
 Automatic Enrichment of Semantic 3D City Models using Large Language Models

Khaoula Kanna*, Thomas H. Kolbe*

*Chair of Geoinformatics, Technical University of Munich, 80333 Munich, Germany - (khaoula.kanna, thomas.kolbe)@tum.de

Keywords: 3D City Models, CityGML 3.0, Urban Digital Twins, Semantic Enrichment, 3DCityDB, Large Language Models

Abstract

Semantic 3D city models have become an essential component of city planning and digital twin applications. While standards like

CityGML have enabled the structured representation of buildings and infrastructure, publicly available CityGML datasets often lack

critical semantic attributes such as construction year, usage type, refurbishment status or sometimes outdated building function.

These gaps hinder the application of 3D models in areas like energy demand analysis or infrastructure planning. Meanwhile, much of

the missing data can be found in alternative sources such as municipal records, OpenStreetMap, or other APIs. Yet, integrating this

heterogeneous and often unstructured information into the CityGML schema remains a complex task that requires geospatial

expertise and good knowledge of the CityGML data model. In this paper, we explore the use of Large Language Models (LLMs) to

automatically extract and map relevant information from sources like PDFs, APIs and VGI (Volunteered Geographic Information)

platforms such as OpenStreetMap into CityGML, using spatial databases such as 3DCityDB to store and manage the enriched

semantic data for both building and street use cases. We propose a framework based on two LLM agents, one for data enrichment

and one for querying, which will enable non-experts to enrich and interact with 3D city models more effectively. Our approach aims

to reduce reliance on domain-specific knowledge and make the usage of semantic 3D city models accessible to everyone.

1. Introduction

In recent years, semantic 3D city models have been widely used

in the domains of smart city development and urban digital

twins. Their adoption is largely driven by the increasing

availability of these models across various cities and countries,

often accessible via open access websites. This accessibility has

made it easier for urban planners, architects, and researchers to

employ 3D city models for a wide range of applications,

including energy analysis, urban planning, and environmental

simulations. One of the most frequently used standards for

representing these models is CityGML (Gröger et al., 2012), a

standard by the Open Geospatial Consortium (OGC) for

representing and exchanging semantic 3D city models.

CityGML enables the representation of detailed building

attributes, transportation networks, and other city elements.

Managing, analysing and handling CityGML datasets can be

done using the 3DCityDB (Yao et al., 2018), an open-source

software suite for spatial relational database management

systems (SRDBMS) such as Oracle Spatial and PostGIS. Many

cities worldwide use 3DCityDB for managing their semantic 3D

city models. Compared to alternatives such as CJDB (a

lightweight database based on CityJSON encoding (Powałka et

al., 2024)), 3DCityDB offers several advantages in terms of

semantic richness and spatial analysis capabilities. Since CJDB

inherits the limitations of CityJSON, it lacks support for

CityGML 3.0 features such as the Dynamizer module and new

transportation classes (e.g., Section, Intersection). Moreover,

although CJDB is built on PostGIS like 3DCityDB, it does not

utilize 3D spatial datatypes, indexes, predicates or functions

(e.g., for volume or surface area calculation) which are essential

for advanced geospatial operations. Alternatively, web-based

approaches such as the OGC FeatureAPI or WFS allow access

to CityGML data without a database, but they do not support

spatial aggregation or complex querying. In contrast, 3DCityDB

provides robust spatial SQL support, including filtering,

aggregation, and efficient data management for digital twin

applications. Moreover, the new version 5 of the 3DCityDB was

recently released (3DCityDB Steering Group, 2025), offering

full support of CityGML 3.0 (Kutzner et al., 2020) with fewer

tables, and facilitating complex GIS modelling and analysis

tasks for smart city and digital twin applications.

Many applications rely on rich semantic information that is

frequently absent in publicly available 3D city models.

Attributes such as the year of construction, refurbishment status,

and building usage are often missing or incomplete. In addition,

many existing 3D city models are not regularly updated, which

limits their accuracy and usability for dynamic urban analysis

and decision-making. Interestingly, much of this missing

information can be found in other sources, such as municipal

documents, cadastral datasets, or volunteered geographic

information (VGI) platforms like OpenStreetMap (OSM),

WikiMapia, Wikimedia, or Mapillary. These sources offer huge

amounts of data that could significantly enhance the semantic

richness of city models. However, integrating this

heterogeneous and sometimes unstructured information into

standardized formats such as CityGML remains a complex and

manual task and requires a deep understanding of the CityGML

data model. Previous work in semantic enrichment of 3D city

models have shown its potential for urban applications. While

some studies have relied on manual integration (Kumke et al.,

2007), others have automated this integration using techniques

such as mapping algorithms ((Smart et al., 2011), (Ogawa et al.,

2024)), Knowledge Graphs (Ding et al., 2024), or ontologies

(Falquet et al., 2009). Commercial software such as Feature

Manipulation Engine (FME) or ArcGIS have also been used for

data integration. However, even these automated approaches

require domain experts with a deep understanding of the

CityGML data model to correctly map external data into the

appropriate schema elements.

