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Abstract 

 

Semantic 3D city models have become an essential component of city planning and digital twin applications. While standards like 

CityGML have enabled the structured representation of buildings and infrastructure, publicly available CityGML datasets often lack 

critical semantic attributes such as construction year, usage type, refurbishment status or sometimes outdated building function. 

These gaps hinder the application of 3D models in areas like energy demand analysis or infrastructure planning. Meanwhile, much of 

the missing data can be found in alternative sources such as municipal records, OpenStreetMap, or other APIs. Yet, integrating this 

heterogeneous and often unstructured information into the CityGML schema remains a complex task that requires geospatial 

expertise and good knowledge of the CityGML data model. In this paper, we explore the use of Large Language Models (LLMs) to 

automatically extract and map relevant information from sources like PDFs, APIs and VGI (Volunteered Geographic Information) 

platforms such as OpenStreetMap into CityGML, using spatial databases such as 3DCityDB to store and manage the enriched 

semantic data for both building and street use cases. We propose a framework based on two LLM agents, one for data enrichment 

and one for querying, which will enable non-experts to enrich and interact with 3D city models more effectively. Our approach aims 

to reduce reliance on domain-specific knowledge and make the usage of semantic 3D city models accessible to everyone. 

 

1. Introduction 

In recent years, semantic 3D city models have been widely used 

in the domains of smart city development and urban digital 

twins. Their adoption is largely driven by the increasing 

availability of these models across various cities and countries, 

often accessible via open access websites. This accessibility has 

made it easier for urban planners, architects, and researchers to 

employ 3D city models for a wide range of applications, 

including energy analysis, urban planning, and environmental 

simulations. One of the most frequently used standards for 

representing these models is CityGML (Gröger et al., 2012), a 

standard by the Open Geospatial Consortium (OGC) for 

representing and exchanging semantic 3D city models. 

CityGML enables the representation of detailed building 

attributes, transportation networks, and other city elements. 

Managing, analysing and handling CityGML datasets can be 

done using the 3DCityDB (Yao et al., 2018), an open-source 

software suite for spatial relational database management 

systems (SRDBMS) such as Oracle Spatial and PostGIS. Many 

cities worldwide use 3DCityDB for managing their semantic 3D 

city models. Compared to alternatives such as CJDB (a 

lightweight database based on CityJSON encoding (Powałka et 

al., 2024)), 3DCityDB offers several advantages in terms of 

semantic richness and spatial analysis capabilities. Since CJDB 

inherits the limitations of CityJSON, it lacks support for 

CityGML 3.0 features such as the Dynamizer module and new 

transportation classes (e.g., Section, Intersection). Moreover, 

although CJDB is built on PostGIS like 3DCityDB, it does not 

utilize 3D spatial datatypes, indexes, predicates or functions 

(e.g., for volume or surface area calculation) which are essential 

for advanced geospatial operations. Alternatively, web-based 

approaches such as the OGC FeatureAPI or WFS allow access 

to CityGML data without a database, but they do not support 

spatial aggregation or complex querying. In contrast, 3DCityDB 

provides robust spatial SQL support, including filtering, 

aggregation, and efficient data management for digital twin 

applications. Moreover, the new version 5 of the 3DCityDB was 

recently released (3DCityDB Steering Group, 2025), offering 

full support of CityGML 3.0 (Kutzner et al., 2020) with fewer 

tables, and facilitating complex GIS modelling and analysis 

tasks for smart city and digital twin applications. 

 

Many applications rely on rich semantic information that is 

frequently absent in publicly available 3D city models. 

Attributes such as the year of construction, refurbishment status, 

and building usage are often missing or incomplete. In addition, 

many existing 3D city models are not regularly updated, which 

limits their accuracy and usability for dynamic urban analysis 

and decision-making. Interestingly, much of this missing 

information can be found in other sources, such as municipal 

documents, cadastral datasets, or volunteered geographic 

information (VGI) platforms like OpenStreetMap (OSM), 

WikiMapia, Wikimedia, or Mapillary. These sources offer huge 

amounts of data that could significantly enhance the semantic 

richness of city models. However, integrating this 

heterogeneous and sometimes unstructured information into 

standardized formats such as CityGML remains a complex and 

manual task and requires a deep understanding of the CityGML 

data model. Previous work in semantic enrichment of 3D city 

models have shown its potential for urban applications. While 

some studies have relied on manual integration (Kumke et al., 

2007), others have automated this integration using techniques 

such as mapping algorithms ((Smart et al., 2011), (Ogawa et al., 

2024)), Knowledge Graphs (Ding et al., 2024), or ontologies 

(Falquet et al., 2009). Commercial software such as Feature 

Manipulation Engine (FME) or ArcGIS have also been used for 

data integration. However, even these automated approaches 

require domain experts with a deep understanding of the 

CityGML data model to correctly map external data into the 

appropriate schema elements.  

