
Automated texture mapping CityJSON 3D city models

from oblique and nadir aerial imagery

Mehmet Buyukdemircioglu1, Sander Oude Elberink1

1 Faculty of Geoinformation Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands

(m.buyukdemircioglu, s.j.oudeelberink)@utwente.nl

Keywords: 3D city models, Digital Twin, CityJSON, Texture mapping, Photogrammetry

Abstract

The incorporation of detailed textures in 3D city models is crucial for enhancing their realism, as it adds depth and authenticity to the

visual representation, thereby closely mimicking the surfaces and materials found in actual urban environments. Existing 3D city

models can be enriched with energy-related roof and façade details, such as the material type (such as windows, green façades, bricks)

and sunlight reflectance which can be derived from texture information. However, a common limitation of these models is their lack

of very high resolution textures, which which reduces their realism and detail. Manually mapping textures onto each surface of a

building is an exceptionally time-consuming and labor-intensive process, making it unfeasible for large-scale applications involving

thousands of buildings. Therefore, an automated method is essential for texture mapping of 3D city models from aerial imagery. In

this paper, we present CityJSON texture mapper – a python-based software tool for automated texture mapping of CityJSON-based

3D city models from oblique and nadir aerial imagery. Experimental results demonstrate the effectiveness of our approach in generating

high-quality textured 3D city models, showcasing the potential for broader applications in geospatial analysis and decision-making.

This research contributes to the ongoing efforts in enhancing the realism and usability of CityJSON-based 3D city models by enhancing

them with their real textures from oblique aerial imagery. Texture mapped model can be explored at https://bit.ly/textured3dbag.

1. Introduction

1.1 Motivation

Textures are crucial for increasing the visual quality and realism

of 3D city models. The integration of textures into 3D city models

significantly enhances their utility across a broad spectrum of

fields by providing a more accurate, realistic, and engaging

representation of digital twins. As technology advances and the

ability to generate and process high-resolution textures improves,

the potential applications of textured 3D city models will

continue to expand, offering new opportunities for innovation in

urban development.

Ongoing climate change and urbanization pose challenges for

societies in terms of environmental quality, energy management,

and the health of citizens. Many old cities have a significant share

of aged and historical buildings with unique and different street

profiles from modern infrastructure, which raises additional

challenges in the energy transition because of low energy labels

and restrictions to required interventions. HERITAGE (2024)

project aims to address these issues by creating an advanced

sensing and design system focused on identifying, reducing, and

preventing heat stress. This will be achieved through monitoring

and design interventions targeting the ageing built environments

and buildings in old cities.

The HERITAGE project aims to enhance the existing 3D city

models of cities by adding details such as building materials and

the sun reflectance/albedo values of roofs and façades. This can

be achieved by enriching the CityJSON-based 3D city model

with information derived from earth observation data, including

very high-resolution images. However, a common limitation of

the most 3D city models is their lack of very high resolution

textures. The process of manually mapping textures to every

surface of a building is extremely time-consuming and labor-

intensive task, rendering it impractical for large-scale projects

that involve thousands of buildings. Within the HERITAGE

project, addressing this challenge requires the development of an

automated texture mapping process. This would enable the

extraction of sun reflectance or material information from texture

images, which can then be utilized to enhance 3D city models.

With the rapid advancement in sensor technology, very high-

resolution oblique imagery is gaining popularity and is

increasingly being acquired by numerous countries and

municipalities for different projects. These imaging capabilities

extend beyond their traditional use in producing orthophoto

basemaps; they are also becoming invaluable for the texture

mapping of 3D city models. High resolution textures not only

improves the quality of a 3D city model; but also broadens their

potential uses in urban planning, simulation, and visualization.

Very high resolution textures can also be used to enrich existing

3D city models by extracting materials for roofs and facades from

texture images, followed by the calculation of reflectance/albedo

values for each building.

In this paper, we introduce the CityJSON Texture Mapper, a

Python-based software tool for automated texture mapping

CityJSON-based 3D city models from oblique and nadir aerial

imagery. We address problem that the literature lacks a

developed solution for automated texture mapping specifically

designed for CityJSON 3D city models. Our study tackles a set

of complex, interrelated challenges specific to the texture

mapping of CityJSON 3D city models on a large scale such as

integration of different types of aerial imagery, the emphasis on

automation and scalability, and the focus on overcoming

practical obstacles like obstructions and dataset misalignments.

