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Abstract 
 
One of the major challenges that existing spatial data is facing is the fragmentation of its representation of indoor and outdoor space. 
As studies in the use of omnidirectional images in representing space and providing Location-based Services (LBS) has been 
increasing, the representation of the different scales of space, both in indoors and outdoors, has yet to be addressed. This study aims to 
develop a data model for generating a multi-scale image-based representation of space using omnidirectional images based spatial 
relationships. This paper identifies the different scales of space that are represented in spatial data and extends previous approaches of 
using omnidirectional images in providing indoor LBS towards representing the other scales of space, particularly in outdoor space. 
Using a sample data, we present an experimental implementation to demonstrate the potential of the proposed data model. Results 
show that apart from the realistic visualization that image data provides, basic spatial functions can be performed on the image data 
constructed based on the proposed data model. 
 
 

1. Introduction 

Cities worldwide are facing numerous challenges due to rapid 
urbanization and population growth. To address these issues, 
local governments are turning to data-driven approaches, 
leveraging technologies such as big data, cloud computing, and 
wireless networks (Silva et al., 2018). The concept of digital 
twins (DT) as virtual representations of physical systems has 
emerged as a promising solution to tackle urban challenges 
effectively. Such DTs play a crucial role in formulating 
management strategies based on real-time data and realistic 
representation of the physical world.  
 
However, digital twins (DTs) go beyond merely mirroring the 
physical attributes of the real world using spatial data; they also 
encompass the relationships between entities and the underlying 
processes. Given the diversity of data types and formats involved 
in these systems, integrating and ensuring interoperability 
becomes crucial during their development (OGC (Open 
Geospatial Consortium), 2021). As the complexity of the real 
world is increasing, there is also an increasing demand to develop 
methods to represent this complexity in the corresponding spatial 
data (Qi et al., 2021). The challenges present in producing GIS 
datasets that represent the physical world must be addressed in 
order to successfully implement DTs. 
 
One of these major challenges in existing spatial data is the 
fragmentation of space domains. As in Figure 1, indoor and 
outdoor spatial data is still separately constructed due to 
differences in positioning methods, data sources, and 
applicability of data construction techniques (Giudice et al., 
2010). To ensure that Location-Based Services (LBS) meet the 
requirements of their users effectively, the spatial data employed 
in their development must accurately depict the continuous 
reality of the flow of spaces and human activities in the indoor-
outdoor space. For instance, an LBS application designed for 
navigation purposes should be built using data that reflects the 
uninterrupted flow of spaces, enabling seamless human mobility. 

 

 
Figure 1. Fragmentation in space representation faced by 

existing GIS data 
 
While there are more common sources of spatial data used for 
representing both indoor and outdoor space, studies have used 
omnidirectional images for representing spaces (Ahn et al., 2020; 
Jung & Lee, 2017). These images provide a 360-degree 
horizontal field of view at the point of capture and are commonly 
used in providing street views (Google, 2022). Its rich visual 
content, small data size, and simple data structure make it a 
preferred alternative compared to laser scans or other 3D 
datasets. Moreover, to extend approaches such as geotagging or 
image overlay for providing spatial entities portrayed on the 
images, studies have proposed methods to supplement these with 
topological information, since pixel data is insufficient to enable 
spatial analysis and subsequently, provide LBS (Claridades et al., 
2023). 
 
However, existing studies have only utilized the concept of 
integrating omnidirectional images and topological data for 
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representing indoor space and indoor features. As in Figure 2, 
omnidirectional images can similarly express spaces and features 
in other scales of space, such as in the outdoor space. With this, 
this paper aims to propose a data model for utilizing 
omnidirectional images to represent the different scales of indoor 
and outdoor space. We aim to describe the characteristics 
associated with each scale to represent them using image data, to 
identify spaces and features portrayed by image data, and explore 
how the integration of image and topology data can be leveraged 
to illustrate corresponding spatial relationships. Moreover, to 
achieve a seamless representation of space, this study also aims 
to define the relationships between the scales of space and apply 
this to the corresponding image-based representations. 
 