 

Meanwhile, recent advancements in Large Language Models 

(LLMs) have shown impressive capabilities in understanding, 

interpreting, and generating structured outputs from heregenous 

data, such as PDF documents and APIs. Moreover, these 

models have shown great ability in generating and debugging 

SQL queries easily, which reduces the need for specialized SQL 

programming knowledge (Hong et al., 2025). Thus, the use of 

LLMs with relational databases such as the 3DCityDB can be 

very promising. The LLM can learn the schema of the 
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3DCityDB together with the data model of CityGML 3.0 and 

automatically update the corresponding CityGML 3.0 attributes 

such as dateOfConstruction or usage/function of a building.   

 

In this work, we explore the use of LLMs for the automated 

enrichment of CityGML with different data sources (such as 

PDF documents and APIs) using the 3DCityDB as a bridge. 

The goal is to answer the following research question: “How 

accurate can LLMs identify and map attributes from 

heterogeneous data sources into the 3DCityDB and eventually 

CityGML 3.0?”. In our approach, we use pre-trained LLMs to 

extract building related information from heterogeneous data 

sources and determine where in the CityGML data model each 

attribute should be inserted. The proposed system reduces 

manual intervention, lowers the expertise barrier for working 

with semantic 3D city models (and CityGML), and opens new 

possibilities for dynamic and scalable semantic enrichment of 

city models.  

 

2. Related Work 

Over many years, considerable efforts have been made toward 

the creation of semantic 3D city models for digital twin 

applications, based on standards such as CityGML. Since its 

version 2.0, CityGML has grown popularity with researchers, 

city planners and companies, making it nowadays widely used 

around the world. Moreover, the major new version of 

CityGML 3.0 provides various new features, such as a new 

space concept, the support of time-dependent properties, the 

possibility to manage multiple versions of cities and an 

improved representation of traffic infrastructure (Kutzner et al., 

2020).  

 

Available and open-source CityGML datasets do often include 

few amounts of information, such as geometry, height, roof 

shape. While this information is relevant for some digital twin 

applications such as visualization, surface/volume calculations 

and solar potential analysis, complex applications such as heat 

demand estimation and traffic simulation always require more 

input data. To overcome this limitation, researchers have 

focused on enriching CityGML models with semantic 

information since its early years. In 2007, Kumke et al. (Kumke 

et al., 2007), have enriched a 3D city model with infrared 

textures to get information about the thermal surface together 

with factual data from municipal surveying office, and have 

extended the XML schema of CityGML. In 2011, Smart et al. 

(Smart et al., 2011) have shown how available open source Web 

information such as OpenStreetMap and Wikipedia can be used 

for automated enrichment of 3D city models using a fuzzy 

matching algorithm. In a more recent work (Ahmadian & 

Pahlavani, 2022), a formal concept analysis (FCA)-based 

methodology was proposed to integrate and align semantic tags 

from OpenStreetMap (OSM) with the AbstractBuilding concept 

in CityGML. The study demonstrated that key OSM attributes 

such as class, usage/function, and address can be semantically 

mapped to CityGML, highlighting the potential of VGI as a 

complementary source for enriching standardized city models. 

In 2024, a CityGML-KG framework was proposed in (Ding et 

al., 2024) to expose 3DCityDB data as a Knowledge Graph, 

enabling ontology-based querying and integration with external 

sources like OpenStreetMap. The approach supports expressive 

queries across heterogeneous geospatial datasets. However, the 

approach is limited to CityGML 2.0, struggles with complex 

geometries such as polyhedral surfaces and geometry 

collections polyhedral surfaces and geometry collections. 

