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Abstract

This article presents a method for the automated detection and quantification of cracks on masonry surfaces. The core of the
approach is a neural network trained for semantic segmentation, which enables the identification of cracks in image data. To
facilitate a physically meaningful analysis, the image data is combined with 3D geometric information. A 3D point cloud is
projected onto the image plane to establish correspondences between 2D image points and 3D spatial coordinates. These 2D-3D
correspondences are utilized to evaluate the detected cracks in a geometrically accurate manner. Based on the segmentation results
and the projected 3D data, cracks can be classified within the point cloud and analyzed metrically. The Crack length is determined
using a graph-based model, in which the crack structure is represented as a network and the longest continuous crack path is
computed using Dijkstra’s algorithm. The Crack width is measured in the images based on the segmentation masks and a scaling
factor derived from the 2D-3D correspondences. The proposed method enables a precise and automated assessment of crack
patterns in masonry structures by leveraging both image and 3D data.

1. Introduction

The early detection and analysis of damage in masonry struc-
tures is an important aspect of structural monitoring. Cracks
in masonry can indicate structural problems or material aging
processes and are a potential risk to structural health. However,
traditional inspection methods are time-consuming, costly and
highly dependent on the expertise of the inspector (Xu et al.,
2019; Flotzinger et al., 2022). For this reason, alternative, auto-
mated approaches are being researched.

The use of artificial intelligence methods opens new options for
a reliable and scalable crack detection. In the last few years,
numerous methods for semantic segmentation have been de-
veloped that can be applied to two-dimensional images and 3D
point clouds. These methods are becoming more and more im-
portant in comparison to traditional methods. By using neural
networks, cracks can be detected even in the presence of noise
and under different imaging conditions (Yadhunath et al., 2021).

The studies by Yigit and Uysal (2024) and Azhari et al. (2021)
focus on crack detection in 3D point clouds using neural net-
works. However, the development of such networks requires
extensive annotated training data. While numerous publicly
available datasets exist for image-based approaches, compar-
able datasets for point clouds are still limited. Creating custom
datasets is labor-intensive, as it demands precise annotations.
Furthermore, point cloud-based methods face challenges in re-
liably detecting fine-structured damage, such as hairline cracks
(Azhari et al., 2021).

An alternative approach involves combining the strengths of
image processing with 3D data. In Yang et al. (2020) and,
Lawin et al. (2017) a method is described in which synthetic
views are generated from point clouds. Semantic segmentation
of the images is then performed, and the results are applied to
the point cloud. With this approach, point clouds can be classi-
fied based on images.

In addition to point cloud-based methods, a wide range of image-
based approaches for crack detection exists, ranging from clas-

sification and object detection (Wang et al., 2024) to semantic

segmentation. To enable comparisons of damage across differ-

ent times, Liu et al. (2022) describes a method in which images

are geometrically registered, allowing time-based analysis.

Majidi et al. (2023) presented an alternative approach. In this
study, a DeepLabV3+ network was trained for the semantic seg-
mentation of cracks. The network was trained using an image
resolution of 128 x 128 pixels. To successfully detect cracks in
high-resolution images, these images are divided into smaller
tiles. Within these tiles, crack segmentation is performed, and
detected cracks are highlighted in red. The individual tiles are
then reassembled into a single image. Multiple images of the
crack were taken from different perspectives. Structure from
Motion was used to create a 3D model of the scene, in which
the cracks are highlighted in red.

To enable a metric description of detected cracks, Jahanshahi
and Masri (2012) presents a method that photogrammetrically
generates a 3D point cloud and applies classical image pro-
cessing techniques for segmentation. The resulting masks are
validated using a classifier, and the depth information from the
3D reconstruction is used to derive metric measurements of the
cracks’ lengths and widths.

A combined approach is presented in (Hu et al., 2024), where
data from a LiDAR scanner is fused with RGB images. By
calibrating the sensors, the 3D information can be projected
onto the image plane. Semantic segmentation is then performed
on the images using neural networks before the detected struc-
tures are mapped back onto the point cloud. This enables pixel-
accurate analysis as well as precise spatial localization of cracks
within the 3D model.