Meanwhile, recent advancements in Large Language Models

(LLMs) have shown impressive capabilities in understanding,

interpreting, and generating structured outputs from heregenous

data, such as PDF documents and APIs. Moreover, these

models have shown great ability in generating and debugging

SQL queries easily, which reduces the need for specialized SQL

programming knowledge (Hong et al., 2025). Thus, the use of

LLMs with relational databases such as the 3DCityDB can be

very promising. The LLM can learn the schema of the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License.

105

3DCityDB together with the data model of CityGML 3.0 and

automatically update the corresponding CityGML 3.0 attributes

such as dateOfConstruction or usage/function of a building.

In this work, we explore the use of LLMs for the automated

enrichment of CityGML with different data sources (such as

PDF documents and APIs) using the 3DCityDB as a bridge.

The goal is to answer the following research question: “How

accurate can LLMs identify and map attributes from

heterogeneous data sources into the 3DCityDB and eventually

CityGML 3.0?”. In our approach, we use pre-trained LLMs to

extract building related information from heterogeneous data

sources and determine where in the CityGML data model each

attribute should be inserted. The proposed system reduces

manual intervention, lowers the expertise barrier for working

with semantic 3D city models (and CityGML), and opens new

possibilities for dynamic and scalable semantic enrichment of

city models.

2. Related Work

Over many years, considerable efforts have been made toward

the creation of semantic 3D city models for digital twin

applications, based on standards such as CityGML. Since its

version 2.0, CityGML has grown popularity with researchers,

city planners and companies, making it nowadays widely used

around the world. Moreover, the major new version of

CityGML 3.0 provides various new features, such as a new

space concept, the support of time-dependent properties, the

possibility to manage multiple versions of cities and an

improved representation of traffic infrastructure (Kutzner et al.,

2020).

Available and open-source CityGML datasets do often include

few amounts of information, such as geometry, height, roof

shape. While this information is relevant for some digital twin

applications such as visualization, surface/volume calculations

and solar potential analysis, complex applications such as heat

demand estimation and traffic simulation always require more

input data. To overcome this limitation, researchers have

focused on enriching CityGML models with semantic

information since its early years. In 2007, Kumke et al. (Kumke

et al., 2007), have enriched a 3D city model with infrared

textures to get information about the thermal surface together

with factual data from municipal surveying office, and have

extended the XML schema of CityGML. In 2011, Smart et al.

(Smart et al., 2011) have shown how available open source Web

information such as OpenStreetMap and Wikipedia can be used

for automated enrichment of 3D city models using a fuzzy

matching algorithm. In a more recent work (Ahmadian &

Pahlavani, 2022), a formal concept analysis (FCA)-based

methodology was proposed to integrate and align semantic tags

from OpenStreetMap (OSM) with the AbstractBuilding concept

in CityGML. The study demonstrated that key OSM attributes

such as class, usage/function, and address can be semantically

mapped to CityGML, highlighting the potential of VGI as a

complementary source for enriching standardized city models.

In 2024, a CityGML-KG framework was proposed in (Ding et

al., 2024) to expose 3DCityDB data as a Knowledge Graph,

enabling ontology-based querying and integration with external

sources like OpenStreetMap. The approach supports expressive

queries across heterogeneous geospatial datasets. However, the

approach is limited to CityGML 2.0, struggles with complex

geometries such as polyhedral surfaces and geometry

collections polyhedral surfaces and geometry collections.

Besides the semantic enrichment, a recent study in Japan

focused on geometric enrichment of CityGML by matching

building measurement data such as 2D polygons, aerial images,

and 3D point clouds, to the Japanese national 3D city model

(Ogawa et al., 2024). The matching was based primarily on

geometric properties, achieving high coverage rates (e.g., 93.6%

match from aerial images). The approach enabled the automatic

enrichment of textured LOD1/LOD2 models for selected

buildings using open data sources. However, the method faces

limitations in handling misaligned polygons and relies heavily

on coverage quality of the measurement method, particularly for

3D point cloud data.