Besides the semantic enrichment, a recent study in Japan 

focused on geometric enrichment of CityGML by matching 

building measurement data such as 2D polygons, aerial images, 

and 3D point clouds, to the Japanese national 3D city model 

(Ogawa et al., 2024). The matching was based primarily on 

geometric properties, achieving high coverage rates (e.g., 93.6% 

match from aerial images). The approach enabled the automatic 

enrichment of textured LOD1/LOD2 models for selected 

buildings using open data sources. However, the method faces 

limitations in handling misaligned polygons and relies heavily 

on coverage quality of the measurement method, particularly for 

3D point cloud data.  

 

In recent years, generative AI and in particular Large Language 

Models (LLMs) have gained significant attention in the 

geospatial domain due to their wide range of capabilities, 

including question answering, code and text generation, data 

analysis, and especially data enrichment. While a number of 

activities were focused on the use of LLMs for question 

answering in geospatial contexts such as ((Mooney et al., 

2023),(Jiang & Yang, 2024),(Li & Ning, 2023)), their 

application for geospatial data enrichment remains relatively 

unexplored. One notable exception is the work by (Juhász et al., 

2023), where GPT-3.5-turbo was used to suggest appropriate 

OpenStreetMap (OSM) tags for roads based on descriptions of 

Mapillary street-level photographs. The study demonstrated that 

combining LLMs with detailed context and prompt engineering 

significantly improves the accuracy of mapping suggestions. 

Beyond the geospatial domain, several studies have investigated 

LLMs for enriching structured data. For instance, in (Kasneci & 

Kasneci, 2024), the authors explored how embeddings from 

LLMs such as RoBERTa and GPT-2 can be used to enrich 

tabular data by generating additional features that improve the 

performance of machine learning models. Similarly, in the 

cultural heritage domain, (Mountantonakis et al., 2024) 

introduced GPToLODS+, a framework that combines ChatGPT 

with large-scale RDF Knowledge Graphs and entity recognition 

tools to support semantic enrichment, fact validation, and 

question answering over textual inputs. While these studies 

target domains outside of GIS, their methodologies demonstrate 

the strong potential of LLMs to semantically align and enrich 

structured datasets from heterogeneous and unstructured 

sources. To the best of our knowledge, no prior work has 

explored the use of LLMs for the automated enrichment of 

CityGML data to support urban digital twin applications. 

In this paper, we explore the usage of LLMs for automated 

enrichment of CityGML 3.0 from heterogenous data sources, 

such as PDFs and OSM to support urban digital twin 

applications using the 3DCityDB geospatial database.  

 

3. Methodology  

This section presents the architecture of our framework. The 

system consists of two main components: A Data Enrichment 

Agent and a Query Agent, each implemented as an LLM-

powered assistant capable of interacting with the 3DCityDB 

database. 

 

3.1 The data enrichment agent: 

The Data Enrichment Agent is responsible for identifying 

relevant building related attributes from various 

heterogeneously structured data sources and updating the 

3DCityDB accordingly. The overall architecture is illustrated in 

Figure 1 and is composed of four main components: data 

sources, prompt/instructions, the LLM agent, and the output.  
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Data sources may include PDF documents, JSON or Word files, 

Volunteered Geographic Information (VGI) platforms such as 

OpenStreetMap and Mapillary, as well as external APIs like 

OpenWeather. Table 1 lists examples of data that can be 

retrieved from these sources.  

 

The LLM deals with accessing each data source separately by 

using specific tools. On the one hand, to extract data from PDF 

or Word documents, we use the Retrieval-Augmented 

Generation or RAG for short. RAG is a framework for accessing 

external documents or raw data (Lewis et al., 2020). On the 

other hand, retrieving data from external APIs needs 

Function/Tool Calling, which allows LLMs to call functions 

and considering the response.  

 

Data Source Data Format Data that can be retrieved 

Building Energy 

certificate 

PDF Year of construction, Number 

of floors, Number of 

apartments, Energy efficiency 

class, Annual heating 

demand, CO2 emissions, 

Refurbishment measures, 

Recommendations for 

refurbishment 

OpenStreetMap JSON (API) Building class, building 

function, Maximum road 

speed, Road material, 

Latitude, longitude, Building 

name, Extra tags (email, 

phone, website…) 

Table 1. Example of different data sources and the data that can 

be retrieved from them. 