The work of Mohan and Poobal (2018) provides a compre-
hensive overview of image-based, automated methods for crack
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analysis. According to the authors, there are already existing
systems that have a high detection accuracy. However, they
point out that these systems reach their limits, particularly with
complex crack patterns and low contrast images. Against this
background, they advocate more research into multimodal ap-
proaches. They also highlight the importance of high-resolution
image data in combination with machine learning methods to
improve the robustness and accuracy of crack detection.

This study presents a method for the detection and quantifica-
tion of cracks in masonry surfaces. The objective of this study
is to algorithmically capture and metrically describe the length
and width of cracks. To achieve this, a photogrammetric point
cloud of the damaged scene is first generated. The 3D points
are projected onto the image plane, where semantic segmenta-
tion is performed. For this purpose, a YOLO11 network was
trained using the dataset provided by Flotzinger et al. (2023).
Subsequently, a methodology was developed to link cracks ob-
served from different camera perspectives to identify them as
continuous structures. For quantification, crack widths are ex-
tracted from the segmentation masks, while crack lengths are
computed using graph theory and the Dijkstra algorithm. The
goal of this work is to develop a robust and accurate method for
automated crack detection and analysis in masonry.

2. Methodology

This paper presents a method for the detection and quantifica-
tion of cracks on masonry surfaces. The cracks are identified
by using semantic segmentation of image data. By fusing the
image information with 3D point clouds, a metric analysis of
the cracks becomes possible. Moreover, the approach enables
the examination of cracks that span across multiple individual
images. Finally, the detected cracks are transferred into a three-
dimensional model and visualized.

The following chapters follow a systematic structure in which
the developed method is introduced step by step. An exemplary
dataset serves as the basis for this description. In this dataset,
images of a surface with visible cracks were taken. These im-
ages were processed photogrammetrically. The resulting 3D
point cloud, the camera poses, and the images of the scene con-
stitute the starting point for the analysis.

2.1 Instance Segmentation Using Neural Networks

Cracks are detected in the images using instance segmentation.
For this purpose, a YOLO11 network was trained (Jocher and
Qiu, 2024). The training was based on the publicly available
DACL10k dataset by Flotzinger et al. (2023), which contains
6,935 training and 975 validation images. To optimize the train-
ing parameters, a hyperparameter tuning process was carried
out on 50% of the dataset using a generic mutation strategy.
Over the course of 300 training cycles, the parameters listed in
the table below were slightly adjusted to identify optimal set-
tings. Each cycle consisted of 40 training epochs with an in-
put resolution of 640x640 pixels and a batch size of 30. The
AdamW optimizer was employed for this purpose. The hyper-
parameter tuning provided by Jocher and Qiu (2024) was used.

1r0 0.00049  hsv_v 0.25851
Irf 0.00243  degrees 0.00000
momentum 0.84597  translate 0.21017
weight_decay 0.00016  scale 0.95000
warmup-_epochs 5,00000  shear 0.00000
warmup_-momentum  0.91574  perspective  0.00000
box 4.05077 Aflipud 0.00000
cls 0.49868  Afliplr 0.48232
dfl 0.68652  mosaic 1.00000
hsv_h 0.01488  mixup 0.00000
hsv_s 0.12451  copy-paste  0.00000

Table 1. Hyperparameters that are used.

LrO determines the initial learning rate, this means how large
the first optimization steps are. Momentum is a Stochastic
Gradient Descent (SGD) dynamic parameter. It helps to keep
the gradient direction stable and can accelerate convergence.
Warmup_epochs ensures that the learning rate increases slowly
at the beginning, while warmup_momentum regulates the initial
behavior of the momentum. With weight_decay, a regulariza-
tion is achieved that penalizes large weight values and prevents
overfitting (Jocher and Qiu, 2024).

The parameters box and cls control the weighting of the indi-
vidual loss components. Box refers to the object localization,
cls to the classification of the detected objects. Data augment-
ation techniques are used to improve model robustness. De-
grees means rotations of the image. Translate, scale, shear and
perspective change the geometry by shifting, scaling, shearing
or perspective distortion. Flipud and fliplr flip images vertic-
ally and horizontally. Color changes are achieved using hsv_h
(hue), hsv_s (saturation) and hsv_v (brightness). More com-
plex augmentations such as mosaic combine four images, while
copy_-paste inserts objects from one image into another. Mixup
mixes images and labels to increase the variety of training. Lrf
is the final learning rate and controls the reduction of the learn-
ing rate via the training time (Jocher and Qiu, 2024).

