 91.40 91.46 91.38
DenseUnet ASPP 4 - - X X 69.21 93.58 93.59 93.57

Table 2. Comparison of different models trained on the KemptenCity dataset.
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Name IoU [%] Accuracy Precision Recall
Mean Background Lane Marking Bus Stop Traffic Island Manhole Cover Parking Walking Path Street [%] [%] [%]

DenseUnet ASPP 69.21 92.10 65.81 94.48 59.55 40.82 62.35 57.22 81.40 93.58 93.59 93.57

Table 3. Results of the final trained model, DenseUnet ASPP, on the test dataset per class.

Figure 3. Results of the DenseUnet ASPP applied to the
KemptenCity-Multiclass images from the test dataset: RGB

(left), GT mask (middle), predicted (right).

5.2 Binary Segmentation

Table 4 summarizes the results of the binary segmentation of
the test dataset.

Name Epochs IoU [%] Accuracy Precision Recall
Mean Background Lane Marking [%] [%] [%]

DenseUnet ASPP 30 85.34 99.72 70.96 99.73 99.73 99.73
DenseUnet ASPP 60 85.52 99.73 71.32 99.73 99.73 99.74

Table 4. Results of binary segmentation.

After 30 epochs, the DenseUnet ASPP achieved an overall
mean IoU of 85.34%, with an IoU of 70.96% for the lane-
marking class. It slightly improved after 60 epochs to 85.52%
mean IoU and 71.32% for lane markings. Figure 4 shows the
results on the test dataset, with true positive lane markings in
green, unsegmented lane markings, false negative (FN), in blue,
and false positives (FP) in red.

6. Generalization

One network requirement is to generalize the results to other
true orthophotos. Therefore, the network was applied to unseen
Kempten images in the spring of 2021. These true orthophotos
have a GSD of 7.5 cm/pixel and a 10000 x 10000 pixel res-
olution. In comparison, the true orthophotos from 2019 have

Figure 4. Results of the Binary segmentation. Green: TP, blue:
FN, red: FP

a different brightness (the ones from 2021 are brighter). Fig-
ure 5 shows the results of the DenseUnet ASPP applied to the
orthophotos from 2021. Neither of the areas covered by the true
orthophotos from 2021 was included in the KemptenCity data-
set. The street and lane markings were well-segmented from
the images. However, the segmentation of walking paths, man-
hole covers, parking, and traffic islands require improvement.
While the binary predicted lane markings were good, the gen-
eralizability needs further improvements, especially for arrows,
lane markings in shadows, and bicycle-way markings.

7. Reconstructed 3D Environment

The network’s output could be further used in traffic simula-
tions. Therefore, a conversion process was developed to convert
the data into a 3D environment. The initial output, RGB images
with labeled pixels, required conversion into shapefiles contain-
ing polygons, where each point has its own global coordinate.
This conversion could be executed through several methods or
programs. Lastly, the data must be converted into a 3D repres-
entation. Therefore, the shapefile was imported, extruded, and
textured. The whole conversion process was partly automated.

However, the output of the multiclass segmentation network
was flawed, making it insufficiently accurate for direct conver-
sion. Consequently, the output must be post-processed, which
can be performed in several ways with different levels of com-
plexity. For example, a dashed lane marking with unclear bor-
ders must be classified and reshaped to its original shape, a step
that can be very time-consuming. Thus, the ground truth data
of the KemptenCity dataset was converted. Figure 6 shows the
reconstructed intersection in front of the University of Applied
Science Kempten. It consists of 3D buildings, true orthophotos,
walking paths, manhole covers, parking areas, bus stops, street
areas, and lane markings. This 3D environment can already be
used for various simulations.

8. Conclusion

This work aimed to semantically segment the traffic areas from
aerial images for simulation purposes. Therefore, this work in-
vestigated whether cadastral and open-source GIS data can be
used to train and improve an NN for this purpose. We intro-
duced a novel labeling workflow using cadaster data to decrease
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Figure 5. DenseUnet ASPP (multiclass and binary) network applied to the city of Kempten orthophotos data from 2021.

Figure 6. 3D representation of Kempten with the generate traffic
area and the integrated LOD2 buildings placed on top of the

orthophoto.

the labeling time significantly. The resulting KemptenCity data-
set consists of 30 true orthophotos, each with a 5000 x 5000
pixel resolution, covering eight classes. The chosen classes in-
clude the road geometry and parts of the road infrastructure. In
addition, we provided pixel-accurate labels for lane markings.
Next, we presented a segmentation network to validate using
the KemptenCity dataset. We trained and evaluated the network
on all classes and only the lane markings. Overall, both binary

and multiclass networks achieved good segmentation results.
Finally, generalizability was demonstrated using the Kempten
true orthophotos from 2021. While the generalizability was
good for the street and dashed lane markings, the results of
other classes could be improved. Finally, the neural network
output must be converted into a 3D environment. However,
the network output was fuzzy; hence, the conversion method
was demonstrated based on the ground truth data from the data-
set. The defined conversion method was relatively fast and con-
sisted of a few partially automated steps. It was found that the
generated environment could be imported into certain simula-
tion tools. In contrast, specialized autonomous driving simula-
tion tools require a separate semantic road description.

We plan to extend the dataset for future work to increase the res-
ults and generalizability. Furthermore, some simulation tools
require specialized formats containing semantic descriptions of
traffic areas. ASAM OpenDRIVE provides such information
and uses an s-t coordinate reference system for the environment,
allowing for the positioning of objects, such as traffic signs, to
be placed at a right angle to the street (ASAM, 2021). There-
fore, the development of a conversion method is the next step.
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