 
Figure 2. Varying spatial objects expressed by omnidirectional 

images according to scale  
 
The paper is organized as follows: the subsequent section 
provides a brief overview of related studies, followed by a section 
defining the concept of a multi-scale image-based representation 
of space and introducing the proposed data model. The fourth 
section details an experimental implementation using sample 
data. Lastly, the concluding section summarizes the findings and 
discusses future directions for the study. 
 

2. Related Work 

Despite the prevalence of point cloud datasets and other 3D 
geometric models, images have garnered attention as an 
alternative means to represent space due to their lower cost and 
quicker collection process (Jung & Lee, 2017). Image datasets 
offer a visual depiction of spaces, including the features within 
these spaces, but they do not express these objects discretely 
because they are made up of pixels. Consequently, various 
methods have been employed in numerous studies and 
applications to convey such spatial entities to users, with or 
without attribute information. Previous studies utilizing image 
datasets for expressing spatial information can be categorized 
into two approaches: those relying solely on visual input, as seen 
in geotagging or augmented reality applications, and those 
supplementing image data with topology data to facilitate spatial 
queries. 
 
Geotagged images have been used to display interactive 
information to users alongside 3D models for decision-making 
systems (Ham & Kim, 2020). Images have also been used in 
“augmented reality” and “mixed reality” studies, both in 
navigation and in gaming (Chheang et al., 2020; Liu et al., 2021; 
Ruta et al., 2016), with evidence in an increase in cognition and 
acceptance by users. However, the role of image data in these 

applications has been limited to being a background, or base, in 
the visualization of space.  
In order to use these image datasets in spatial analysis directly, 
topological information must be provided. Two major 
approaches have been used to supplement image data with 
topology data in previous studies. Reference data, such as vector 
datasets, can be used to match a pixel’s position in the image data 
to real-world coordinates based on the coordinates of the 
shooting point (Jung & Lee, 2017). On the other hand, an 
approach that defines a region of interest based on the extension 
of the 9-intersection model, called the Spatial Extended Point 
(SEP), can be a direct approach in integrating image and topology 
data. 
 
Claridades et al. (2023) proposed a method to integrate the 
topological relationships from NRS data on indoor 
omnidirectional images and implement spatial analysis functions 
directly on the image-based representation of indoor space, such 
as identifying indoor spaces and features using the SEP method. 
While this method allows realistic visualization while enabling 
spatial analysis, the presented approach is applied to indoor space 
only. In this paper, we extend the concept of an image-based 
representation using a spatial relationship-based integration 
approach for representing other scales of space. 
 
3. Development of a Model for a Multi-Scale Image-Based 

Representation of Space 

This section discusses the concept of a multi-scale image-based 
representation of space. The first subsection discusses how image 
datasets are used to represent spatial entities in spatial data using 
topological relationships. Then, the following subsection 
discusses the different scales of space, and how relationships 
between these scales are defined. Additionally, we formalize the 
proposed data model using a UML diagram. 
 
3.1 Image-based Representation of Space and Spatial 
Relationships 

In this study, we use an omnidirectional image to represent and 
visualize a space, as shown in Figure 3. As described in 
Claridades et al. (2023), these images capture a snapshot of a 
specific location, known as the shooting point. An 
omnidirectional image captured at a shooting point depicts a 
segment of space, which is referred to as a subspace (Claridades 
et al., 2023; Open Geospatial Consortium, 2020; Zlatanova et al., 
2014).  
 