CityJSON Texture Mapper significantly reduces the time and

labor required for manual texture mapping, making it feasible to

generate textured 3D city models on a large scale. Our

experimental results show that software's capability to produce

high-quality, textured 3D city models that offer improved visual

realism and depth.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W5-2024
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W5-2024-87-2024 | © Author(s) 2024. CC BY 4.0 License.

87

https://bit.ly/textured3dbag

1.2 Related Work

Semantic 3D city models, represented by standards such as

CityGML (Gröger and Plümer, 2012) and CityJSON ((Ledoux et

al., 2019), serve as the backbone for a various applications.

CityJSON is based on JSON (JavaScript Object Notation), a

lightweight data-interchange format that is easy to read and write

for humans and easy to parse and generate for machines. This

simplicity leads to smaller file sizes compared to CityGML,

making data storage and transmission more efficient. Semantic

3D city models thrive on interoperability and the ability to

integrate diverse data sources. While these models provide a

structured and semantically rich representation of city elements,

the incorporation of high-resolution textures is pivotal for

realizing their full potential.

There are existing solutions proposed in the literature for

automated texture mapping of semantic 3D city models.

Buyukdemircioglu et al. (2018) demonstrated that large-format

stereo nadir images can be used for texturing CityGML-based

LoD2 3D city models. Frueh et al. (2004) and Kang et al. (2016)

have shown that oblique images are more suitable for texturing

building facades in 3D city models. This is due to the improved

visibility of facades that oblique images provide, making them a

widely used resource for both façade and roof texturing. Geo-

referenced terrestrial images also can be used for texture mapping

3D city models (Kada et al., 2005). The use of images captured

by Unmanned Aerial Vehicles (UAVs) is becoming increasingly

popular and widely adopted. These images can also be effectively

utilized for texture mapping in CityGML-based 3D city models

(He et al., 2022). CityJSON based 3D city models are gaining

popularity; however, the literature currently lacks automated

solution for texture mapping CityJSON-based 3D city models. In

this research, we tackled the challenge of the absence of software

for automated texture mapping of CityJSON-based 3D city

models from aerial imagery.

2. Dataset

Texture mapping process was performed by utilizing oblique and

nadir aerial images, along with CityJSON-based 3D city model

as the input data. A total of 35 oblique and 6 nadir aerial images

of Enschede city center were captured using the Leica

Citymapper sensor by Cyclomedia Technology BV (2024) in

2019. Oblique images were obtained using four distinct cameras,

each positioned at a 45-degree angle relative to the Leica

Citymapper sensor. The images were captured from an average

height of 1500 meters above the terrain with ground sampling

distance (GSD) of 5 centimeters.

In the process of aerial imagery acquisition, the saturation of

colors is often overlooked, as the primary application of such

imagery is for the development of orthophoto or true orthophoto

basemaps. However, for crafting detailed and better looking

textures, the combination of image sharpness and brightness,

along with the vividness of colors, becomes critically important

for better visual presentation of the textured 3D city models. To

achieve more realistic and better looking building textures, it is

necessarry to apply some color enhancement procedures to

images.

These processes are designed to improve the visual quality and

clarity of the image for better and more realistic textures. This

involves the application of different image processing techniques

such as contrast stretching, color enhancement, histogram

equalization and bit depth adjustment which aims at refining the

natural appearance of color tones in the texture. After

enhancement, the images gain enhanced vibrancy, clarity, and

realism. An example of aerial image before and after radiometric

enhancement is given in Figure 1.

Figure 1. Raw aerial (top) and enhanced aerial image (bottom).

For texture mapping purpose, CityJSON-based 3D city model

western European city center with 1346 buildings was selected

for performing texture mapping. 3DBAG includes various levels

of detail for building models, such as LOD1.1, LOD1.2, and

LOD2.2. Due to the absence of roof geometries in the LOD1

family, this study utilizes LOD2.2 building geometries proposed

by Biljecki et al. (2016), which also contains roof structures.

Incorporating buildings with roof geometries allows for a better

understanding of the urban landscape, which is particularly

important for applications requiring high precision, such as urban

planning, simulation, and for performing analyses on the model.