Based on the hyperparameters listed above, a YOLO11m-seg
network was trained. Similar to the hyperparameter training, a
resolution of 640640 pixels was used for resolution. The batch
size was set to 30. Training was performed over 300 epochs.
Apart from the parameters described above, and the hyperpara-
meters listed in Table 1, the standard settings provided by Ul-
tralytics were applied.

The trained network was evaluated using the validation dataset
from (Flotzinger et al., 2023). An Intersection over Union of
0.301 was achieved for the crack class. In addition, a preci-
sion of 0.406, a recall of 0.576 and an F1 score of 0.420 were
achieved.

2.2 Reprojecting 3D Point Cloud onto 2D Images

The presented method links three-dimensional point data with
image information. This requires knowledge of both the in-
trinsic and extrinsic camera parameters. The determination of
the intrinsic parameters can nowadays be accomplished using a
wide range of available software solutions. The extrinsic para-
meters are determined simultaneously during the photogram-
metric evaluation.

The 3D points of the point cloud are projected onto the image
plane. The used camera model is a pinhole camera according to
Zhang (2000), which is defined as follows:

p = A[R[T] P, (M
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where p = Pixels on the image plane

A = Internal camera parameters

R, T = Rotation and translation describe the
change from the world coordinate system to
the camera coordinate system

P,, = 3D coordinates in the world coordinate system

A 3D point in world coordinates is transformed into the camera
coordinate system using rotation and translation. This trans-
formation is defined as:

X Xuw
Y.| [R T]|Ys
z|=1s 3|z @
1 1

where X, Ye, Z. =3D coordinates in the world
coordinate system
Xw, Yw, Zw = 3D coordinates in the camera

coordinate system

Using this approach, the entire point cloud is transformed into
the camera coordinate system. The point cloud may contain
irrelevant points, for example points located behind the camera
or occluded by other objects in the scene.

Points located behind the camera can be identified and excluded
based on their position along the Z-axis of the camera coordin-
ate system. Since this axis represents the viewing direction, all
points with a coordinate component Z. < 0 are outside the vis-
ible area and are therefore discarded. This ensures that only
points in front of the camera are considered.

In addition, points that are within the camera’s field of view but
occluded by other objects in the scene must also be removed.
For example, a wall or another obstacle may block points be-
hind it from being visible. To eliminate such occluded points,
a visibility check is performed based on the method described
in Katz et al. (2007). To minimize computational effort, this
analysis is not performed on the entire point cloud, but only on
those points that lie within the camera’s field of view.

The resulting filtered 3D points in the camera coordinate system
can then be projected onto the image plane using the intrinsic
camera parameters.

u fz 0 Cx Xc
vl =0 fy cf |Ye 3)
1 0 0 1 Ze

where u, v = Pixels on the image plane
fx, fy = Focal Length

¢z, ¢y = principal point

Within the projected image points, there are also points that
exceed the image dimensions. These points will be removed.
When points are removed, the 2D-3D correspondences are kept
at all times. This is particularly important for subsequent pro-
cessing steps.

2.3 Classification of the point cloud and determination of
the crack width

The method described in the previous chapter forms the founda-
tion for the subsequent analysis. The damage analysis is image-
based and begins with semantic segmentation of crack segments
in the images. For this purpose, the previously trained YOLO11
model is used. For each detected crack segment, a binary mask
is created. The mask is used to check which of the correspond-
ing 3D points, described in Chapter 2.2, are located within the
segmentation area.

The 3D points identified within a mask are stored along with a
camera ID. When this procedure is applied to all images of the
photogrammetric scan, it results in a classification of the entire
point cloud into the categories “crack” and “no crack”. The fol-
lowing image 1 shows the classification of the photogrammetric
point cloud. The 3D coordinates of the point cloud, which are
located within the segmentation masks of cracks, are colored
red.

Figure 1. Classified point cloud.

In addition to classification, the width of the crack segments is
analyzed using the binary masks of the segmented cracks. To
minimize image artifacts and noise, a morphological erosion is
first applied to the mask. Afterward, a skeletonization accord-
ing to the method of Zhang and Suen (1984) is performed to
extract the central axes of the cracks. The shortest distance to
the boundaries of the binary mask is then calculated based on
these central axes. The median of the distances, determined
from the center axis to the edges of the binary masks, is defined
as the crack width. This prevents local outliers or irregularities
in the crack structure from being overestimated.