 

It is also important to think about the mapping logic between 

the 3DCityDB where the CityGML dataset is stored, and the 

data sources. One way is to directly use the addresses of these 

buildings from the ADDRESS table of the 3DCityDB. Matching 

using the addresses may not always work, as the definition of a 

building footprint in CityGML data which is based on cadastre 

data may differ from other data sources such as OSM. However, 

in this paper, our use case includes buildings that match directly 

with the OSM buildings. In the case where addresses are 

missing, fall-back strategies such as bounding boxes or 

coordinate-based matching would have to be applied. 

 

To enrich the database, the agent would have to understand 

both the CityGML 3.0 data model and the 3DCityDB v5 

schema. This is achieved by embedding a concise but 

informative schema description in the prompt. Given the limited 

context length of LLMs, we focused on a subset of CityGML 

modules: Construction, Building and Transportation. These 

modules are sufficient for many urban applications but can be 

extended to include others, such as Bridge, Vegetation, or 

Dynamizer, based on the use case. The 3DCityDB schema was 

first exported from the database, then we enhanced the database 

table descriptions and added examples of typical SQL queries, 

creating a few-shot in-context learning environment. 

Furthermore, external documents, such as the German cadastral 

code list for building functions, can also be integrated using 

RAG to support semantic alignment. When applying this 

framework to other countries, for example Japan, Japanese code 

lists could be added instead.  

 

Once this foundational knowledge is provided, the user interacts 

with the agent by uploading files or issuing requests. For 

instance, if the user uploads a folder containing energy 

certificates, the agent automatically reads the documents, 

identifies available attributes, and asks the user to confirm 

which ones should be inserted. Based on the CityGML 3.0 

schema, the agent decides where the data belongs. For example, 

dateOfConstruction is an attribute of the Construction module 

and must be inserted into the PROPERTY table under the con 

namespace (ID = 8).  

Before inserting a property, the agent must determine to which 

building the attribute belongs to. This is done by identifying the 

correct feature_id, which uniquely represents a building in the 

FEATURE table. The feature_id is retrieved by joining the 

FEATURE, PROPERTY, and ADDRESS tables. According to 

the 3DCityDB schema, addresses are stored as separate features 

and linked to buildings via the PROPERTY table, where the 

name is 'address' and the address ID is stored in the 

val_address_id column. The LLM generates queries such as:  

 

SELECT f.id AS feature_id 

FROM feature f 

JOIN property p ON f.id = p.feature_id 

JOIN address a ON p.val_address_id = a.id 

WHERE p.name = 'address' 

  AND a.street = 'Hugo-Wolf-Straße' 

  AND a.house_number = '68' 

AND f.objectclass_id = 901; -- 901 corresponds to Building 

 

Once the correct feature_id is identified, the semantic attribute 

can be inserted using a query such as: 

INSERT INTO property (feature_id, name, namespace_id, 

val_timestamp) 

VALUES (12345, 'dateOfConstruction', 8, '1985-01-01'); 

Although a unique ID for each property should be specified 

here, PostgreSQL automatically assigns one if omitted, by 

incrementing the last existing property_id in the table. 

 

Of course, the agent is not able to insert or update data on its 

own, it needs Function/Tool calling to do so. The first function 

the agent needs is the run_sql(query: str), with the 

corresponding SQL statement created by the agent to 

insert/update a specific attribute. The other functions the agent 

needs are for accessing the APIs, such as OSM. In these cases, 

the user must tell the agent for which objects the new attributes 

should be added. This could be for the entire dataset in the 

database or only for selected buildings or streets. The agent 

goes on and calls the function for the specific object, inserts or 

updates the attributes, before moving on to the next object in 

Figure 1. The Framework for the Data Enrichment agent 
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the database. Moreover, other functions can also be added with 

other APIs depending on the use case.  

Finally, the CityGML 3.0 data can be exported from the 

3DCityDB and used for further data analysis or urban digital 

twin applications. An example could be the heat demand 

analysis or traffic simulation.  

 

3.2 The Data Query agent 

Beyond using the CityGML file in further data analyses, another 

user might want to retrieve some information directly from the 

3DCityDB and do data aggregation with them. The Data Query 

agent is an agent that uses the understanding of the 3DCityDB 

schema and generates SQL queries based on the user request. 