An overview of the study area can be seen in Figure 2.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W5-2024
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W5-2024-87-2024 | © Author(s) 2024. CC BY 4.0 License.

88

Figure 2. An overview of the study area

3. Method

In this section, we provide a detailed explanation of the

implemented workflow. Initially, the process begins with

checking image registration of building models on aerial images.

This is followed by a thorough explanation of the selection of

optimal images, and the detailed procedure for texture mapping.

3.1 Image Orientation Check

The 3D building models in 3DBAG automatically reconstructed

using AHN (2024) laser scanning data. This dataset is collected

at different time and with different sensor in comparison to aerial

imagery. Therefore, the compatibility of these two different data

needs to be checked. Before initiating the texture mapping

process, it is essential to verify that both the 3D city model and

aerial images (extrinsics) are aligned within the same coordinate

system. Otherwise, the surfaces of the building models will not

project accurately onto the aerial images. If the 3D city model

and aerial images are defined in different coordinate systems,

they must be converted to the same coordinate system. In the

context of this study, given that both the CityJSON 3D city model

from 3DBAG, and the external orientation parameters of the

imagery are defined in the same coordinate system (EPSG:

7415), reprojection was not necessary for either of the datasets.

As the next step, the surfaces of the 3D building models need to

be projected onto the raw aerial images for clipping

corresponding textures. It is necessary to compute the pixel

coordinates for each vertex of the 3D building models' surfaces,

matching them with the aerial images. This process can be

executed by leveraging the exterior orientation parameters of the

aerial images alongside the interior orientation parameters of the

camera. Exterior orientation parameters consist of the three

coordinates representing the projection center, which define the

camera's translation from the origin to its position at the time of

exposure, and the three parameters that describe the rotation,

such as the angles of rotation around the three camera axes.

Camera interior orientation parameters include camera

characteristics like focal length, pixel size and principal point.

Reprojecting a 3D point from the real world into 2D sensor

coordinates within an image entails a series of three

transformations: from world coordinates to camera coordinates,

from camera coordinates to image coordinates, and finally from

image coordinates to the sensor coordinate system. It is possible

to determine the corresponding pixel coordinates of the building

roof and façade surfaces and map them onto the imagery with

Direct Linear Transformation (DLT). Equation 1 describes the

mathematical representation of a pinhole camera, which is

commonly referred to as perspective projection:

𝑥 = 𝑥0 − 𝑐
𝑋−𝑋0

𝑍−𝑍0
; 𝑦 = 𝑦0 − 𝑐

𝑌−𝑌0

𝑍−𝑍0
, (1)

where c = principal distance (focal lenght)

 x, y = image coordinates

 X0, Y0, Z0 = coordinates of projection centre

 X, Y, Z = object coordinates in real world

The formula adjusts the 3D point coordinates by translating them

relative to the camera position (X0, Y0, Z0) and then scaling by

the principal distance c divided by the depth (Z-Z0) to project the

point onto the 2D image plane. Forstner and Wrobel (2016)

provide a comprehensive exposition on Direct Linear

Transformation (DLT) and the process of transforming 3D world

coordinates into 2D pixel coordinates.

Custom Python scripts were developed to visualize projected

building surfaces on aerial images and evaluate the compatibility

between the datasets. Therefore, a visual inspection was

conducted to verify the data compatibility prior to initiating the

texture mapping procedure. Figure 3 illustrates the projection of

roof geometry onto a raw aerial image.

Figure 3. Projection of 3DBAG roof geometry on aerial image

3.2 Optimal Image Selection

A single building could be visible in multiple images, depending

on the forward and lateral overlap ratio of aerial images.

Similarly, facades or roof surfaces of a building can be visible in

multiple images captured from different positions of the aircraft.

As an example, during a photogrammetric data collection process

where images are captured with an 80% forward overlap and a

60% lateral overlap, some buildings may be visible in up to 15

different images. While not every surface of a building is visible

in each image where the building appears, it can still be visible in

multiple images. For this purpose, it becomes essential to

determine which image will be used for texture mapping each

building surface.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W5-2024
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W5-2024-87-2024 | © Author(s) 2024. CC BY 4.0 License.

