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Abstract 

 

The incorporation of detailed textures in 3D city models is crucial for enhancing their realism, as it adds depth and authenticity to the 

visual representation, thereby closely mimicking the surfaces and materials found in actual urban environments. Existing 3D city 

models can be enriched with energy-related roof and façade details, such as the material type (such as windows, green façades, bricks) 

and sunlight reflectance which can be derived from texture information. However, a common limitation of these models is their lack 

of very high resolution textures, which which reduces their realism and detail.  Manually mapping textures onto each surface of a 

building is an exceptionally time-consuming and labor-intensive process, making it unfeasible for large-scale applications involving 

thousands of buildings. Therefore, an automated method is essential for texture mapping of 3D city models from aerial imagery. In 

this paper, we present CityJSON texture mapper – a python-based software tool for automated texture mapping of CityJSON-based 

3D city models from oblique and nadir aerial imagery. Experimental results demonstrate the effectiveness of our approach in generating 

high-quality textured 3D city models, showcasing the potential for broader applications in geospatial analysis and decision-making. 

This research contributes to the ongoing efforts in enhancing the realism and usability of CityJSON-based 3D city models by enhancing 

them with their real textures from oblique aerial imagery. Texture mapped model can be explored at https://bit.ly/textured3dbag. 

 

1. Introduction 

1.1 Motivation 

Textures are crucial for increasing the visual quality and realism 

of 3D city models. The integration of textures into 3D city models 

significantly enhances their utility across a broad spectrum of 

fields by providing a more accurate, realistic, and engaging 

representation of digital twins. As technology advances and the 

ability to generate and process high-resolution textures improves, 

the potential applications of textured 3D city models will 

continue to expand, offering new opportunities for innovation in 

urban development.  

 

Ongoing climate change and urbanization pose challenges for 

societies in terms of environmental quality, energy management, 

and the health of citizens. Many old cities have a significant share 

of aged and historical buildings with unique and different street 

profiles from modern infrastructure, which raises additional 

challenges in the energy transition because of low energy labels 

and restrictions to required interventions. HERITAGE (2024) 

project aims to address these issues by creating an advanced 

sensing and design system focused on identifying, reducing, and 

preventing heat stress. This will be achieved through monitoring 

and design interventions targeting the ageing built environments 

and buildings in old cities.  

 

The HERITAGE project aims to enhance the existing 3D city 

models of cities by adding details such as building materials and 

the sun reflectance/albedo values of roofs and façades. This can 

be achieved by enriching the CityJSON-based 3D city model 

with information derived from earth observation data, including 

very high-resolution images. However, a common limitation of 

the most 3D city models is their lack of very high resolution 

textures. The process of manually mapping textures to every 

surface of a building is extremely time-consuming and labor-

intensive task, rendering it impractical for large-scale projects 

that involve thousands of buildings. Within the HERITAGE 

project, addressing this challenge requires the development of an 

automated texture mapping process. This would enable the 

extraction of sun reflectance or material information from texture 

images, which can then be utilized to enhance 3D city models. 

 

With the rapid advancement in sensor technology, very high-

resolution oblique imagery is gaining popularity and is 

increasingly being acquired by numerous countries and 

municipalities for different projects. These imaging capabilities 

extend beyond their traditional use in producing orthophoto 

basemaps; they are also becoming invaluable for the texture 

mapping of 3D city models. High resolution textures not only 

improves the quality of a 3D city model; but also broadens their 

potential uses in urban planning, simulation, and visualization. 

Very high resolution textures can also be used to enrich existing 

3D city models by extracting materials for roofs and facades from 

texture images, followed by the calculation of reflectance/albedo 

values for each building. 

 

In this paper, we introduce the CityJSON Texture Mapper, a 

Python-based software tool for automated texture mapping 

CityJSON-based 3D city models from oblique and nadir aerial 

imagery. We address problem that the literature lacks a 

developed solution for automated texture mapping specifically 

designed for CityJSON 3D city models. Our study tackles a set 

of complex, interrelated challenges specific to the texture 

mapping of CityJSON 3D city models on a large scale such as 

integration of different types of aerial imagery, the emphasis on 

automation and scalability, and the focus on overcoming 

practical obstacles like obstructions and dataset misalignments. 