Figure 2 shows the logic behind the query agent. 

One might argue that the Data Enrichment Agent could also 

handle database queries, since it already possesses the necessary 

knowledge. However, this is very dangerous as the data 

enrichment agent has the right to read and write in the database, 

which should only be used by trusted administrators. In 

contrast, the data query agent is designed for broader 

accessibility, targeting users like citizens, researchers, and city 

planners who should have read-only access to the database to 

ensure data integrity. 

Based on this, and similar to the data enrichment agent, the 

query agent will be provided a similar prompt with the 

description of the 3DCityDB. To perform its task, the agent is 

granted access to a single tool function: run_sql_query(query), 

which executes the SQL query generated from the user's request 

and returns the results in a human readable format. 

 

4. Implementation 

To evaluate the feasibility of the proposed semantic enrichment 

framework, we implemented and tested it on two use cases: one 

for buildings and one for streets. For the buildings, we choose a 

district 3D city model. The building dataset used in this case 

study covers a district in Munich. The original data was 

downloaded from the Open Data Portal of Bavaria in CityGML 

2.0 format and imported into the 3DCityDB v5. However, the 

dataset only includes basic geometric and topographic 

information such as footprints, roof shapes, and building 

heights and building function, but lacks crucial semantic 

attributes needed for urban analysis such as year of 

construction, number of floors and building usage. The building 

function refers to the intended purpose for which a building was 

originally constructed, whereas the building usage describes its 

current use. For example, an industrial building (function: 

industry) may currently be used for educational purposes 

(usage: education). Unfortunately, these two attributes are often 

confused. An example is shown in Figure 4, illustrating a 

kindergarten building. As indicated by the highlighted 

attributes, the initial building function provided by the mapping 

agency is 31001_9998, which corresponds to 'Not to be 

specified according to sources' in the German CityGML code 

list. However, since the building is currently used as a 

kindergarten, the appropriate building usage should be 

31001_3065, as defined in the same code list. Moreover, 

attributes such as year of construction are also missing. To 

enrich and update the semantic content of this dataset, we used 

various data sources:  

- Energy certificates, provided by the city of Munich for each 

building provided in PDF format, which contain information 

such as year of construction, number of apartments, energy 

class, annual heating demand, and CO₂ emissions.  

- OpenStreetMap (OSM) as a Volunteered Geographic 

Information (VGI) source for attributes like building class, 

building function, and auxiliary tags (e.g., contact information 

or names).  

Each of these sources was accessed via a corresponding tool-

enabled function call. The agent processes the user's input (e.g., 

a folder path for PDFs or selected OSM tags) and uses the 

appropriate tool (RAG for PDFs, Function Calling for APIs) to 

extract and interpret the data. The assistant then generates a 

valid SQL INSERT or UPDATE query based on the CityGML 

3.0 schema knowledge and the 3DCityDB table structure, as 

described in Section 3.  

The LLM used in this work was GPT-4o (OpenAI et al., 2024). 

The interaction with the data enrichment agent follows a 

structured process, through a user-agent communication. The 

user initiates the enrichment by uploading a folder containing 

energy certificates and submits a request to update the CityGML 

model stored in the 3DCityDB. After receiving this input, the 

agent analyses the first document and gives the user a list of the 

attributes and information included in the document. The agent 

asks the user what kind of attributes are relevant to be added to 

the database. Upon the user’s response, the agent starts mapping 

the attributes to their corresponding namespaces in CityGML. 