89

A novel approach for selecting the optimal image was

implemented as a part of the texture mapping process. Every

surface of the building, whether it be the roof or façade that is

selected for texture mapping, is processed individually for texture

mapping process. CityJSON texture mapper software provides

functionality for texture mapping different semantic surfaces of

the building, including options to texture only the roof, only the

facades, or to texture all surfaces. As a part of texture mapping

process, semantic surfaces of the building are seperated,

categorizing them into façade and roof surfaces for individual

texture mapping.

The texture mapping process operates on a per-building basis,

iterating through each building within the dataset. At first stage,

the algorithm processes through the entire dataset of images for

selected building, filtering out the images where the building is

not fully visible. This approach helps to avoid unnecessarry data

processing, especially for large projects with hundreds of aerial

images. Roof and façade surfaces of the building are seperately

processed for texture mapping. The visibility of the building in

an image does not guarantee that all of its surfaces are visible.

Even the building is visible in aerial image, facade surface

visibility depends on the location of the plane at the time of image

acquisition. As a consequence, only the facades facing the

direction of the plane are visible in each image, while façade

surfaces facing in the opposite direction are not visible.

The initial step involves checking whether the selected surface is

visible in images where the building is visible. This

determination relies on both the position of the aircraft and the

surface of the building that is being texture mapped. As a next

step, selected surface is projected onto all aerial images where it

is visible, and the texture area of the projected surface on each

image is calculated. In the final step, both datasets are considered

together for each surface, and the image with the largest texture

area among the photographs where that surface is visible is

selected as the optimal image for texture mapping. This iterative

process is applied to all surfaces of the building for texture

mapping. If the surface is not visible in any image, it is excluded

from the texture mapping process, and a "Null" value is assigned.

An example of façade surfaces projected on selected optimal

images for texture mapping is given in Figure 4.

Figure 4. Optimal image selection for facade texture mapping

3.3 Texture mapping process

After the software completes the selection of optimal images, the

subsequent step is to extract the textures of the building surfaces

from these selected images and map them to the respective

surface. The algorithm divides the building into sub-components,

such as RoofSurface and WallSurface, and categorizes each into

separate classes. Next, every surface of the roof and facade is

mapped onto the chosen optimal image, and the pixel coordinates

of the surface vertices on that image are calculated. Using the

surface vertice coordinates derived from the calculated pixel

coordinates, the portion of the image corresponding to that

surface is clipped from the selected optimal image. The textures

extracted from each aerial image are unique and exclusively

allocated to one facade of a single building, guaranteeing that

there is no overlap in their usage.

The software supports exporting textures in various formats. User

has the option to choose the texture format based on the quality

of texture needed. In scenarios where fast scene rendering and

enhanced performance are critical, image formats such as JPEG

are favored due to its reduced file size. Although image formats

like Portable Network Graphics (PNG) offer lossless

compression, they require more storage space and can lead to

slower scene loading times. They are preferred in specific

scenarios where the need for higher quality textures is essential.

The graphical user interface of the CityJSON texture mapper

software and processing parameters that can be defined by the

user is given in Figure 5.

Figure 5. CityJSON texture mapper GUI

3D building models in 3DBAG feature 3 different level of detail

for buildings, including LOD 1.2, LOD 1.3, and LOD 2.2. The

software provides the functionality to apply texture mapping to

the selected level of detail for buildings. In this study, building

models with Level of Detail 2.2 (LOD2.2) is selected for texture

mapping purposes due to included roof geometries. The roof

geometry of the building can be texture mapped in two distinct

options, as a single texture extracted from a single nadir image,

typically the one most perpendicular to the building roof,

resulting in all roof geometries being mapped from a unified roof

texture. Alternatively, it can be texture mapped from multiple

textures clipped from optimal oblique or nadir aerial images from

the dataset, where each optimal image provides the most suitable

texture for its corresponding roof surface. Texture mapping the

roof from a single texture offers a more homogenous appearance,

yet in many instances, texture mapping the vertical surfaces of

the roof proves challenging due to the nadir viewing angle. The

process of utilizing multiple textures for the roof starts by

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W5-2024
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W5-2024-87-2024 | © Author(s) 2024. CC BY 4.0 License.