 
Figure 3. Using omnidirectional images to represent space 
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Typically, an omnidirectional image in a standard raster format 
adopts an equirectangular projection, encompassing the entire 
horizontal Field of View (FOV) centered at the shooting point 
location. When conceptualizing the omnidirectional image as a 
representation of the subspace in 3D, it can be projected into a 
fisheye view, providing a panoramic perspective akin to being 
encapsulated within a "sphere" wrapped with this image. This 
projection technique, coupled with the image's capture angle, 
enables an immersive visualization of space. This representation 
of a subspace using an omnidirectional image is referred to in this 
study as a “Scene”. 
 
Even though a single Scene discretely represents a subspace, the 
real world is continuous. Therefore, it's necessary to establish 
how these discrete Scenes can portray continuous space by 
defining their connectivity to other scenes. Multiple scenes 
captured successively along the subspaces can depict this 
continuity, but the relationship between scenes must also be 
specified. We refer to this relationship as a “Linkpoint,” as in 
Claridades et al. (2023), and this signifies the connection between 
one scene and another. Illustrated in Figure 4, a Linkpoint 
corresponds to the pixel location within a scene that aligns with 
the shooting point for the connected scene (Claridades, Kim, et 
al., 2023). Consequently, it serves as an abstraction of 
connectivity in the image space, represented by an edge in the 
Network Representation Structure (NRS). It is important to note 
that the spaces that an overlap between the spaces that the Scenes 
portray is necessary, so that a Linkpoint can be established 
between such Scenes. 
 

 
Figure 4. Representing spatial relationships in an image-based 

representation of space 
 
3.2 Scales of Space Represented in Spatial Data 

In this study, the definition of each scale is based on the concept 
of portraying spatial entities at each scale through 
omnidirectional images, along with their spatial relationships, 
which can be expressed through NRS data. This embedding is 
achieved by defining these images as Scenes along with their 
corresponding Linkpoints. Consequently, each image data 
incorporates topological relationships for its respective scale, 
contributing to the image-based representation of spaces. Since 
NRS is network-based data, these representations for each scale 
can be integrated using methods for linking network-based 
datasets. This integration facilitates the creation of a multi-scale 
seamless representation of space. 
 

The Building Scale pertains to the level of detail at which various 
agents, including humans, navigate indoor spaces, often termed 
the micro-level of space. Within indoor spaces, different levels 
are delineated, such as floor levels, zones, rooms, and units of 
rooms, depending on the application and navigation agent. In the 
context of using omnidirectional images for application 
development, subspaces at the room level are considered, 
encompassing the spaces that rooms define and the features they 
contain. 
 
Transitioning to the outdoor environment, the Block Scale is 
defined from a human perspective, focusing on ground-level 
perception rather than abstracting space from a higher viewpoint 
as in traditional maps. This scale provides users with a more 
realistic navigation experience and facilitates the connection 
between indoor networks and outdoor spaces. Subspaces at the 
Block Scale include street-level portions where buildings are 
viewed as individual features, with spatial units such as rooms 
composing the building space. At the Urban Scale, which 
represents the macro-level of outdoor space, spatial analysis 
covering wider areas is feasible due to the increased coverage 
resulting from a higher viewpoint. Here, an image represents a 
subspace comprising a block, with buildings viewed as spatial 
units represented by footprints.  
 
NRS representations at each scale depict spatial relationships 
among corresponding entities. In the Building Scale, nodes 
represent indoor subspaces, and features correspond to indoor 
facilities, while edges denote indoor navigation networks. At the 
Block Scale, nodes signify road spaces outdoors, features include 
building features, and edges represent navigable road spaces. In 
the Urban Scale, block nodes contain multiple buildings, with 
features represented by building footprints, and edges denote 
connectivity relationships between block spaces. These scales of 
space and their corresponding NRS representation is illustrated 
in Figure 5. 
 

