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Abstract

This paper introduces BldgWeaver, a novel adaptive generative model for creating 3D building digital cousin (BDC) models using
pre-trained Transformer architecture. Unlike traditional approaches that require complete 3D reconstruction with extensive visual
data, BldgWeaver approximates building geometries using artificial intelligence-generated content to address data deficiencies in
urban digital twin development. The proposed method employs a token-based approach to convert triangle mesh coordinates
into discrete tokens for auto-regressive prediction, incorporating parallel conditional controls and an optimized footprint-masked
training strategy. Experiments conducted on the PLATEAU dataset demonstrate our model’s capability to generate Level of Detail
2 (LoD2) building models with diverse roof structures, achieving an average 49% improvement in geometric proximity compared
to basic LoD1 representations. The proposed model effectively addresses challenges in wide-range urban mapping by reducing data
dependencies while maintaining satisfactory architectural fidelity.

1. Introduction

Buildings are the most important human-made constructions
in global urban environments. While creating and managing
wide-range digital building models in three-dimensional (3D)
cases has accelerated the development of urban digital twins,
recent decades have witnessed the rapid growth of develop-
ments in modeling 3D urban buildings by incorporating many
advanced technologies, such as photogrammetric reconstruc-
tion or detailed laser and mobile scanning (Deng et al., 2021,
Lei et al., 2023, Abdelrahman et al., 2025). To generate smooth
and applicable 3D urban models in universal triangle meshes,
existing photogrammetric methods generally employ multiview
matching based on merging aerial images captured from aircraft
and drones for the overall architecture and street-view vehicle
images for detailed information (Shao et al., 2016, Yu et al.,
2021). The collected images are matched and used for feature
extraction via mature approaches, such as structure from motion
(SfM) (Schonberger and Frahm, 2016), from which dense 3D
points are computed using multi-view stereo (MVS) (Schönber-
ger et al., 2016) as references for mesh triangularization. Novel
methods based on deep learning without multiview references
have been increasingly developed in recent years (Zhou et al.,
2019, Nikoohemat et al., 2020, Feng and Atanasov, 2021, Li et
al., 2024). However, the following significant data constraints
are constantly mentioned as limitations of these approaches: (1)
the poor quality of source data or occasional occlusions of ve-
getation usually result in difficulties in reconstructing high-level
building details, such as the orientations of the roof surface, es-
pecially in SfM-related methods that rely on spectral feature
extraction and matching, while it is not viable to collect highly
detailed visual data for each individual building; and (2) deep-
learning-based methodologies usually suffer from deficiencies
in the training data, but model performance relies largely on
the quality of such data. These limitations indicate the urgent
demand for an alternative approach to address the data-related
challenges in the aforementioned methods.

Therefore, research has focused on automated creation of di-
gital cousins (ACDC) (Dai et al., 2024) to approximate visual
object appearance using artificial intelligence-generated content
(AIGC) and generative large model (GLM) methodologies, in-
stead of fully recovering details. By leveraging a series of ap-
proaches that require only parameters and hints, ACDC can
address existing challenges, while providing technical found-
ations for improving the extensive mapping of buildings, re-
gardless of data availability. Building Digital Cousins (BDC)
is derived from existing theorization that utilizes a simulated
geometric approximation of real-world building appearances.
principally addressing horizontal (footprint), vertical (height),
and cubic (roof variation) geometries. While few approaches
aim specifically at BDC creations, related methods for 3D as-
set generation provide strong references for BDC development.
Recent 3D asset generation approaches can be categorized into
two routes: (1) diffusion probabilistic models (DPM), which
employ sequential denoising procedures to synthesize the de-
sired outputs, such as point clouds or triangle meshes (Alliegro
et al., 2023, Wei et al., 2023); and (2) auto-regressive GLMs
that apply a transformer architecture and encode 3D structures
into discrete tokens resembling natural languages (Siddiqui et
al., 2023, Gao et al., 2025). While both approaches are ef-
fective in creating general 3D assets, they face challenges in
terms of modeling the geometries of BDCs for the following
reasons: (1) a building mesh model contains fewer individual
triangles than other 3D models, which maintain minor spatial
details; (2) building models should be created under specific
standards, such as within a certain range (footprint) and with
vertical facade surfaces, but this may result in a worse outcome
when universally trained GLMs are used; and (3) DPMs, which
were originally developed for image synthesis under an integer
pixel space, may not be able to satisfy the precision require-
ments of Euclidean coordinate space.

Consequently, this study aimed to derive a precise generative
model, BldgWeaver, from transformer-based GLMs for map-
ping BDC at various levels of details (LoDs). Section 2 presents
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recent related work in the field of 3D urban digital model de-
velopment and discusses the merits of BDC to replace full-level
reconstruction labor. Section 3 introduces our approach for cre-
ating BDC models by incorporating the next-token prediction
approach for triangular mesh generation, implementing parallel
conditional controls, and an optimized training strategy. Sec-
tion 4 illustrates the results of our generation of BDC instances
and quantitative comparisons between previous 3D urban build-
ing modeling methodologies and our methodology. Finally,
Section 5 concludes the study and discusses its limitations.