CityJSON Texture Mapper significantly reduces the time and 

labor required for manual texture mapping, making it feasible to 

generate textured 3D city models on a large scale. Our 

experimental results show that software's capability to produce 

high-quality, textured 3D city models that offer improved visual 

realism and depth.  
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1.2 Related Work 

Semantic 3D city models, represented by standards such as 

CityGML (Gröger and Plümer, 2012) and CityJSON ((Ledoux et 

al., 2019), serve as the backbone for a various applications. 

CityJSON is based on JSON (JavaScript Object Notation), a 

lightweight data-interchange format that is easy to read and write 

for humans and easy to parse and generate for machines. This 

simplicity leads to smaller file sizes compared to CityGML, 

making data storage and transmission more efficient. Semantic 

3D city models thrive on interoperability and the ability to 

integrate diverse data sources. While these models provide a 

structured and semantically rich representation of city elements, 

the incorporation of high-resolution textures is pivotal for 

realizing their full potential. 

 

There are existing solutions proposed in the literature for 

automated texture mapping of semantic 3D city models. 

Buyukdemircioglu et al. (2018) demonstrated that large-format 

stereo nadir images can be used for texturing CityGML-based 

LoD2 3D city models. Frueh et al. (2004) and Kang et al. (2016) 

have shown that oblique images are more suitable for texturing 

building facades in 3D city models. This is due to the improved 

visibility of facades that oblique images provide, making them a 

widely used resource for both façade and roof texturing. Geo-

referenced terrestrial images also can be used for texture mapping 

3D city models (Kada et al., 2005). The use of images captured 

by Unmanned Aerial Vehicles (UAVs) is becoming increasingly 

popular and widely adopted. These images can also be effectively 

utilized for texture mapping in CityGML-based 3D city models 

(He et al., 2022). CityJSON based 3D city models are gaining 

popularity; however, the literature currently lacks automated 

solution for texture mapping CityJSON-based 3D city models. In 

this research, we tackled the challenge of the absence of software 

for automated texture mapping of CityJSON-based 3D city 

models from aerial imagery. 

 

2. Dataset 

Texture mapping process was performed by utilizing oblique and 

nadir aerial images, along with CityJSON-based 3D city model 

as the input data. A total of 35 oblique and 6 nadir aerial images 

of Enschede city center were captured using the Leica 

Citymapper sensor by Cyclomedia Technology BV (2024) in 

2019. Oblique images were obtained using four distinct cameras, 

each positioned at a 45-degree angle relative to the Leica 

Citymapper sensor. The images were captured from an average 

height of 1500 meters above the terrain with ground sampling 

distance (GSD) of 5 centimeters.  

 

In the process of aerial imagery acquisition, the saturation of 

colors is often overlooked, as the primary application of such 

imagery is for the development of orthophoto or true orthophoto 

basemaps. However, for crafting detailed and better looking 

textures, the combination of image sharpness and brightness, 

along with the vividness of colors, becomes critically important 

for better visual presentation of the textured 3D city models. To 

achieve more realistic and better looking building textures, it is 

necessarry to apply some color enhancement procedures to 

images.  

 

These processes are designed to improve the visual quality and 

clarity of the image for better and more realistic textures. This 

involves the application of different image processing techniques 

such as contrast stretching, color enhancement, histogram 

equalization and bit depth adjustment which aims at refining the 

natural appearance of color tones in the texture. After 

enhancement, the images gain enhanced vibrancy, clarity, and 

realism. An example of aerial image before and after radiometric 

enhancement is given in Figure 1. 

 

 
 

 
 

Figure 1. Raw aerial (top) and enhanced aerial image (bottom). 

 

For texture mapping purpose, CityJSON-based 3D city model 

western European city center with 1346 buildings was selected 

for performing texture mapping. 3DBAG includes various levels 

of detail for building models, such as LOD1.1, LOD1.2, and 

LOD2.2. Due to the absence of roof geometries in the LOD1 

family, this study utilizes LOD2.2 building geometries proposed 

by Biljecki et al. (2016), which also contains roof structures. 

Incorporating buildings with roof geometries allows for a better 

understanding of the urban landscape, which is particularly 

important for applications requiring high precision, such as urban 

planning, simulation, and for performing analyses on the model. 