In recent years, generative AI and in particular Large Language

Models (LLMs) have gained significant attention in the

geospatial domain due to their wide range of capabilities,

including question answering, code and text generation, data

analysis, and especially data enrichment. While a number of

activities were focused on the use of LLMs for question

answering in geospatial contexts such as ((Mooney et al.,

2023),(Jiang & Yang, 2024),(Li & Ning, 2023)), their

application for geospatial data enrichment remains relatively

unexplored. One notable exception is the work by (Juhász et al.,

2023), where GPT-3.5-turbo was used to suggest appropriate

OpenStreetMap (OSM) tags for roads based on descriptions of

Mapillary street-level photographs. The study demonstrated that

combining LLMs with detailed context and prompt engineering

significantly improves the accuracy of mapping suggestions.

Beyond the geospatial domain, several studies have investigated

LLMs for enriching structured data. For instance, in (Kasneci &

Kasneci, 2024), the authors explored how embeddings from

LLMs such as RoBERTa and GPT-2 can be used to enrich

tabular data by generating additional features that improve the

performance of machine learning models. Similarly, in the

cultural heritage domain, (Mountantonakis et al., 2024)

introduced GPToLODS+, a framework that combines ChatGPT

with large-scale RDF Knowledge Graphs and entity recognition

tools to support semantic enrichment, fact validation, and

question answering over textual inputs. While these studies

target domains outside of GIS, their methodologies demonstrate

the strong potential of LLMs to semantically align and enrich

structured datasets from heterogeneous and unstructured

sources. To the best of our knowledge, no prior work has

explored the use of LLMs for the automated enrichment of

CityGML data to support urban digital twin applications.

In this paper, we explore the usage of LLMs for automated

enrichment of CityGML 3.0 from heterogenous data sources,

such as PDFs and OSM to support urban digital twin

applications using the 3DCityDB geospatial database.

3. Methodology

This section presents the architecture of our framework. The

system consists of two main components: A Data Enrichment

Agent and a Query Agent, each implemented as an LLM-

powered assistant capable of interacting with the 3DCityDB

database.

3.1 The data enrichment agent:

The Data Enrichment Agent is responsible for identifying

relevant building related attributes from various

heterogeneously structured data sources and updating the

3DCityDB accordingly. The overall architecture is illustrated in

Figure 1 and is composed of four main components: data

sources, prompt/instructions, the LLM agent, and the output.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License.

106

Data sources may include PDF documents, JSON or Word files,

Volunteered Geographic Information (VGI) platforms such as

OpenStreetMap and Mapillary, as well as external APIs like

OpenWeather. Table 1 lists examples of data that can be

retrieved from these sources.

The LLM deals with accessing each data source separately by

using specific tools. On the one hand, to extract data from PDF

or Word documents, we use the Retrieval-Augmented

Generation or RAG for short. RAG is a framework for accessing

external documents or raw data (Lewis et al., 2020). On the

other hand, retrieving data from external APIs needs

Function/Tool Calling, which allows LLMs to call functions

and considering the response.

Data Source Data Format Data that can be retrieved

Building Energy

certificate

PDF Year of construction, Number

of floors, Number of

apartments, Energy efficiency

class, Annual heating

demand, CO2 emissions,

Refurbishment measures,

Recommendations for

refurbishment

OpenStreetMap JSON (API) Building class, building

function, Maximum road

speed, Road material,

Latitude, longitude, Building

name, Extra tags (email,

phone, website…)

Table 1. Example of different data sources and the data that can

be retrieved from them.

It is also important to think about the mapping logic between

the 3DCityDB where the CityGML dataset is stored, and the

data sources. One way is to directly use the addresses of these

buildings from the ADDRESS table of the 3DCityDB. Matching

using the addresses may not always work, as the definition of a

building footprint in CityGML data which is based on cadastre

data may differ from other data sources such as OSM. However,

in this paper, our use case includes buildings that match directly

with the OSM buildings. In the case where addresses are

missing, fall-back strategies such as bounding boxes or

coordinate-based matching would have to be applied.

To enrich the database, the agent would have to understand

both the CityGML 3.0 data model and the 3DCityDB v5

schema. This is achieved by embedding a concise but

informative schema description in the prompt. Given the limited

context length of LLMs, we focused on a subset of CityGML

modules: Construction, Building and Transportation. These

modules are sufficient for many urban applications but can be

extended to include others, such as Bridge, Vegetation, or

Dynamizer, based on the use case. The 3DCityDB schema was

first exported from the database, then we enhanced the database

table descriptions and added examples of typical SQL queries,

creating a few-shot in-context learning environment.

Furthermore, external documents, such as the German cadastral

code list for building functions, can also be integrated using

RAG to support semantic alignment. When applying this

framework to other countries, for example Japan, Japanese code

lists could be added instead.

Once this foundational knowledge is provided, the user interacts

with the agent by uploading files or issuing requests. For

instance, if the user uploads a folder containing energy

certificates, the agent automatically reads the documents,

identifies available attributes, and asks the user to confirm

which ones should be inserted. Based on the CityGML 3.0

schema, the agent decides where the data belongs. For example,

dateOfConstruction is an attribute of the Construction module

and must be inserted into the PROPERTY table under the con

namespace (ID = 8).