90

identifying the optimal image for each roof surface, followed by

individually clipping the texture for each roof surface from the

corresponding optimal aerial image. The software also provides

the option to exclusively texture map specific surface types, such

as roof surfaces, facades or roof and facades. An illustration

showcasing examples of roof-only texture mapping, façade-only

texture mapping, and fully texture mapped building is given in

Figure 6.

Figure 6. Roof, façade and fully texture mapped building

Following the texture clipping process, the file path of the texture

and its corresponding texture coordinates for each textured

surface must be written in the CityJSON file. The pixel

coordinates from the images are converted into u,v coordinates

for each surface and then integrated into the CityJSON file.

Additionally, the texture format and file location for each surface

are included in the CityJSON file. A CityJSON Geometry Object

can contain a member named "texture" to store surface textures.

This member comprises key-value pairs, where the key denotes

the theme of the textures, and the value is a JSON object featuring

a "values" member. This "values" member consists of a hierarchy

of integer arrays. Each array represents a ring of vertices on a

surface, with the first value indicating its position within the

"textures" member of the "appearance" section in the CityJSON

object. Subsequent indices denote the UV positions of

corresponding vertices, drawn from the "boundaries" member of

the geometry. Therefore, each array includes one additional value

compared to the number of vertices in the ring. The array's depth

aligns with the CityJSON Geometry object's depth and

corresponds to that of the "boundary" array. The user has the

flexibility to determine the precision of texture coordinates,

including the number of decimal places. Increasing precision of

the texture coordinates will result in a more precise fit to the

surface; however, this will also lead to an increase in the size of

the CityJSON file.

A total of 48,497 textures is clipped and written into the

CityJSON file for 1,346 buildings. The texturing process was

executed on a Dell Precision 3561 (i7 11800H – 16GB RAM)

and required roughly 3 minutes and 16 seconds to complete. On

average, 247 surfaces were texture mapped per second. This

performance indicates that the CityJSON texture mapper

executes the texturing process significantly faster than

commercial software alternatives. During the texture mapping

process, a copy of the original CityJSON file is created, and all

modifications are applied to this file. The modified version is

then saved as a separate CityJSON file, along with the textures,

ensuring that all original attributes of the buildings remain intact.

After completing the texture mapping process, the textured 3D

city model becomes ready for visualization. The texture-mapped

3D city model is visualized in CesiumJS (2024). As of now, there

isn't an open-source solution that supports for visualizing texture-

mapped CityJSON 3D city models. Given that CesiumJS does

not natively support CityJSON, the textured CityJSON file is

converted to CityGML format using citygml-tools (2024) for

visualization in CesiumJS. This conversion step is necessary to

bridge the compatibility gap between the CityJSON format and

the visualization capabilities of CesiumJS. A view of the original

and texture mapped 3D city model is given in Figure 7.

Figure 7. 3D city model before texture mapping (top) and after

texture mapping (bottom)

4. Discussion

Several factors significantly influence the quality and accuracy

of texture mapping. Among these, the precision of the exterior

orientation parameters stands out as crucial. Inadequate accuracy

in these parameters leads to improper projection of building

geometries onto the images, resulting in a misalignment between

the building's geometry and its texture. Orientation angles and

center coordinates significantly influence façade texturing.

Texturing quality improves near the photograph's outer edges.

There is a slight misalignment between aerial images and 3D

building geometries in the 3DBAG model, likely because they

are derived from different data sources. Nowadays, graph neural

networks have demonstrated successful results in delineating

roof structures from aerial photographs (Zhao et al., 2022). Since

that the models in our study are automatically reconstructed from

aerial laser scanning point clouds and 2D building footprints,

integrating roof lines extracted from aerial imagery via graph

neural networks may address misalignments between the two

datasets. This integration could lead to the reconstruction of more

precise roof geometries and aligned textures with the building

surfaces.

Another significant challenge in texture mapping arises from

obstructions like trees that obscure roofs and facades, reducing

the visual quality of the texture mapping. Objects surrounding or

atop buildings can obscure the structure, leading to poor texture

application. Likewise, buildings occluded by adjacent structures

often suffer from incorrect texture mapping, where the obscured

surface might be inaccurately covered with the texture of the

obstructing building. To mitigate this issue, a visibility analysis

should be conducted prior to texture mapping to ensure accurate

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W5-2024
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W5-2024-87-2024 | © Author(s) 2024. CC BY 4.0 License.