A scaling factor is required to describe the determined crack
widths in metric units. This is calculated by the correspond-
ence to the 3D coordinates of the point cloud. The calculated
crack widths are based on the segmentation masks produced by
the neural network. Since these masks tend to be wider than the
actual cracks, the computed widths are multiplied by a correc-
tion factor of 0.25.

The skeletonization of the crack segments is also used to re-
fine the corresponding 3D coordinates. To keep the amount of
data low and to minimize noise in the 3D coordinates of the
cracks, only those coordinates are taken which are located near
the central axes of the crack segments. This means that only 3D
coordinates are used for which the reprojected 2D pixels are no
further than 20 pixels from the skeletonization.
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Figure 2. Reprojection of the 3D point cloud onto the image
plane with semantic segmentation of cracks and skeletonization
of the binary masks.

Figure 2 illustrates the previously described procedure. On the
left side of the image, the reprojected 3D points are visualized
in red, with only every 30th point shown for clarity. Also vis-
ible in the left section are the segmentation masks generated by
the neural network. 3D points located within these masks are
highlighted in green. The right side of the figure shows a binary
representation of the segmentation results. Within the detected
crack areas, the extracted skeletons are shown in blue, repres-
enting the medial axes of the individual cracks.

Up to this point, image data has been required for the analysis.
In the following steps, this is no longer necessary. All results
obtained so far are stored in a separate JSON file. In this file, an
individual camera view is created for each image. Each cam-
era view may contain multiple crack segments. For each seg-
ment, the following parameters are documented: crack width
in pixels, converted crack width in meters, as well as the 2D
and 3D coordinates of the crack segments. The results of the
following analyses, in which connected crack instances are re-
cognized, and the crack lengths are determined from these, are
also saved within this JSON file. For this purpose, the file will
be updated by adding the relevant parameters.

The results are saved in a JSON file in the following format:

{"Crack detection": {
"Camera view 1": {

"Crack number 1": {
{"Wide_px":"[1"},
{"Wide_m":"[1"},
{"Coordinates_2D":"[]1"},
{"Coordinates_3D":"[]1"}}

"Crack number n": {}}

"Camera view n": {}}}

Listing 1. Structure of the JSON file for crack detection.

2.4 Detection of Connected Crack Segments.

Up to this point, the crack segments in the image data have been
considered in isolation. The following section analyzes if these
segments belong to a continuous crack or represent independent
instances. For this purpose, the previously described JSON file
is processed, and the contained camera views along with their
associated crack segments are analyzed. The analysis is based
on the 3D coordinates of the individual crack segments.

The first crack segment of the JSON file is selected as a new
crack instance. All other segments are then compared with
the instances already defined. The comparison checks if the

minimal distance between the 3D coordinates of a segment and
the points of existing instances is below a predefined threshold
value. If this is the case, the segment is assigned to the corres-
ponding instance. If a segment cannot be assigned to any exist-
ing instance, it is treated as a new crack instance. For the dataset
presented in this example, a threshold of 5 cm was defined.

.

—.

. Camera view 1

Camera view 2

H .
dmin Camera view 3
Figure 3. Analysis of connected crack segments. The points
represent crack coordinates. They are colored depending on the
captured camera. If a minimum distance between the individual
segments is determined, they are grouped as one crack instance.
This is visualized by the gray dashed ellipse.

where

dmin = mini:l ..... n
j=1,....m

Figure 3 illustrates this methodology. For clarity, the approach
is explained using a two-dimensional representation. In this ex-
ample, the distance between the point coordinates of camera
views 1 and 2 is below the defined threshold d,:r, so the cor-
responding segments are grouped as one crack instance. The
distances of the point coordinates of camera view 3 are not be-
low this threshold. Therefore, these points are defined as a sep-
arate, new crack instance.

The widths of the individual crack segments have already been
determined in chapter 2.3. To determine the crack width of an
instance, all associated crack segments are evaluated. The max-
imum width within these segments is defined as the crack width
of the respective instance. Each detected crack instance is saved
in the JSON file. The 3D coordinates of the cracks, the crack
width and the camera IDs from which the crack was detected
are also saved.