 
Figure 5. Spatial features represented in spatial data for each 

space scale and their respective NRS representation 
 
For the building scale, discrete omnidirectional images taken on 
a building hallway are used to establish Scenes. As in Claridades 
et al., (2023), the Linkpoints between the Scenes are established 
by identifying the pixel location within a Scene of the shooting 
point of the connected Scene (Claridades et al., 2023), shown in 
Figure 6. In the Scene representing the Room space, a Linkpoint 
is created to express that this Scene has a connectivity 
relationship with the Scene representing the Hallway (a) space. 
Similarly, in the Scene representing the Hallway (a) space, there 
is also a Linkpoint that refers to this connection to the Room 
Scene. 
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Figure 6. Establishing scenes on the Building Scale 

In this study, we extend the same method for establishing Scenes 
on the block scale using images taken along the street spaces. If 
the connectivity relationships represented in the NRS express the 
building’s hallways in the building scale, this corresponds to the 
road’s centerline in the block scale. Similarly, Linkpoints 
representing the connectivity of such Scenes are established for 
each. This concept is shown in Figure 7. 

Figure 7. Establishing scenes on the Block Scale 

In contrast to the Building and Block Scales, where edges 
represent real-life pathways like hallways and streets, the Urban 
Scale lacks such obvious pathways for shooting points of 
omnidirectional images. Therefore, an approach based on 
Delaunay Triangulation (Delaunay, 1934) is employed to 
construct an efficient spanning tree that can represent the 
connectivity relations of these subspaces. Similar to the other 
scales, discrete omnidirectional images are collected at Shooting 
Points to establish scenes. Correspondingly, Linkpoints for these 
Scenes are determined based on the edges resulting from 
Delaunay Triangulation, abstracting the connectivity 
relationships between the subspaces, as shown in Figure 8. 

Figure 8. Establishing scenes on the Urban Scale 

3.3 Defining the Relationships between the Scales of Space 

The NRS is based on the Combinatorial Data Model (Lee & 
Kwan, 2005) which employs the concept of Poincare duality to 
define the topological relationship of 3D features. This model has 
served as the foundation for various applications and data 
standards such as IndoorGML (Open Geospatial Consortium, 
2020). In the CDM, the concept of Master_node is defined as a 
node representing connections between a building's floor levels, 
abstracting the network paths within a floor network. Originally, 
in the NRS, hierarchical relationship establishes a connection 
between two scales: the space scale, where the building is 
conceptualized as composed of floors, and the larger scale, where 
the floor is composed of rooms. This concept served as the basis 
for constructing geometric NRS data from logical NRS data 
through subspacing, where a master_node representing a hallway 
space represents a set of nodes that represent the sub-units within 
this hallway space (Claridades et al., 2021).  

In this study, we extend the concept of master_node in order to 
integrate indoor and outdoor NRS data across different spatial 
scales to enable analysis and provide spatial services across 
continuous space. Figure 5 in the preceding section illustrates 
how a feature in a smaller space can be decomposed into a space 
that can be represented as its own NRS in a larger space. We 
define the relationship between such a feature and the NRS it 
represents as a master_node relationship, as depicted in Figure 9. 

Figure 9. Conceptual diagram of the multi-scale hierarchical 
indoor outdoor NRS data 

At the Urban scale, the subspaces that each of the nodes in the 
NRS express are blocks. These blocks, correspondingly, can 
equivalently be represented as entire NRS data at the block scale. 
We define the hierarchical relationship between the urban scale 
NRS and the block scale NRS through a master_node. In this 
scenario, where each node of the urban scale NRS denotes a 
block, at least one of these nodes must serve as a master_node. 
This master_node represents the hierarchical relationship 
between the NRS in the Block scale to that one node in the Urban 
scale. 

Similarly, indoor subspaces and road subspaces were defined at 
different scales in the previous chapter, namely the building scale 
and block scale, respectively. At the Building scale NRS, one 
node corresponds to one sub-unit of a building, while at the block 
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scale NRS, one node represents one building. Hence, we can 
designate one node in the Block scale as master_node, which is 
equivalent to the NRS representing the spatial relationships of 
sub-units within a building space. A master_node at a higher 
hierarchical level abstracts a network at a lower hierarchical 
level. In this study, we designate one node in the block scale NRS 
as a master_node, representing the entire NRS at the building 
scale. 
 