Before inserting a property, the agent must determine to which

building the attribute belongs to. This is done by identifying the

correct feature_id, which uniquely represents a building in the

FEATURE table. The feature_id is retrieved by joining the

FEATURE, PROPERTY, and ADDRESS tables. According to

the 3DCityDB schema, addresses are stored as separate features

and linked to buildings via the PROPERTY table, where the

name is 'address' and the address ID is stored in the

val_address_id column. The LLM generates queries such as:

SELECT f.id AS feature_id

FROM feature f

JOIN property p ON f.id = p.feature_id

JOIN address a ON p.val_address_id = a.id

WHERE p.name = 'address'

 AND a.street = 'Hugo-Wolf-Straße'

 AND a.house_number = '68'

AND f.objectclass_id = 901; -- 901 corresponds to Building

Once the correct feature_id is identified, the semantic attribute

can be inserted using a query such as:

INSERT INTO property (feature_id, name, namespace_id,

val_timestamp)

VALUES (12345, 'dateOfConstruction', 8, '1985-01-01');

Although a unique ID for each property should be specified

here, PostgreSQL automatically assigns one if omitted, by

incrementing the last existing property_id in the table.

Of course, the agent is not able to insert or update data on its

own, it needs Function/Tool calling to do so. The first function

the agent needs is the run_sql(query: str), with the

corresponding SQL statement created by the agent to

insert/update a specific attribute. The other functions the agent

needs are for accessing the APIs, such as OSM. In these cases,

the user must tell the agent for which objects the new attributes

should be added. This could be for the entire dataset in the

database or only for selected buildings or streets. The agent

goes on and calls the function for the specific object, inserts or

updates the attributes, before moving on to the next object in

Figure 1. The Framework for the Data Enrichment agent

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License.

107

the database. Moreover, other functions can also be added with

other APIs depending on the use case.

Finally, the CityGML 3.0 data can be exported from the

3DCityDB and used for further data analysis or urban digital

twin applications. An example could be the heat demand

analysis or traffic simulation.

3.2 The Data Query agent

Beyond using the CityGML file in further data analyses, another

user might want to retrieve some information directly from the

3DCityDB and do data aggregation with them. The Data Query

agent is an agent that uses the understanding of the 3DCityDB

schema and generates SQL queries based on the user request.

Figure 2 shows the logic behind the query agent.

One might argue that the Data Enrichment Agent could also

handle database queries, since it already possesses the necessary

knowledge. However, this is very dangerous as the data

enrichment agent has the right to read and write in the database,

which should only be used by trusted administrators. In

contrast, the data query agent is designed for broader

accessibility, targeting users like citizens, researchers, and city

planners who should have read-only access to the database to

ensure data integrity.

Based on this, and similar to the data enrichment agent, the

query agent will be provided a similar prompt with the

description of the 3DCityDB. To perform its task, the agent is

granted access to a single tool function: run_sql_query(query),

which executes the SQL query generated from the user's request

and returns the results in a human readable format.

4. Implementation

To evaluate the feasibility of the proposed semantic enrichment

framework, we implemented and tested it on two use cases: one

for buildings and one for streets. For the buildings, we choose a

district 3D city model. The building dataset used in this case

study covers a district in Munich. The original data was

downloaded from the Open Data Portal of Bavaria in CityGML

2.0 format and imported into the 3DCityDB v5. However, the

dataset only includes basic geometric and topographic

information such as footprints, roof shapes, and building

heights and building function, but lacks crucial semantic

attributes needed for urban analysis such as year of

construction, number of floors and building usage. The building

function refers to the intended purpose for which a building was

originally constructed, whereas the building usage describes its

current use. For example, an industrial building (function:

industry) may currently be used for educational purposes

(usage: education). Unfortunately, these two attributes are often

confused. An example is shown in Figure 4, illustrating a

kindergarten building. As indicated by the highlighted

attributes, the initial building function provided by the mapping

agency is 31001_9998, which corresponds to 'Not to be

specified according to sources' in the German CityGML code

list. However, since the building is currently used as a

kindergarten, the appropriate building usage should be

31001_3065, as defined in the same code list. Moreover,

attributes such as year of construction are also missing. To

enrich and update the semantic content of this dataset, we used

various data sources:

- Energy certificates, provided by the city of Munich for each

building provided in PDF format, which contain information

such as year of construction, number of apartments, energy

class, annual heating demand, and CO₂ emissions.

- OpenStreetMap (OSM) as a Volunteered Geographic

Information (VGI) source for attributes like building class,

building function, and auxiliary tags (e.g., contact information

or names).