2.5 Estimating Crack Length Using Graph Theory

Up to this point, cracks have already been identified as coherent
objects, and their width could be determined using the segment-
ation masks. In the following step, the length of each individual
crack is analyzed. This length estimation is performed within
the three-dimensional point cloud, where crack instances are
considered sequentially.

Determining the crack length presents two main challenges.
First, cracks can appear highly branched, requiring the iden-
tification of the longest possible continuous path within an in-
stance. Second, the 3D coordinates in the point cloud, although
close to the actual crack centerline, exhibit a certain degree of
noise. A direct reconstruction of the centerline using regression
methods proves difficult due to the unstructured nature of the
point cloud.

For this reason, an alternative approach is chosen. The point
cloud is modelled as a graph, in which the nodes represent
the 3D points of the crack instance, and the edges represent
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neighboring connections. Using Dijkstra’s algorithm, the path
between potential start and end points of the crack structure
is calculated to enable a robust estimation of the crack length
(Hagberg et al., 2008).

To determine potential start and end points of a crack, its geo-
metric boundaries within the point cloud must first be identified.
This is done by selecting the points with extreme coordinate
values i.e., those that exhibit the minimum or maximum values
along at least one of the three spatial axes (X, y, z). These ex-
tremal points are defined as potential start and end points of a
crack instance and are required for the subsequent length ana-
lysis.

The graph used for length determination consists of nodes and
edges. The nodes represent the 3D coordinates of the points
in a crack instance, while the edges connect each node to its
ten nearest neighbors. Each edge is assigned a weight cor-
responding to the Euclidean distance between the connected
points. This network serves as the basis for calculating the crack
length. Using Dijkstra’s algorithm, the shortest path between
two nodes in the graph is computed. Such a path is composed of
a sequence of defined edges traversing the connected nodes.To
determine the actual start and end points of a crack, all com-
binations of the previously identified extremal points are evalu-
ated. For each combination, the shortest path is computed. The
combination resulting in the longest traveled distance within the
graph is ultimately defined as the start and end point of the
crack. The nodes passed represent the 3D coordinates of the
main crack axis. The sum of the edges involved results in the
total length of the crack.

Crack network
Crack length: 0.74 meter
@ Potential endpoints
— Longest path
+ 3D point cloud

o. 0650 0675 0700 0.725 0750 0775 0800
650 0.675 0700 0.725
625 0

Figure 4. Crack network to calculate the crack length using the
Dijkstra algorithm. The edges of the graph network are
displayed in blue. The red points are the nodes of the graph and
represent the segmented 3D coordinates of a crack. The
determined longest crack path is visualized in black.

Figure 4 illustrates the process described above using an ex-
ample crack section. The red points represent the 3D coordin-
ates of the crack and simultaneously serve as the nodes of the
underlying graph. The blue lines visualize the edges of the
graph network, each connecting neighboring nodes. The green-
highlighted points indicate the identified extremal points, which

are considered as potential start and end points for the path cal-
culation. The black path shows the shortest path determined
between the selected extremal points and forms the basis for
estimating the actual crack length.

The calculated crack path is centered within the 3D coordinates
of a crack, despite the existing noise. At the same time, the
model is accurate enough to follow the structural properties of
the crack. Local changes in direction, such as the curve in the
illustration, can be captured reliably.

3. Conclusions and Future Work

The methodology presented in this paper enables the detection
and quantification of cracks. Cracks are semantically segmen-
ted in image data and combined with three-dimensional inform-
ation. To illustrate the process, the method was demonstrated
using a photogrammetrically generated point cloud. However,
the methodology is not limited to photogrammetric data. It can
also be applied to data from laser scanners, provided they are
equipped with integrated camera technology. The use of a laser
scanner for generating the 3D point cloud offers the advantage
of a higher quality data basis.

To validate the proposed methodology, the results of the al-
gorithmic evaluation were additionally verified through manual
analysis. For this purpose, 6 different scenes with a total of
12 cracks were recorded. The results are presented in Table 2.
It is evident that crack length determination is reliable. Cracks
can be correctly detected even when they exhibit multiple direc-
tional changes. Discrepancies between manual and automated
evaluations can be primarily attributed to insufficient crack de-
tection in the image data.