3.4 Data Model for a Multi-scale Image-based 
Representation of Space 

Figure 10 expresses the data model proposed in this section 
through a Unified Modeling Language (UML) class diagram, 
which extends the core model of IndoorGML. We extend the 
IndoorGML IndoorFeatures class using the SpaceFeatures class, 
which represents the abstraction of real-world space, whether 
indoors or outdoors. This then aggregates the 
PrimalSpaceFeatures class and the MultiLayeredGraph class 
from IndoorGML. The MultiLayeredGraph class captures 
topological relationships, including connectivity among spaces 
and containment between a space and a feature. These 
relationships are depicted in the Network Representation 
Structure (NRS) via a graph comprising nodes and edges, which 
are represented by the Node and Edge classes, respectively. 
These classes are associated with the GML Point and Curve 
classes, serving as their geometric representations. 
 
The PrimalSpaceFeatures class delineates primal 3D spaces and 
aggregates the CellSpace class from IndoorGML, which 
encompasses all spaces, including those physically occupied by 
features. The CellSpace class maintains a duality relationship 
with the Node, representing this entity in the NRS through the 
principle of Poincare Duality. This paper represents subspaces 
across the scales as omnidirectional images, so the CellSpace 
class has an isExpressed association with the Scene class. 
Attributes of each Scene are expressed through the 

Scene_Properties class, which has an aggregation relationship 
with the Scene class.  
 
Connectivity among spaces and containment between a space and 
a feature are denoted by LinkPoints on the image data, 
represented in the UML as the LinkPoints class. Additionally, 
certain features, particularly at the block scale, are identified 
using building footprints. In the UML representation, this is 
illustrated by the ReferenceData class having an association 
termed isReferenced with the Cellspace class, and another 
association with the Surface class from GML, serving as its 
geometric representation. 
 
The hierarchical relationship between different scales of space is 
captured in the UML model through the Master_Node class, 
which inherits from the Node class. This class is associated with 
the SpaceFeatures class, indicating that the master_node 
abstracts the NRS of another scale of space. In the transition 
between the building scale and block scale, the master_node 
representing this hierarchical relationship corresponds to 
transitional spaces, which are expressed through the 
Transfer_Link model (Claridades & Lee, 2021). This relationship 
is reflected in the UML model through the TransitionGraph class, 
which connects the building scale NRS and block scale NRS via 
the Transfer_Link. Similar to the Transfer_Link model, the 
Transfer_Link class is valued zero for the weight, indicating that 
it is merely an association link, not an additional geometric link 
between a transition graph node and a block scale node. 
 
The hierarchical structure of the space scales is further delineated 
in the UML through the StructuredSpace class, which inherits 
from the CellSpace class. The UrbanScaleSpace, 
BlockScaleSpace, and BuildingScaleSpace classes inherit from 
the StructuredSpace class and are associated with each other, 
signifying the decomposition of the urban scale space into 
subspaces representing one block and the block scale space into 
subspaces representing buildings. 

 

 
Figure 10. UML data model of the multi-scale image-based representation of space 
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4. Experimental Implementation 

In this section, we demonstrate the potential of the proposed data 
model by building a multi-scale image-based LBS platform 
prototype based on sample data. The study area for the 
experimental implementation is a university campus site, where 
omnidirectional images are collected using a handheld RICOH 
Theta V 360-degree camera for indoor and street-level images, 
and a DJI Mavic Pro drone for sky-view images. Topology 
authoring, which includes establishing the Scenes and Linkpoints 
is performed using Kolor PanoTour 2.15, and the output is 
packaged through Electron. Figure 11 illustrates the user 
interface of the image-based navigation platform prototype, and 
the experimental set-up is summarized in Table 1.  
 