For example, the year of construction should be added to the 

Construction namespace with the attribute dateOfConstruction, 

the number of storeys should be added to the Building 

namespace with the attribute storeysAboveGround. On the other 

hand, all the attributes that have no corresponding mapping in 

CityGML 3.0, such as CO2 emissions, yearly energy demand, 

should be added to the Generics namespace as generic 

attributes. The agent suggests the generic attributes names and 

asks the user if the names are okay as they are. The user can 

suggest other names if required. Finally, if the user is okay with 

the mapping of the agent, the agent proceeds with inserting the 

attributes in the 3DCityDB. Similarly, the OSM data was used 

to update the building functions in the 3DCityDB, as well as 

adding useful attributes such as contact data or a website. The 

agent uses the ADDRESS table in the 3DCityDB to retrieve all 

the building addresses, and sends a request to the OSM 

Nominatim API using the street name and house number for 

each single building. The agent analyses the JSON response and 

retrieves the important information to be inserted in the 

database. And as the agent is capable of understanding multiple 

languages, it can interpret the JSON file easily. As mentioned in 

Section 3, the agent is also provided with an XML code list for 

building functions and usages from the German cadastre. For 

example, the type “kindergarten” in the Nominatim data can be 

mapped to the usage code 31001_3065 according to the German 

code list. Moreover, additional attributes can also be added such 

as contact email, opening hours, and website as generic 

Figure 2. The Framework of the Query Agent 
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attributes. After enriching the 3D city model, we are able to see 

the added attributes in the database.  These attributes are 

highlighted in Figure 3.  

To demonstrate the capabilities of the Enrichment Agent for 

transportation features, we selected a street in Numazu City, 

Shizuoka Prefecture, Japan, as a test case to evaluate the 

framework's applicability beyond European contexts. The street, 

known as 沼津港線 (Numazu-kō-sen), is modeled in CityGML 

3.0 using the components TrafficArea, TrafficSpace, Road, 

AuxiliaryTrafficSpace, and AuxiliaryTrafficArea. An example 

of a TrafficArea and its associated attributes is shown in Figure 

5. As illustrated, important attributes such as the maximum

speed, road type, road material, and road name are not available

in the original CityGML dataset. In contrast, this information

can be retrieved from external data sources such as OSM using

the Overpass API, which provides more detailed road data than

Nominatim. OSM includes a wide range of road types, such as

footway, highway, and cycleway, as well as intersections data.

These intersections can also be queried via Overpass API and

subsequently mapped to the corresponding intersections in the

CityGML model. Figure 6 presents examples of both road and

intersection data retrieved using Overpass QL. However,

fetching precise Overpass API queries requires advanced

knowledge of the Overpass QL language, which is not easy to

learn. Additionally, the returned data is often unstructured and

can include metadata in multiple languages, such as Japanese in

this case. Fortunately, LLMs such as OpenAI’s GPT-4o have

demonstrated strong capabilities in understanding Overpass QL

as well as processing multilingual data, which makes the GPT-

4o model well-suited for this type of semantic enrichment task.

Given the type of data available in OpenStreetMap (OSM), we

decided to semantically enrich both TrafficArea and

Intersection elements in the CityGML model. To achieve this,

the agent connects to the 3DCityDB and retrieves all

TrafficArea features by filtering based on their objectclass_id,

which corresponds to 613 in the 3DCityDB schema. Using this

feature_id, the agent then queries the corresponding geometry

from the geometry_data table and converts it into WGS84 

coordinates (latitude and longitude) using the following SQL 

query: 

SELECT ST_AsText(ST_Transform(ST_Envelope(geometry), 

4326)) AS bbox_wgs84 

FROM geometry_data 

WHERE id = 734; 

The agent extracts the geometry for each feature and formulates 

an Overpass API query to retrieve attributes related to the 

corresponding road segment. However, a limitation of the 

Overpass API is that it returns not only the attributes of the 

targeted road segment but also those of nearby roads. This is 

due to the lack of support for spatial predicates such as within, 

contains, or fully inside in Overpass QL. To overcome this 

limitation, a secondary filtering function was implemented 

using the function calling tool. The added function first filters 

Overpass results by element type (e.g., way for roads, node for 

intersections) and then uses the Python Shapely library to 

spatially match only those features that fall within the geometry 

retrieved from the 3DCityDB. If multiple matching candidates 

are found, the agent selects the first match for data enrichment. 

Finally, the agent constructs and executes the corresponding 

SQL INSERT queries to populate the new attributes after 

translating them to English into the database. An example of 

enriched attributes added to a TrafficArea is illustrated in 

Figure 7. 

An example of the interaction with the Enrichment Agent is 

shown on the left of the Figure 8. Moreover, it is also possible 

to directly interact with this data using the Query Agent as 

shown on the right of the Figure 8. To make the interface user 

friendly, we used the Gradio Library with Python. 