Each of these sources was accessed via a corresponding tool-

enabled function call. The agent processes the user's input (e.g.,

a folder path for PDFs or selected OSM tags) and uses the

appropriate tool (RAG for PDFs, Function Calling for APIs) to

extract and interpret the data. The assistant then generates a

valid SQL INSERT or UPDATE query based on the CityGML

3.0 schema knowledge and the 3DCityDB table structure, as

described in Section 3.

The LLM used in this work was GPT-4o (OpenAI et al., 2024).

The interaction with the data enrichment agent follows a

structured process, through a user-agent communication. The

user initiates the enrichment by uploading a folder containing

energy certificates and submits a request to update the CityGML

model stored in the 3DCityDB. After receiving this input, the

agent analyses the first document and gives the user a list of the

attributes and information included in the document. The agent

asks the user what kind of attributes are relevant to be added to

the database. Upon the user’s response, the agent starts mapping

the attributes to their corresponding namespaces in CityGML.

For example, the year of construction should be added to the

Construction namespace with the attribute dateOfConstruction,

the number of storeys should be added to the Building

namespace with the attribute storeysAboveGround. On the other

hand, all the attributes that have no corresponding mapping in

CityGML 3.0, such as CO2 emissions, yearly energy demand,

should be added to the Generics namespace as generic

attributes. The agent suggests the generic attributes names and

asks the user if the names are okay as they are. The user can

suggest other names if required. Finally, if the user is okay with

the mapping of the agent, the agent proceeds with inserting the

attributes in the 3DCityDB. Similarly, the OSM data was used

to update the building functions in the 3DCityDB, as well as

adding useful attributes such as contact data or a website. The

agent uses the ADDRESS table in the 3DCityDB to retrieve all

the building addresses, and sends a request to the OSM

Nominatim API using the street name and house number for

each single building. The agent analyses the JSON response and

retrieves the important information to be inserted in the

database. And as the agent is capable of understanding multiple

languages, it can interpret the JSON file easily. As mentioned in

Section 3, the agent is also provided with an XML code list for

building functions and usages from the German cadastre. For

example, the type “kindergarten” in the Nominatim data can be

mapped to the usage code 31001_3065 according to the German

code list. Moreover, additional attributes can also be added such

as contact email, opening hours, and website as generic

Figure 2. The Framework of the Query Agent

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License.

108

attributes. After enriching the 3D city model, we are able to see

the added attributes in the database. These attributes are

highlighted in Figure 3.

To demonstrate the capabilities of the Enrichment Agent for

transportation features, we selected a street in Numazu City,

Shizuoka Prefecture, Japan, as a test case to evaluate the

framework's applicability beyond European contexts. The street,

known as 沼津港線 (Numazu-kō-sen), is modeled in CityGML

3.0 using the components TrafficArea, TrafficSpace, Road,

AuxiliaryTrafficSpace, and AuxiliaryTrafficArea. An example

of a TrafficArea and its associated attributes is shown in Figure

5. As illustrated, important attributes such as the maximum

speed, road type, road material, and road name are not available

in the original CityGML dataset. In contrast, this information

can be retrieved from external data sources such as OSM using

the Overpass API, which provides more detailed road data than

Nominatim. OSM includes a wide range of road types, such as

footway, highway, and cycleway, as well as intersections data.

These intersections can also be queried via Overpass API and

subsequently mapped to the corresponding intersections in the

CityGML model. Figure 6 presents examples of both road and

intersection data retrieved using Overpass QL. However,

fetching precise Overpass API queries requires advanced

knowledge of the Overpass QL language, which is not easy to

learn. Additionally, the returned data is often unstructured and

can include metadata in multiple languages, such as Japanese in

this case. Fortunately, LLMs such as OpenAI’s GPT-4o have

demonstrated strong capabilities in understanding Overpass QL

as well as processing multilingual data, which makes the GPT-

4o model well-suited for this type of semantic enrichment task.

Given the type of data available in OpenStreetMap (OSM), we

decided to semantically enrich both TrafficArea and

Intersection elements in the CityGML model. To achieve this,

the agent connects to the 3DCityDB and retrieves all

TrafficArea features by filtering based on their objectclass_id,

which corresponds to 613 in the 3DCityDB schema. Using this

feature_id, the agent then queries the corresponding geometry

from the geometry_data table and converts it into WGS84

coordinates (latitude and longitude) using the following SQL

query:

SELECT ST_AsText(ST_Transform(ST_Envelope(geometry),

4326)) AS bbox_wgs84

FROM geometry_data

WHERE id = 734;

The agent extracts the geometry for each feature and formulates

an Overpass API query to retrieve attributes related to the

corresponding road segment. However, a limitation of the

Overpass API is that it returns not only the attributes of the

targeted road segment but also those of nearby roads. This is

due to the lack of support for spatial predicates such as within,

contains, or fully inside in Overpass QL. To overcome this

limitation, a secondary filtering function was implemented

using the function calling tool. The added function first filters

Overpass results by element type (e.g., way for roads, node for

intersections) and then uses the Python Shapely library to

spatially match only those features that fall within the geometry

retrieved from the 3DCityDB. If multiple matching candidates

are found, the agent selects the first match for data enrichment.