 
Figure 11. Interface of the image-based navigation platform 

prototype 

 

Study Area A portion of a university 
campus 

Imaging Equipment 
 

(a) RICOH Theta V 
(b) DJI Mavic Pro 

Imaging Stitching Program PTGui 12.11.01 
Topology Embedding 

Program 
Kolor PanoTour 2.15.14 

Application Framework Electron 
Rendering Framework Chromium 

Front-end Scripting XML, HTML, JSON, 
JavaScript 

JavaScript Runtime 
Environment 

Node.js 

JavaScript plugin krpano, create-electron-app, 
electron-builder, dialogs 

Table 1. Summary of the experimental set-up 
 
In order to demonstrate the hierarchical relationships established 
on the multi-scale image-based representation of space, we 
extended the algorithm implemented in indoor space for 
identifying features in indoor space using reference data (Jung & 
Lee, 2017) to a method to detect a building on Urban scale images 
using its footprint, shown in Figure 12. For identifying building 
objects and indoor objects on Block scale and Building Scale 
images, we implement the object detection method on images 
based on the Spatial Extended Point (SEP) (Park et al., 2018). On 
Urban scale images, the function illustrated in Figure 12 and 
detailed in the algorithm in Table 2, is enabled to identify 
building features. We use the point-in-polygon method based on 
a ray-casting algorithm based on the Jordan Curve theorem 

(Hales, 2007) to determine whether a point is contained or not 
within a polygon.  
 
# Check if a point is inside a polygon using ray-tracing 
def check_if_point_is_in_polygon(point, polygon): 
    # Extract x and y coordinates from the given point 
    x, y = point[0], point[1] 
     
    # Initialize a variable to check if point is inside the polygon 
    inside = False 
     
    # Iterate through each edge of the polygon 
    for i in range(len(polygon)): 
        xi, yi = polygon[i][0], polygon[i][1] 
        xj, yj = polygon[(i + 1) % len(polygon)][0], polygon[(i + 1) % 
 len(polygon)][1] 
         
        # Check for intersection between the point and the edge 
        intersect = ((yi > y) != (yj > y)) and (x < ((xj - xi) * (y - yi) / (yj - 
 yi)) + xi) 
         
        # Toggle inside variable if there is an intersection 
        if intersect: 
            inside = not inside 
     
    # Return whether the point is inside the polygon 
    return inside 
 
# Function to create a buffer 
def expand_segment(point1, point2, buffer): 
    # Calculate the angle of the edge 
    angle = atan2(point2[1] - point1[1], point2[0] - point1[0]) 
     
    # Calculate the displacement in x and y directions based on the 
 buffer 
    dx = buffer * sin(angle) 
    dy = -buffer * cos(angle) 
     
    # Return the expanded segment as a list of two points 
    return [[point1[0] + dx, point1[1] + dy], [point2[0] + dx, point2[1] 
 + dy]] 
 
# Function to expand the polygon 
def expand_polygon(polygon, buffer): 
    # Initialize an empty list to store the expanded polygon 
    expanded_polygon = [] 
     
    # Iterate through each edge of the original polygon 
    for i in range(len(polygon)): 
        # Get the current and next points of the edge 
        current_point = polygon[i] 
        next_point = polygon[(i + 1) % len(polygon)] 
         
        # Expand the current edge and add it to the expanded polygon 
        expanded_segment = expand_segment(current_point, 
 next_point, buffer) 
        expanded_polygon.extend(expanded_segment) 
     
    # Return the expanded polygon 
    return expanded_polygon 
 
# Main function to check if a point is inside a buffered polygon 
def check_if_point_is_in_buffered_polygon(point, polygon, buffer): 
    # Extract x and y coordinates from the given point 
    x, y = point[0], point[1] 
     