5. Evaluation

To evaluate the effectiveness of our proposed framework for 

semantic enrichment of CityGML 3.0 models using Large 

Language Models (LLMs), we conducted an evaluation focused 

Figure 3. The initial attributes of the kindergarten building as provided by the official mapping agency 

Figure 4. The newly added attributes in the 3DCityDB V5 to the kindergarten building using the Enrichment Agent
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on two main aspects: (1) the correctness of the attribute 

extraction and naming, and (2) the semantic and structural 

accuracy of the generated SQL queries. 

We selected a subset of energy certificates and OpenStreetMap 

(OSM) data as input for the data enrichment agent. Then, we 

manually created attribute names and SQL insert statements in 

order to compare the LLM-generated results with the manually 

added attributes for 20 buildings. 

To assess the quality of the generated attribute names and SQL 

statements, we applied two widely recognized metrics from the 

natural language processing domain: BLEU (Bilingual 

Evaluation Understudy) and ROUGE-L (Recall-Oriented 

Understudy for Gisting Evaluation - Longest Common 

Subsequence variant). These metrics are commonly used to 

evaluate machine-generated text and are increasingly adopted in 

scientific literature on LLM-based tasks. In our use case, BLEU 

was used to measure the n-gram overlap (which is the number 

of matching n-tokens) between the generated and reference 

strings. We used BLEU-4 with smoothing to penalize overly 

short outputs and improve stability across examples. So, for 

example, if the expected SQL query for inserting attributes is: 

Correct query: INSERT INTO property (feature_id, name, 

namespace_id, val_timestamp) VALUES ... 

Agent-generated query: INSERT INTO property (feature_id, 

name, namespace_id, val_date) VALUES ... 

Then the BLEU-4 metric will catch the val_date which is 

incorrect and should be val_timestamp, as there is no val_date 

column in the PROPERTY table, which will result in a lower 

score. BLEU-4 is particularly effective in penalizing small but 

critical mistakes. Because database queries are highly sensitive 

to syntax and schema-defined names, BLEU is an appropriate 

and strict metric for this purpose. 

ROUGE-L, on the other hand, measures the semantic similarity 

by computing the Longest Common Subsequence (LCS) 

between the reference and the generated output. Unlike BLEU, 

it is recall-oriented and allows for non-contiguous matches, as 

long as word order is preserved. For example: 

Correct query: INSERT INTO property (feature_id, name, 

namespace_id, val_timestamp) VALUES (123, 

'dateOfConstruction', 8, '1985-01-01'); 

Agent-generated query: INSERT INTO property (feature_id, 

name, namespace_id, val_timestamp) VALUES (123, 

'constructionDate', 8, '1985-01-01'); 

The LCS in this case contains 13 out of 16 tokens, resulting in 

ROUGE-L F1 Score of 0.81 for this specific example. This 

reflects that the generated query retains the correct structure and 

logic, while highlighting the semantic error in attribute naming. 

However, flexibility in CityGML attribute names such as 

dateOfConstruction and storeysAboveGround is not acceptable 

and would result in database errors or loss of information. 

Therefore, the ROUGE-L was only used with generic attributes 

that are not defined in the CityGML standard. This makes it 

well suited for evaluating attribute naming when predefined 

names are not strictly required, for example, when mapping 

energy_demand_annual to annualEnergyDemand. Table 2 

Figure 5. A TrafficArea and its attributes in the Numazu-kō-sen street modelled in CityGML 3.0 

Figure 7. The attributes integrated into the 3DCityDB for buildings on Numazu-ko-sen Street based on OSM data. 

Figure 6. Available attributes in OSM for a road segment (left) and an intersection (right) in the Numazu-ko-sen Street.
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shows the results of the evaluation using BLEU-4 and ROUGE-

L F1 scores for 20 buildings with energy certificates, while 

Table 3 shows the evaluation of the results with OSM data.  

In addition to these quantitative results, a qualitative manual 

inspection confirmed that the LLM could reliably distinguish 

between standard CityGML 3.0 attributes and those that should 

be stored in the Generics module. Furthermore, the agent 

correctly identified the corresponding namespace_id and 

datatype for insertion, which showed its good ‘understanding’ 

of the CityGML 3.0 data model and 3DCityDB schema. 