91

representation. The visibility analysis should take into account

the buildings surrounding the texture-mapped building, and, if

feasible, other objects like trees, considering their actual height

and width. If the surface is partially obscured in the image,

exploring existing deep learning techniques to eliminate objects

from the texture image could be beneficial.

Furthermore, the timing of image acquisition throughout the day

affects the presence of shadows on various parts of the building

and within the image itself. The literature offers shadow removal

techniques based on deep learning, which are effective in

eliminating shadows from images, which could be a future work.

Optimal image capture times are when the sun is directly

overhead, minimizing shadow effects and enhancing the quality

of the texture mapping. Taking these factors into account will

optimize the texture mapping process and enhance the texture

quality, resulting in an improved visual representation of textured

3D city models.

5. Conclusion and Future Works

In this study, we introduce CityJSON Texture Mapper, a Python-

based software for automated texture mapping CityJSON-based

3D city models from oblique aerial imagery. The absence of

existing automated solutions for texture mapping CityJSON 3D

city models from aerial imagery in literature highlights the

novelty of the study. Developed tool processes CityJSON 3D city

models and aerial imagery together, then automatically maps

textures to building surfaces such as roofs and walls. It offers

various customizable options, including the level of detail for

texture application, choice of surfaces for texturing (roofs,

facades, or both), and texture quality. A live demo of the texture

mapped 3D city model can be explored at

https://bit.ly/textured3dbag (2024).

For future developments, we aim to implement advanced

visibility analysis that considers surrounding buildings on texture

mapping visibility. This enhancement will have the ability to

detect situations where a shorter building is blocked from view

by a taller one nearby, thus preventing the need to employ

obstructed images for texturing those concealed areas.

Additionally, the application of deep learning, particularly

Generative Adversarial Networks (GANs), could further enhance

texture resolution. GANs have been successfully employed in

several studies to significantly improve image resolution, which

could be beneficial for creating high-quality building textures.

Another potential direction is to automate the extraction and

modeling of building facade details, such as windows and doors,

from the textures, allowing for detailed 3D models even in the

absence of explicit texture information. This could make

untextured 3D city models more informative and visually rich, or

can be used to upgrade LOD2 family buildings to LOD3. The use

of 3D city models in energy-related applications, like urban

energy simulations and solar potential assessments, is also

growing. Textures play a crucial role in these applications by

providing critical data for identifying roof and facade materials,

allowing for the assignment of accurate albedo values to enhance

building models for energy studies. Future research will focus on

extracting reflectance values and identifying material types of

buildings to enhance existing 3D city models from textures for

applications in energy efficiency.

Significant improvements could be achieved through texture

packaging, which consolidates all texture images of a building

into a single image. This method not only minimizes the city

model's file size by reducing duplicate texture coordinates and

file paths but also accelerates scene loading times, as renderers

would need to load a single packaged texture instead of multiple

images for each surface.

Given that the 3D city model is reconstructed from the AHN

point cloud and textures are derived from oblique aerial images

captured by a different sensor at a different time, such

misalignment between these two datasets is expected. However,

as a future work is planned for implementing a correction

mechanism to detect and rectify misalignments and changes

between aerial images and the 3D city model. Implementing this

approach will result in improved texture mapping on building

surfaces, subsequently enhancing the extraction of information

for building roofs and facades, such as sunlight reflectance and

material properties for energy-related applications.

Acknowledgements

This paper is part of the 4TU-programme HERITAGE (HEat

Robustness In relation To AGEing cities). HERITAGE is funded

by the 4TU-programme High Tech for a Sustainable Future

(HTSF). 4TU is the federation of the four technical universities

in The Netherlands (Delft University of Technology, DUT;

Eindhoven University of Technology, TU/e; University of

Twente, UT and Wageningen University and Research, WUR).