Finally, the agent constructs and executes the corresponding

SQL INSERT queries to populate the new attributes after

translating them to English into the database. An example of

enriched attributes added to a TrafficArea is illustrated in

Figure 7.

An example of the interaction with the Enrichment Agent is

shown on the left of the Figure 8. Moreover, it is also possible

to directly interact with this data using the Query Agent as

shown on the right of the Figure 8. To make the interface user

friendly, we used the Gradio Library with Python.

5. Evaluation

To evaluate the effectiveness of our proposed framework for

semantic enrichment of CityGML 3.0 models using Large

Language Models (LLMs), we conducted an evaluation focused

Figure 3. The initial attributes of the kindergarten building as provided by the official mapping agency

Figure 4. The newly added attributes in the 3DCityDB V5 to the kindergarten building using the Enrichment Agent

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License. 109

on two main aspects: (1) the correctness of the attribute

extraction and naming, and (2) the semantic and structural

accuracy of the generated SQL queries.

We selected a subset of energy certificates and OpenStreetMap

(OSM) data as input for the data enrichment agent. Then, we

manually created attribute names and SQL insert statements in

order to compare the LLM-generated results with the manually

added attributes for 20 buildings.

To assess the quality of the generated attribute names and SQL

statements, we applied two widely recognized metrics from the

natural language processing domain: BLEU (Bilingual

Evaluation Understudy) and ROUGE-L (Recall-Oriented

Understudy for Gisting Evaluation - Longest Common

Subsequence variant). These metrics are commonly used to

evaluate machine-generated text and are increasingly adopted in

scientific literature on LLM-based tasks. In our use case, BLEU

was used to measure the n-gram overlap (which is the number

of matching n-tokens) between the generated and reference

strings. We used BLEU-4 with smoothing to penalize overly

short outputs and improve stability across examples. So, for

example, if the expected SQL query for inserting attributes is:

Correct query: INSERT INTO property (feature_id, name,

namespace_id, val_timestamp) VALUES ...

Agent-generated query: INSERT INTO property (feature_id,

name, namespace_id, val_date) VALUES ...

Then the BLEU-4 metric will catch the val_date which is

incorrect and should be val_timestamp, as there is no val_date

column in the PROPERTY table, which will result in a lower

score. BLEU-4 is particularly effective in penalizing small but

critical mistakes. Because database queries are highly sensitive

to syntax and schema-defined names, BLEU is an appropriate

and strict metric for this purpose.

ROUGE-L, on the other hand, measures the semantic similarity

by computing the Longest Common Subsequence (LCS)

between the reference and the generated output. Unlike BLEU,

it is recall-oriented and allows for non-contiguous matches, as

long as word order is preserved. For example:

Correct query: INSERT INTO property (feature_id, name,

namespace_id, val_timestamp) VALUES (123,

'dateOfConstruction', 8, '1985-01-01');

Agent-generated query: INSERT INTO property (feature_id,

name, namespace_id, val_timestamp) VALUES (123,

'constructionDate', 8, '1985-01-01');

The LCS in this case contains 13 out of 16 tokens, resulting in

ROUGE-L F1 Score of 0.81 for this specific example. This

reflects that the generated query retains the correct structure and

logic, while highlighting the semantic error in attribute naming.

However, flexibility in CityGML attribute names such as

dateOfConstruction and storeysAboveGround is not acceptable

and would result in database errors or loss of information.

Therefore, the ROUGE-L was only used with generic attributes

that are not defined in the CityGML standard. This makes it

well suited for evaluating attribute naming when predefined

names are not strictly required, for example, when mapping

energy_demand_annual to annualEnergyDemand. Table 2

Figure 5. A TrafficArea and its attributes in the Numazu-kō-sen street modelled in CityGML 3.0

Figure 7. The attributes integrated into the 3DCityDB for buildings on Numazu-ko-sen Street based on OSM data.

Figure 6. Available attributes in OSM for a road segment (left) and an intersection (right) in the Numazu-ko-sen Street.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License. 110

shows the results of the evaluation using BLEU-4 and ROUGE-

L F1 scores for 20 buildings with energy certificates, while

Table 3 shows the evaluation of the results with OSM data.