An overview of the study area can be seen in Figure 2. 
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Figure 2. An overview of the study area 

 

3. Method 

In this section, we provide a detailed explanation of the 

implemented workflow. Initially, the process begins with 

checking image registration of building models on aerial images. 

This is followed by a thorough explanation of the selection of 

optimal images, and the detailed procedure for texture mapping. 

 

3.1 Image Orientation Check 

The 3D building models in 3DBAG automatically reconstructed 

using AHN (2024) laser scanning data. This dataset is collected 

at different time and with different sensor in comparison to aerial 

imagery. Therefore, the compatibility of these two different data 

needs to be checked. Before initiating the texture mapping 

process, it is essential to verify that both the 3D city model and 

aerial images (extrinsics) are aligned within the same coordinate 

system. Otherwise, the surfaces of the building models will not 

project accurately onto the aerial images. If the 3D city model 

and aerial images are defined in different coordinate systems, 

they must be converted to the same coordinate system. In the 

context of this study, given that both the CityJSON 3D city model 

from 3DBAG, and the external orientation parameters of the 

imagery are defined in the same coordinate system (EPSG: 

7415), reprojection was not necessary for either of the datasets. 

 

As the next step, the surfaces of the 3D building models need to 

be projected onto the raw aerial images for clipping 

corresponding textures. It is necessary to compute the pixel 

coordinates for each vertex of the 3D building models' surfaces, 

matching them with the aerial images. This process can be 

executed by leveraging the exterior orientation parameters of the 

aerial images alongside the interior orientation parameters of the 

camera. Exterior orientation parameters consist of the three 

coordinates representing the projection center, which define the 

camera's translation from the origin to its position at the time of 

exposure, and the three parameters that describe the rotation, 

such as the angles of rotation around the three camera axes. 

Camera interior orientation parameters include camera 

characteristics like focal length, pixel size and principal point. 

 

Reprojecting a 3D point from the real world into 2D sensor 

coordinates within an image entails a series of three 

transformations: from world coordinates to camera coordinates, 

from camera coordinates to image coordinates, and finally from 

image coordinates to the sensor coordinate system. It is possible 

to determine the corresponding pixel coordinates of the building 

roof and façade surfaces and map them onto the imagery with 

Direct Linear Transformation (DLT). Equation 1 describes the 

mathematical representation of a pinhole camera, which is 

commonly referred to as perspective projection: 

 

𝑥 = 𝑥0 − 𝑐
𝑋−𝑋0

𝑍−𝑍0
; 𝑦 = 𝑦0 − 𝑐

𝑌−𝑌0

𝑍−𝑍0
,   (1) 

 

where  c = principal distance (focal lenght) 

 x, y = image coordinates 

 X0, Y0, Z0 = coordinates of projection centre 

 X, Y, Z = object coordinates in real world 

 

The formula adjusts the 3D point coordinates by translating them 

relative to the camera position (X0, Y0, Z0) and then scaling by 

the principal distance c divided by the depth (Z-Z0) to project the 

point onto the 2D image plane. Forstner and Wrobel (2016) 

provide a comprehensive exposition on Direct Linear 

Transformation (DLT) and the process of transforming 3D world 

coordinates into 2D pixel coordinates.  

 

Custom Python scripts were developed to visualize projected 

building surfaces on aerial images and evaluate the compatibility 

between the datasets. Therefore, a visual inspection was 

conducted to verify the data compatibility prior to initiating the 

texture mapping procedure. Figure 3 illustrates the projection of 

roof geometry onto a raw aerial image. 

 

 
 

Figure 3. Projection of 3DBAG roof geometry on aerial image 

 

3.2 Optimal Image Selection 

A single building could be visible in multiple images, depending 

on the forward and lateral overlap ratio of aerial images. 

Similarly, facades or roof surfaces of a building can be visible in 

multiple images captured from different positions of the aircraft. 