References

3DBAG. 2021. 3D Geoinformation, Delft University of

Technology. https://www.3dbag.nl (22 May 2024)

AHN. 2024. Actueel Hoogtebestand Nederland.

https://www.ahn.nl. (22 May 2024)

Biljecki, F., Ledoux, H., & Stoter, J., 2016. An improved LOD

specification for 3D building models. Computers, Environment

and Urban Systems, 59, 25-37.

https://doi.org/10.1016/j.compenvurbsys.2016.04.005

Buyukdemircioglu, M., Kocaman, S., Isikdag, U., 2018. Semi-

automatic 3D city model generation from large-format aerial im-

ages. ISPRS International Journal of Geo-Information, 7(9), 339.

https://doi.org/10.3390/ijgi7090339

CesiumJS - 3D geospatial visualization for the web. 2024.

https://cesium.com/platform/cesiumjs/ (22 May 2024)

citygml-tools. 2024. https://github.com/citygml4j/citygml-tools

(22 May 2024)

Cyclomedia Technology BV. 2024.

https://www.cyclomedia.com/en (22 May 2024)

Förstner, W., Wrobel, B., 2016: Photogrammetric Computer

Vision. Springer Nature, Cham. https://doi.org/10.1007/978-3-

319-11550-4

Frueh, C., Sammon, R., Zakhor, A., 2004. Automated texture

mapping of 3D city models with oblique aerial imagery. Proceed-

ings. 2nd International Symposium on 3D Data Processing,

Visualization and Transmission, 2004. 3DPVT 2004. pp. 396-

403. https://doi.org/10.1109/TDPVT.2004.1335266

Gröger, G., & Plümer, L., 2012. CityGML–Interoperable

semantic 3D city models. ISPRS Journal of Photogrammetry and

Remote Sensing, 71, 12-33.

https://doi.org/10.1016/j.isprsjprs.2012.04.004

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W5-2024
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W5-2024-87-2024 | © Author(s) 2024. CC BY 4.0 License.

92

https://bit.ly/textured3dbag
https://www.3dbag.nl/
https://www.ahn.nl/
https://doi.org/10.1016/j.compenvurbsys.2016.04.005
https://doi.org/10.3390/ijgi7090339
https://cesium.com/platform/cesiumjs/
https://github.com/citygml4j/citygml-tools
https://www.cyclomedia.com/en
https://doi.org/10.1007/978-3-319-11550-4
https://doi.org/10.1007/978-3-319-11550-4
https://doi.org/10.1109/TDPVT.2004.1335266
https://doi.org/10.1016/j.isprsjprs.2012.04.004

He H., Yu J., Cheng P., Wang Y., Zhu Y., Lin T., Dai G., 2022.

Automatic, Multiview, Coplanar Extraction for CityGML Build-

ing Model Texture Mapping. Remote Sensing, 14(1), 50.

https://doi.org/10.3390/rs14010050

Kada, M., Klinec, D., Haala, N., 2005. Facade Texturing for

rendering 3D city models. ASPRS 2005 (pp. 78-85).

Kang, J., Deng, F., Li, X., & Wan, F., 2016. Automatic texture

reconstruction of 3d city model from oblique images. The Inter-

national Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, 41, 341-347.

https://doi.org/10.5194/isprs-archives-XLI-B1-341-2016

Ledoux, H., Arroyo Ohori, K., Kumar, K., Dukai, B., Labetski,

A., & Vitalis, S., 2019. CityJSON: A compact and easy-to-use

encoding of the CityGML data model. Open Geospatial Data,

Software and Standards, 4(1), 1-12.

https://doi.org/10.1186/s40965-019-0064-0

Textured 3DBAG. 2024. https://bit.ly/textured3dbag (22 May

2024)

The HEat Robustness In relation To AGEing cities (HERITAGE)

Program. 2024. https://www.4tu.nl/heritage/ (22 May 2024)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W5-2024
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W5-2024-87-2024 | © Author(s) 2024. CC BY 4.0 License.

93

https://doi.org/10.3390/rs14010050
https://doi.org/10.5194/isprs-archives-XLI-B1-341-2016
https://doi.org/10.1186/s40965-019-0064-0
https://bit.ly/textured3dbag
https://www.4tu.nl/heritage/

	Automated texture mapping CityJSON 3D city models
	from oblique and nadir aerial imagery
	1. Introduction
	1.1 Motivation
	1.2 Related Work

	2. Dataset
	3. Method
	3.1 Image Orientation Check
	3.2 Optimal Image Selection
	3.3 Texture mapping process

	4. Discussion
	5. Conclusion and Future Works
	Acknowledgements
	References