Attributes Attributes 

Table 2. Results of the evaluation of the framework for the 20 

buildings with energy certificates 

Attributes Attributes 

Table 3.Results of the evaluation of the framework for the 20 

buildings with OSM data 

6. Discussion

The evaluation results demonstrate that our proposed 

framework for semantic enrichment of CityGML 3.0 models 

using LLMs is both technically feasible and promising in terms 

of accuracy and usability. The high BLEU and ROUGE-L 

scores reflect the agent's ability to correctly identify relevant 

attributes from unstructured data sources and generate well-

structured SQL statements aligned with the 3DCityDB schema 

to insert or update the database. BLEU-4 proved particularly 

effective in detecting syntax-level and naming inconsistencies in 

the generated SQL queries, especially for predefined attributes 

like dateOfConstruction and storeysAboveGround, where any 

naming deviation would lead to invalid queries. ROUGE-L, on 

the other hand, was useful for evaluating structural similarity in 

cases involving more flexible attribute names, such as generic 

properties (e.g., "annualHeatingDemand" vs. 

"heating_energy"), which do not follow strict schema 

constraints. However, our evaluation also showed some 

limitations. First, the ROUGE-L metric may overestimate 

similarity in cases where attribute names are semantically 

incorrect but structurally similar. For example, if the agent 

proposes constructionDate instead of the required 

dateOfConstruction, the LCS-based evaluation may still yield a 

high score despite the syntactic error. While this may not be a 

problem for natural language applications, in our case, it is 

critical. This highlights the need for stricter evaluation criteria 

for predefined attributes and maybe consider adding a more 

detailed CityGML data model description using RAG, as our 

description can be considered short. These errors could also be 

reduced using the communication with the agent where users 

approve or rename attributes before insertion.  

Overall, the architecture which combines retrieval-augmented 

generation (RAG) for document understanding with function-

calling tools for API access enables a flexible and extensible 

approach that can adapt to various differently structured and 

unstructured data sources. The approach shows that LLMs can 

significantly simplify and accelerate the semantic enrichment of 

3D city models when they are equipped with a good 

comprehension of the data model and database schema. 

However, this comprehension should also be evaluated and 

tested with different scenarios. What would happen if we add a 

layer of additional information to the prompt? How good does 

the LLM behave when using few-shot in context learning versus 

zero-shot in context learning? These are essential questions that 

should be investigated in the future and which we believe are of 

a great importance.  

7. Conclusion and Outlook

In this paper, we proposed, implemented and evaluated a 

framework for the semantic enrichment of CityGML 3.0 models 

using LLMs. The framework relies on LLM agents equipped 

Figure 8. On the left: Interaction between the Enrichment Agent and the user / On the right: Interaction between user and 

Query agent 

BLEU-4 0.78 0.81 0.83 

ROUGE-L F1 - 0.85 0.87 

Metric Predefined Generic SQL Queries 

Metric Predefined Generic SQL Queries 

BLEU-4 0.82 0.89 0.81 

ROUGE-L F1 - 0.90 0.92 
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with RAG and function calling to automatically extract and 

integrate relevant attributes from various heterogenous data 

sources, including PDF documents and OpenStreetMap which 

includes more up-to-date data. The enriched data is inserted into 

a 3DCityDB v5 database following the CityGML 3.0 data 

model for both buildings and street models.  

Through our use case we demonstrated that the LLM-based 

agent can better comprehend CityGML concepts, extract the 

relevant information from the heterogenous data sources, and 

generate correct SQL queries to insert them into the database, 

while interacting with users to control its behaviour. The 

evaluation using BLEU-4 and ROUGE-L metrics confirmed 

that the generated attribute names and SQL statements were 

syntactically and semantically aligned with human-written 

references.  

Despite the promising results, several challenges remain. The 

framework assumes clean, machine-readable and trustful input 

data such as the energy certificates. Future work should address 

the integration of noisy or scanned documents through OCR 

and error-tolerant extraction techniques, as well as the use cases 

where the input data is wrong or contains errors. Moreover, 

while this study focused on buildings and transportation, the 

approach can be extended to other CityGML modules such as 

Vegetation, and Bridges. Incorporating dynamic data sources 

through the Dynamizer module, for instance using real-time 

sensor values from SensorThings API, could also offer exciting 

potential for real-time digital twin applications. Finally, 

feedback from city planners and GIS experts could help assess 

the accuracy of the results and enhance the framework. This 

would help identify not only technical gaps but also interface 

user-friendliness, privacy, and trust-related issues that must be 

addressed. 
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