As an example, during a photogrammetric data collection process 

where images are captured with an 80% forward overlap and a 

60% lateral overlap, some buildings may be visible in up to 15 

different images. While not every surface of a building is visible 

in each image where the building appears, it can still be visible in 

multiple images. For this purpose, it becomes essential to 

determine which image will be used for texture mapping each 

building surface. 
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A novel approach for selecting the optimal image was 

implemented as a part of the texture mapping process. Every 

surface of the building, whether it be the roof or façade that is 

selected for texture mapping, is processed individually for texture 

mapping process. CityJSON texture mapper software provides 

functionality for texture mapping different semantic surfaces of 

the building, including options to texture only the roof, only the 

facades, or to texture all surfaces. As a part of texture mapping 

process, semantic surfaces of the building are seperated, 

categorizing them into façade and roof surfaces for individual 

texture mapping.  

 

The texture mapping process operates on a per-building basis, 

iterating through each building within the dataset. At first stage, 

the algorithm processes through the entire dataset of images for 

selected building, filtering out the images where the building is 

not fully visible. This approach helps to avoid unnecessarry data 

processing, especially for large projects with hundreds of aerial 

images. Roof and façade surfaces of the building are seperately 

processed for texture mapping. The visibility of the building in 

an image does not guarantee that all of its surfaces are visible. 

Even the building is visible in aerial image, facade surface 

visibility depends on the location of the plane at the time of image 

acquisition. As a consequence, only the facades facing the 

direction of the plane are visible in each image, while façade 

surfaces facing in the opposite direction are not visible. 

 

The initial step involves checking whether the selected surface is 

visible in images where the building is visible. This 

determination relies on both the position of the aircraft and the 

surface of the building that is being texture mapped. As a next 

step,  selected surface is projected onto all aerial images where it 

is visible, and the texture area of the projected surface on each 

image is calculated. In the final step, both datasets are considered 

together for each surface, and the image with the largest texture 

area among the photographs where that surface is visible is 

selected as the optimal image for texture mapping. This iterative 

process is applied to all surfaces of the building for texture 

mapping. If the surface is not visible in any image, it is excluded 

from the texture mapping process, and a "Null" value is assigned. 

An example of façade surfaces projected on selected optimal 

images for texture mapping is given in Figure 4. 

 

 
 

Figure 4. Optimal image selection for facade texture mapping 

 

 

 

 

 

3.3 Texture mapping process 

After the software completes the selection of optimal images, the 

subsequent step is to extract the textures of the building surfaces 

from these selected images and map them to the respective 

surface. The algorithm divides the building into sub-components, 

such as RoofSurface and WallSurface, and categorizes each into 

separate classes. Next, every surface of the roof and facade is 

mapped onto the chosen optimal image, and the pixel coordinates 

of the surface vertices on that image are calculated. Using the 

surface vertice coordinates derived from the calculated pixel 

coordinates, the portion of the image corresponding to that 

surface is clipped from the selected optimal image. The textures 

extracted from each aerial image are unique and exclusively 

allocated to one facade of a single building, guaranteeing that 

there is no overlap in their usage. 

 

The software supports exporting textures in various formats. User 

has the option to choose the texture format based on the quality 

of texture needed. In scenarios where fast scene rendering and 

enhanced performance are critical, image formats such as JPEG  

are favored due to its reduced file size. Although image formats 

like Portable Network Graphics (PNG) offer lossless 

compression, they require more storage space and can lead to 

slower scene loading times. They are preferred in specific 

scenarios where the need for higher quality textures is essential. 

The graphical user interface of the CityJSON texture mapper 

software and processing parameters that can be defined by the 

user is given in Figure 5. 

 

 
 

Figure 5. CityJSON texture mapper GUI 

 

3D building models in 3DBAG feature 3 different level of detail 

for buildings, including LOD 1.2, LOD 1.3, and LOD 2.2. The 

software provides the functionality to apply texture mapping to 

the selected level of detail for buildings. In this study, building 

models with Level of Detail 2.2 (LOD2.2) is selected for texture 

mapping purposes due to included roof geometries. The roof 

geometry of the building can be texture mapped in two distinct 

options, as a single texture extracted from a single nadir image, 

typically the one most perpendicular to the building roof, 

resulting in all roof geometries being mapped from a unified roof 

texture. Alternatively, it can be texture mapped from multiple 

textures clipped from optimal oblique or nadir aerial images from 

the dataset, where each optimal image provides the most suitable 

texture for its corresponding roof surface. Texture mapping the 

roof from a single texture offers a more homogenous appearance, 

yet in many instances, texture mapping the vertical surfaces of 

the roof proves challenging due to the nadir viewing angle. The 

process of utilizing multiple textures for the roof starts by 
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identifying the optimal image for each roof surface, followed by 

individually clipping the texture for each roof surface from the 

corresponding optimal aerial image. The software also provides 

the option to exclusively texture map specific surface types, such 

as roof surfaces, facades or roof and facades. An illustration 

showcasing examples of roof-only texture mapping, façade-only 

texture mapping, and fully texture mapped building is given in 

Figure 6. 