    # Expand the original polygon by a specified buffer 
    expanded_polygon = expand_polygon(polygon, buffer) 
     
    # Check if the point is inside the expanded polygon 
    return check_if_point_is_in_polygon(point, expanded_polygon) 
Table 2. Detecting building objects using footprints on Urban 

scale images 
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Figure 12. Identifying a building object using its footprint 

 
This pseudocode uses a reference data, which is a separate vector 
file that represents the building footprints, to identify building 
features within the image-based prototype. By extracting 
coordinates from the building footprint, a table is constructed to 
store building positions and attributes. To allow for a tolerance in 
the clicking action of the user, we allow for specifying a buffer 
that expands the polygon size prior to checking whether the point 
is contained within the polygon. On the other hand, on Block 
scale and Building scale images, because objects on the images 
are not building footprints, the SEP approach is used for 
identifying objects, as in Claridades et al. (2023). 
 
The results of the implementation are shown in Figure 13. A long 
press action on a pixel that expresses a building will trigger the 
algorithm in Table 2, in this case, to display the attribute of a 
building named “21st Century Building.” In this sample dataset, 
where the building is expressed differently on the images 
according to scale, we demonstrate the master_node relationship 
between the Urban scale space and Block scale space by 
prompting whether the user wants to move to the larger scale of 
space. This action will display the Block scale image, which 
shows the street view in front of the said building. In this scale, 
the same building object is expressed as its façade, rather than a 
footprint, so a long press action on this image will also display 
the same building object’s attributes.  
 
Similarly, since this object is also represented in the Building 
scale, we can also demonstrate the master_node relationship 
between the Block scale and Building scale by prompting 
whether the user wants to navigate to the next scale of space. In 
this case, the Building scale image is displayed to the user, which 
is an omnidirectional image captured inside the building. In this 
Scene, indoor objects represented as indoor POI may also 
identified using the same user action. 
 
The experimental implementation is simple demonstration of 
how different scales of space may be represented using image 
data and topological relationships. Topological relationships 
between images, implemented as Scenes, are implemented as 
Linkpoints that represent how the Scenes are connected to each 
other. The relationship between the scales of space is defined by 
expressing the hierarchical relationships of the spaces through the 
concept of master_node. These concepts are implemented on a 
prototype that shows how a single building object may be 
expressed on image data across the different scales of space.  
 

 
Figure 13. Results of detecting multi-scale expression of 

features on the image data 
 

5. Conclusions and Recommendations 

This paper proposes a data model for a multi-scale image-based 
representation of space based on omnidirectional images. This 
model extends existing approaches of using spatial relationships 
to supplement image data in order to not only express space, but 
also spatial analysis on the images. This paper defines the various 
space of scales that may be represented using the image data, 
namely the Building scale, the Block scale, and the Urban scale, 
based on the types of spaces and features that are expressed on 
the images. This paper also discusses not only how topological 
data that expresses the connectivity relationships of spatial 
entities can be defined for each scale, but also how hierarchical 
relationships can be defined between the scales for a seamless 
representation of space using image data. We formalize the data 
model using a UML diagram, which is based on an extension of 
the IndoorGML core module. Using sample data, we demonstrate 
the potential of the proposed data model by illustrating its use in 
the multi-scale representation of a real-world object, i.e., a 
building, using image data, and how spatial services may be 
provided using an example on object detection. 
 
This study has several limitations that future studies may address. 
First, one of the advantages of using image data is its small data 
size and simple structure, which makes it easier to collect and 
hence update. Therefore, there is a need for a method to update 
the images on the image-based platform. Second, the spatial 
analysis functions presented in the implementation are only basic 
attribute display capabilities. Additional functions which are 
applicable to real-life use cases must be developed for the 
integrated image and topology data. Moreover, this study 
presents an initial study of integrating image datasets with 
topological data. Future studies may explore integrating these 
images with other types of vector datasets, such as point cloud or 
mesh data, for a more realistic representation of space. 
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