In addition to these quantitative results, a qualitative manual

inspection confirmed that the LLM could reliably distinguish

between standard CityGML 3.0 attributes and those that should

be stored in the Generics module. Furthermore, the agent

correctly identified the corresponding namespace_id and

datatype for insertion, which showed its good ‘understanding’

of the CityGML 3.0 data model and 3DCityDB schema.

Attributes Attributes

Table 2. Results of the evaluation of the framework for the 20

buildings with energy certificates

Attributes Attributes

Table 3.Results of the evaluation of the framework for the 20

buildings with OSM data

6. Discussion

The evaluation results demonstrate that our proposed

framework for semantic enrichment of CityGML 3.0 models

using LLMs is both technically feasible and promising in terms

of accuracy and usability. The high BLEU and ROUGE-L

scores reflect the agent's ability to correctly identify relevant

attributes from unstructured data sources and generate well-

structured SQL statements aligned with the 3DCityDB schema

to insert or update the database. BLEU-4 proved particularly

effective in detecting syntax-level and naming inconsistencies in

the generated SQL queries, especially for predefined attributes

like dateOfConstruction and storeysAboveGround, where any

naming deviation would lead to invalid queries. ROUGE-L, on

the other hand, was useful for evaluating structural similarity in

cases involving more flexible attribute names, such as generic

properties (e.g., "annualHeatingDemand" vs.

"heating_energy"), which do not follow strict schema

constraints. However, our evaluation also showed some

limitations. First, the ROUGE-L metric may overestimate

similarity in cases where attribute names are semantically

incorrect but structurally similar. For example, if the agent

proposes constructionDate instead of the required

dateOfConstruction, the LCS-based evaluation may still yield a

high score despite the syntactic error. While this may not be a

problem for natural language applications, in our case, it is

critical. This highlights the need for stricter evaluation criteria

for predefined attributes and maybe consider adding a more

detailed CityGML data model description using RAG, as our

description can be considered short. These errors could also be

reduced using the communication with the agent where users

approve or rename attributes before insertion.

Overall, the architecture which combines retrieval-augmented

generation (RAG) for document understanding with function-

calling tools for API access enables a flexible and extensible

approach that can adapt to various differently structured and

unstructured data sources. The approach shows that LLMs can

significantly simplify and accelerate the semantic enrichment of

3D city models when they are equipped with a good

comprehension of the data model and database schema.

However, this comprehension should also be evaluated and

tested with different scenarios. What would happen if we add a

layer of additional information to the prompt? How good does

the LLM behave when using few-shot in context learning versus

zero-shot in context learning? These are essential questions that

should be investigated in the future and which we believe are of

a great importance.

7. Conclusion and Outlook

In this paper, we proposed, implemented and evaluated a

framework for the semantic enrichment of CityGML 3.0 models

using LLMs. The framework relies on LLM agents equipped

Figure 8. On the left: Interaction between the Enrichment Agent and the user / On the right: Interaction between user and

Query agent

BLEU-4 0.78 0.81 0.83

ROUGE-L F1 - 0.85 0.87

Metric Predefined Generic SQL Queries

Metric Predefined Generic SQL Queries

BLEU-4 0.82 0.89 0.81

ROUGE-L F1 - 0.90 0.92

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License. 111

with RAG and function calling to automatically extract and

integrate relevant attributes from various heterogenous data

sources, including PDF documents and OpenStreetMap which

includes more up-to-date data. The enriched data is inserted into

a 3DCityDB v5 database following the CityGML 3.0 data

model for both buildings and street models.

Through our use case we demonstrated that the LLM-based

agent can better comprehend CityGML concepts, extract the

relevant information from the heterogenous data sources, and

generate correct SQL queries to insert them into the database,

while interacting with users to control its behaviour. The

evaluation using BLEU-4 and ROUGE-L metrics confirmed

that the generated attribute names and SQL statements were

syntactically and semantically aligned with human-written

references.

Despite the promising results, several challenges remain. The

framework assumes clean, machine-readable and trustful input

data such as the energy certificates. Future work should address

the integration of noisy or scanned documents through OCR

and error-tolerant extraction techniques, as well as the use cases

where the input data is wrong or contains errors. Moreover,

while this study focused on buildings and transportation, the

approach can be extended to other CityGML modules such as

Vegetation, and Bridges. Incorporating dynamic data sources

through the Dynamizer module, for instance using real-time

sensor values from SensorThings API, could also offer exciting

potential for real-time digital twin applications. Finally,

feedback from city planners and GIS experts could help assess

the accuracy of the results and enhance the framework. This

would help identify not only technical gaps but also interface

user-friendliness, privacy, and trust-related issues that must be

addressed.