 

 
 

Figure 6. Roof, façade and fully texture mapped building 

   

Following the texture clipping process, the file path of the texture 

and its corresponding texture coordinates for each textured 

surface must be written in the CityJSON file. The pixel 

coordinates from the images are converted into u,v coordinates 

for each surface and then integrated into the CityJSON file. 

Additionally, the texture format and file location for each surface 

are included in the CityJSON file.  A CityJSON Geometry Object 

can contain a member named "texture" to store surface textures. 

This member comprises key-value pairs, where the key denotes 

the theme of the textures, and the value is a JSON object featuring 

a "values" member. This "values" member consists of a hierarchy 

of integer arrays. Each array represents a ring of vertices on a 

surface, with the first value indicating its position within the 

"textures" member of the "appearance" section in the CityJSON 

object. Subsequent indices denote the UV positions of 

corresponding vertices, drawn from the "boundaries" member of 

the geometry. Therefore, each array includes one additional value 

compared to the number of vertices in the ring. The array's depth 

aligns with the CityJSON Geometry object's depth and 

corresponds to that of the "boundary" array. The user has the 

flexibility to determine the precision of texture coordinates, 

including the number of decimal places. Increasing precision of 

the texture coordinates will result in a more precise fit to the 

surface; however, this will also lead to an increase in the size of 

the CityJSON file. 

 

A total of 48,497 textures is clipped and written into the 

CityJSON file for 1,346 buildings. The texturing process was 

executed on a Dell Precision 3561 (i7 11800H – 16GB RAM) 

and required roughly 3 minutes and 16 seconds to complete. On 

average, 247 surfaces were texture mapped per second. This 

performance indicates that the CityJSON texture mapper 

executes the texturing process significantly faster than 

commercial software alternatives. During the texture mapping 

process, a copy of the original CityJSON file is created, and all 

modifications are applied to this file. The modified version is 

then saved as a separate CityJSON file, along with the textures, 

ensuring that all original attributes of the buildings remain intact. 

 

After completing the texture mapping process, the textured 3D 

city model becomes ready for visualization. The texture-mapped 

3D city model is visualized in CesiumJS (2024). As of now, there 

isn't an open-source solution that supports for visualizing texture-

mapped CityJSON 3D city models. Given that CesiumJS does 

not natively support CityJSON, the textured CityJSON file is 

converted to CityGML format using citygml-tools (2024) for 

visualization in CesiumJS. This conversion step is necessary to 

bridge the compatibility gap between the CityJSON format and 

the visualization capabilities of CesiumJS. A view of the original 

and texture mapped 3D city model is given in Figure 7. 

 

 
 

 
 

Figure 7. 3D city model before texture mapping (top) and after 

texture mapping (bottom) 

 

4. Discussion 

Several factors significantly influence the quality and accuracy 

of texture mapping. Among these, the precision of the exterior 

orientation parameters stands out as crucial. Inadequate accuracy 

in these parameters leads to improper projection of building 

geometries onto the images, resulting in a misalignment between 

the building's geometry and its texture. Orientation angles and 

center coordinates significantly influence façade texturing. 

Texturing quality improves near the photograph's outer edges.  

 

There is a slight misalignment between aerial images and 3D 

building geometries in the 3DBAG model, likely because they 

are derived from different data sources. Nowadays, graph neural 

networks have demonstrated successful results in delineating 

roof structures from aerial photographs (Zhao et al., 2022). Since 

that the models in our study are automatically reconstructed from 

aerial laser scanning point clouds and 2D building footprints, 

integrating roof lines extracted from aerial imagery via graph 

neural networks may address misalignments between the two 

datasets. This integration could lead to the reconstruction of more 

precise roof geometries and aligned textures with the building 

surfaces. 