Algorithmically calculates

Crack length [m]  Crack width [mm]
Crack no.1 3,673 2,50
Crack no.2 0,742 0,80
Crack no.3 0,429 0,60
Crack no.4 1,668 1,00
Crack no.5 0,593 0,40
Crack no.6 5,530 3,70
Crack no.7 3,210 4,90
Crack no.8 1,232 1,60
Crack no.9 0,530 0,80
Crackno.10 0,240 0,50
Crackno.11 1,418 2,30
Crack no.12 4,508 0,80
Manually calculated
Crack length [m]  Crack width [mm]
Crack no.1 3,699 1,10
Crack no.2 0,733 0,30
Crack no.3 0,452 0,10
Crack no.4 1,669 0,40
Crack no.5 0,599 0,40
Crack no.6 5,527 0,50
Crack no.7 3,212 1,20
Crack no.8 1,232 0,30
Crack no.9 0,515 0,20
Crack no.10 0,252 0,30
Crackno.11 1,429 0,30
Crack no.12 4,532 0,60

Table 2. Comparison of algorithmic and manual crack analysis.
Mean deviations of the determined lengths, @ 1.09 cm. Mean
deviation of the determined widths, @ 1.88 mm.
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Larger discrepancies were found in the measured crack widths.
A possible cause is the current method for determining crack
width, which relies on the segmentation masks generated by the
neural network. These masks may significantly deviate from
the actual crack geometry. Future work could focus on im-
proving crack representation within the segmentation masks. A
possible approach would be the integration of traditional im-
age processing techniques, such as threshold-based methods, to
further refine crack masking in image data.

However, when interpreting the comparison of crack widths, it
is important to consider that crack width itself varies signific-
antly along the length of a crack. In the presented example, the
width of Crack No. 2 ranges from 0.3 mm to 1.8 mm.

The manual validation of crack lengths was conducted directly
in the point cloud, while crack widths were determined using
a crack width map. In future work, the proposed methodology
will be tested on a test object using a laser scanner. Cracks will
be professionally assessed to enable a valid statement regarding
the accuracy of the proposed method.

The following illustrations show the damaged scenes with the
cracks that were used for the evaluation.

Figure 5. Manual analysis of cracks no. 1 - 3.

B e

Figure 6. Manual analysis of cracks no. 4 & 5.

Figure 7. Manual analysis of crack no. 6 & 7.

Figure 9. Manual analysis of cracks no. 9 - 11.

Figure 10. Manual analysis of crack no. 12.
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The results presented in this paper demonstrate that cracks can
be reliably quantified using the proposed methodology. How-
ever, the accuracy of the process strongly depends on the suc-
cessful detection of cracks in the image data. Future work
will explore alternative network architectures alongside the
YOLOL11 architecture used in this study to evaluate their suit-
ability for semantic segmentation of structural damage. A com-
parison with a U-Net or DeeplabV3+ architecture could provide
interesting insights. Additionally, the goal is to expand the
range of detectable damage types. The neural network, which is
used to segment the cracks in the image data, was trained based
on the DACL10k dataset. This already contains 19 types of
damage in the field of reinforced concrete construction. This
means that, in addition to cracks, damage such as spalling,
moisture damage, corrosion, exposed reinforcement bars, dam-
age to the steel structure and damage to the glass structure will
also be included in the future.

One advantage of the proposed methodology is that damage
does not necessarily need to be detected in every individual
image. Since structures are typically captured from multiple
perspectives, it is sufficient if damage is reliably identified in at
least one image. This approach is particularly crucial for dam-
age analysis in glass structures, where defects are often visible
only from specific viewpoints, requiring detection from mul-
tiple angles. Another key benefit is the tight integration of 3D
data with image data. This allows the investigation of cracks
that extend across multiple images. This is especially useful for
fine-structured cracks where the camera must be very close to
the crack itself.

This study focuses on the detection and quantification of cracks.
The analysis results are stored in a structured format within a
JSON file. Future research aims to integrate this information
into a digital twin of the examined object. In this digital rep-
resentation, detected damages will be documented and supple-
mented with additional information, such as surface material.
This approach also enables long-term damage monitoring and
time-resolved analyses.

Additionally, future research will evaluate alternative or com-
plementary sensor technologies beyond conventional camera
technology. A particular focus will be placed on the use of
thermal cameras, which can reveal temperature-induced an-
omalies such as moisture ingress. The integration of several
sensors could improve the detection and quantification of struc-
tural damage. This makes the system more robust against dif-
ferent environmental conditions.
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