References

3DCityDB Steering Group. (2025). 3D City Database v5

documentation. https://3dcitydb.github.io/3dcitydb-

mkdocs/3dcitydb/

Ahmadian, S., & Pahlavani, P. (2022). Semantic integration of

OPENSTREETMAP and CITYGML with formal concept analysis.

Transactions in GIS, 26(8), 3349–3373.

Ding, L., Xiao, G., Pano, A., Fumagalli, M., Chen, D., Feng,

Y., Calvanese, D., Fan, H., & Meng, L. (2024). Integrating 3D

city data through knowledge graphs. Geo-Spatial Information

Science, 1–20.

Falquet, G., Metral, C., & Cutting-Decelle, A.-F. (2009).

Towards semantically enriched 3d city models: An ontology-

based approach. Proceeding GeoWeb, 40–45.

Gröger, G., Kolbe, T. H., Nagel, C., & Haefele, K.-H. (2012).

OGC City Geography Markup Language (CityGML) Encoding

Standard (pp. 12–019). Open Geospatial Consortium.

Hong, Z., Yuan, Z., Zhang, Q., Chen, H., Dong, J., Huang, F.,

& Huang, X. (2025). Next-Generation Database Interfaces: A

Survey of LLM-based Text-to-SQL.

https://doi.org/10.48550/arXiv.2406.08426

Jiang, Y., & Yang, C. (2024). Is ChatGPT a Good Geospatial

Data Analyst? Exploring the Integration of Natural Language

into Structured Query Language within a Spatial Database.

ISPRS International Journal of Geo-Information, 13(1), 26.

Juhász, L., Mooney, P., Hochmair, H. H., & Guan, B. (2023).

ChatGPT as a mapping assistant: A novel method to enrich

maps with generative AI and content derived from street-level

photographs. Spatial Data Science Symposium 2023.

Kasneci, G., & Kasneci, E. (2024). Enriching Tabular Data

with Contextual LLM Embeddings: A Comprehensive Ablation

Study for Ensemble Classifiers.

https://doi.org/10.48550/arXiv.2411.01645

Kumke, H., Hoegner, L., Meng, L., & Stilla, U. (2007).

Visualization of building models and factual data integrated by

CityGML. International Conference on Communications.

Kutzner, T., Chaturvedi, K., & Kolbe, T. H. (2020). CityGML

3.0: New Functions Open Up New Applications. PFG –

Journal of Photogrammetry, Remote Sensing and

Geoinformation Science, 88(1), 43–61.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,

Goyal, N., Küttler, H., Lewis, M., Yih, W., Rocktäschel, T.,

Riedel, S., Kiela, D. (2020). RetrievalAugmented Generation

for Knowledge-Intensive NLP Tasks. Advances in Neural

Information Processing Systems, 33

Li, Z., Ning, H. (2023). Autonomous GIS: The next-generation

AI-powered GIS. International Journal of Digital Earth, 16(2).

Mooney, P., Cui, W., Guan, B., Juhász, L. (2023). Towards

Understanding the Geospatial Skills of ChatGPT: Taking a

Geographic Information Systems (GIS) Exam. Proceedings of

the 6th ACM SIGSPATIAL International Workshop on AI for

Geographic Knowledge Discovery.

Mountantonakis, M., Koumakis, M., Tzitzikas, Y. (2024).

Combining LLMs and Hundreds of Knowledge Graphs for Data

Enrichment, Validation and Integration Case Study: Cultural

Heritage Domain. Proceedings of the International Conference

on Museum Big Data (MBD 2024), November 18–19, Greece.

Ogawa, Y., Sato, G., Sekimoto, Y. (2024). Geometric-based

approach for linking various building measurement data to a 3D

city model. PLOS ONE, 19(1).

Hurst, A., Lerer, A., Goucher, A. P., Perelman, A., Ramesh, A.,

Clark, A., ..., Kivlichan, I. (2024). Gpt-4o system card.

https://arxiv.org/abs/2410.21276

Powałka, L., Poon, C., Xia, Y., Meines, S., Yan, L., Cai, Y.,

Stavropoulou, G., Dukai, B., & Ledoux, H. (2024). cjdb: A

Simple, Fast, and Lean Database Solution for the CityGML

Data Model. Recent Advances in 3D Geoinformation Science

(pp. 781–796).

Smart, P. D., Quinn, J. A., Jones, C. B. (2011). City model

enrichment. ISPRS Journal of Photogrammetry and Remote

Sensing, 66(2).

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P.,

Donaubauer, A., Adolphi, T., Kolbe, T. H. (2018). 3DCityDB -

a 3D geodatabase solution for the management, analysis, and

visualization of semantic 3D city models based on CityGML.

Open Geospatial Data, Software and Standards, 3(1).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License.

112