 

Another significant challenge in texture mapping arises from 

obstructions like trees that obscure roofs and facades, reducing 

the visual quality of the texture mapping. Objects surrounding or 

atop buildings can obscure the structure, leading to poor texture 

application. Likewise, buildings occluded by adjacent structures 

often suffer from incorrect texture mapping, where the obscured 

surface might be inaccurately covered with the texture of the 

obstructing building. To mitigate this issue, a visibility analysis 

should be conducted prior to texture mapping to ensure accurate 
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representation. The visibility analysis should take into account 

the buildings surrounding the texture-mapped building, and, if 

feasible, other objects like trees, considering their actual height 

and width. If the surface is partially obscured in the image, 

exploring existing deep learning techniques to eliminate objects 

from the texture image could be beneficial. 

 

Furthermore, the timing of image acquisition throughout the day 

affects the presence of shadows on various parts of the building 

and within the image itself. The literature offers shadow removal 

techniques based on deep learning, which are effective in 

eliminating shadows from images, which could be a future work. 

Optimal image capture times are when the sun is directly 

overhead, minimizing shadow effects and enhancing the quality 

of the texture mapping. Taking these factors into account will 

optimize the texture mapping process and enhance the texture 

quality, resulting in an improved visual representation of textured 

3D city models. 

 

5. Conclusion and Future Works 

In this study, we introduce CityJSON Texture Mapper, a Python-

based software for automated texture mapping CityJSON-based 

3D city models from oblique aerial imagery. The absence of 

existing automated solutions for texture mapping CityJSON 3D 

city models from aerial imagery in literature highlights the 

novelty of the study. Developed tool processes CityJSON 3D city 

models and aerial imagery together, then automatically maps 

textures to building surfaces such as roofs and walls. It offers 

various customizable options, including the level of detail for 

texture application, choice of surfaces for texturing (roofs, 

facades, or both), and texture quality. A live demo of the texture 

mapped 3D city model can be explored at 

https://bit.ly/textured3dbag (2024). 

 

For future developments, we aim to implement advanced 

visibility analysis that considers surrounding buildings on texture 

mapping visibility. This enhancement will have the ability to 

detect situations where a shorter building is blocked from view 

by a taller one nearby, thus preventing the need to employ 

obstructed images for texturing those concealed areas. 

Additionally, the application of deep learning, particularly 

Generative Adversarial Networks (GANs), could further enhance 

texture resolution. GANs have been successfully employed in 

several studies to significantly improve image resolution, which 

could be beneficial for creating high-quality building textures. 

 

Another potential direction is to automate the extraction and 

modeling of building facade details, such as windows and doors, 

from the textures, allowing for detailed 3D models even in the 

absence of explicit texture information. This could make 

untextured 3D city models more informative and visually rich, or 

can be used to upgrade LOD2 family buildings to LOD3. The use 

of 3D city models in energy-related applications, like urban 

energy simulations and solar potential assessments, is also 

growing. Textures play a crucial role in these applications by 

providing critical data for identifying roof and facade materials, 

allowing for the assignment of accurate albedo values to enhance 

building models for energy studies. Future research will focus on 

extracting reflectance values and identifying material types of 

buildings to enhance existing 3D city models from textures for 

applications in energy efficiency. 

 

Significant improvements could be achieved through texture 

packaging, which consolidates all texture images of a building 

into a single image. This method not only minimizes the city 

model's file size by reducing duplicate texture coordinates and 

file paths but also accelerates scene loading times, as renderers 

would need to load a single packaged texture instead of multiple 

images for each surface. 

 

Given that the 3D city model is reconstructed from the AHN 

point cloud and textures are derived from oblique aerial images 

captured by a different sensor at a different time, such 

misalignment between these two datasets is expected. However, 

as a future work is planned for implementing a correction 

mechanism to detect and rectify misalignments and changes 

between aerial images and the 3D city model. Implementing this 

approach will result in improved texture mapping on building 

surfaces, subsequently enhancing the extraction of information 

for building roofs and facades, such as sunlight reflectance and 

material properties for energy-related applications. 
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