2. Background and Related Works

2.1 Automatic modeling of urban buildings using visual
priors

Visual data are essential for the reconstruction of urban struc-
tures with intricate details. Conventional reconstruction ap-
proaches primarily utilize multiview matching approaches that
integrate SfM or MVS techniques by leveraging aerial or street-
view imagery as data sources (Zhou et al., 2019, Pepe et al.,
2022, Li et al., 2023). Point clouds serve as another critical
reference for high-quality 3D building reconstruction by com-
plementing multiview image sources (Wang et al., 2020, Huang
et al., 2022, Ogawa et al., 2024b). In parallel with point-based
representations, neural radiance field (NeRF) (Mildenhall et al.,
2021) represents 3D scenes containing building structures as
continuous volumetric functions (fv) that map 3D coordinates
to color and density values. Similarly, 3D Gaussian splatting
(Kerbl et al., 2023) employs Gaussian mixture models (GMMs)
(Reynolds et al., 2009) to characterize 3D scenes as collec-
tions of probabilistic distributions with anisotropic covariance
matrices. Both approaches offer the advantage of subsequent
triangulation into mesh representations for further applications.

Despite their impressive results, these reference methods face
significant challenges in terms of their computational complex-
ity and data requirements, which constrain the quality of the
reconstructed output. For example, NeRF models typically re-
quire hours to days of training on high-end graphics processing
units (GPUs) and dense multiview imagery with precise camera
poses. Similarly, although 3D Gaussian splatting offers faster
optimization than NeRF, it requires substantial input data and
computational resources for high-fidelity reconstruction. Con-
sequently, to address these difficulties, this study advances the
BDC concept, which approximates building geometries without
full-level recovery of details. This approach satisfies the key re-
quirements for urban investigation applications, while signific-
antly reducing data dependencies and computational demands.

2.2 Non-visual 3D modeling using generative AI approaches

Generative AI methods have demonstrated remarkable capabil-
ities for creating diverse targets. Prominent approaches include
the generative adversarial network (GAN) (Goodfellow et al.,
2020), variational autoencoder (VAE) (Yan et al., 2016), de-
noising diffusion model (DDM) (Rombach et al., 2022, Peebles
and Xie, 2023), and autoregressive (AR) model based on the
transformer architecture. GANs employ a competitive frame-
work in which a generator and discriminator are adversarially
trained to approximate the target distributions of 3D shapes.
VAEs operate by encoding inputs into probability distributions
in the latent space and sampling these distributions to gener-
ate novel instances through a decoder network. More recently,

DDMs have advanced probabilistic modeling by learning to it-
eratively denoise a Gaussian distribution into a desired plain
target through a Markov chain of denoising steps. Hybrid ap-
proaches that integrate VAEs with diffusion models leverage
encoder-decoder architectures to enable denoising procedures
in the latent space, thereby enhancing stability and computa-
tional efficiency. This has proven to be effective for generating
multi-view images as a reference for 3D reconstruction (An-
ciukevičius et al., 2023).

Beyond these generative approaches, AR models have been de-
veloped to transfer scalability from natural language processing
to vision tasks. Unlike the DDM or GAN methods, which
map a probabilistic distribution for fixed-sized targets, a typ-
ical transformer AR model predicts the distribution of discrete
tokens. This enables the generation of sequences with flex-
ible lengths, thereby providing a significant advantage for 3D
models with uncertain numbers of points, voxels, or triangles.
Recent research has extensively explored the token-based gen-
eration of mesh models, such as PolyGen (Nash et al., 2020),
MeshGPT(Siddiqui et al., 2023), MeshXL(Chen et al., 2024),
and MARS (Gao et al., 2025). These approaches apply ad-
vanced strategies to convert mesh triangles into discrete token
sequences, in order to generate high-quality BDC representa-
tions for real-world urban constructions. For the principal pur-
pose of this study, which sought to efficiently map wide-range
building targets, we adopted the MeshXL codebase, which con-
verts triangle-wise coordinates into sequential tokens and trains
a transformer model to learn the token distribution.

2.3 Aligning building representations in terms of LoD stand-
ards

Urban 3D building models are predominantly categorized ac-
cording to different LoDs, which quantify the geometric and
semantic richness of digital building representations (Biljecki
et al., 2016, Ogawa et al., 2024a). The CityGML universal
standard defines building LoDs across five levels, ranging from
0 to 4. Figure 1 illustrates the characteristic appearances and
variations in the building models from LoD 0 to LoD 3. LoD
4, which primarily concerns interior spatial configurations, was
excluded from the scope of this study because our focus was on
exterior architectural representation.

For urban investigation and exploration, an appropriate LoD
classification is essential for effective building model utiliza-
tion. LoD 0 typically represents buildings as 2D footprints,
LoD 1 as simple extruded white boxes, LoD 2 as structures with
differentiated roof shapes and thematic surfaces, and LoD 3 as
architecturally detailed models including openings (windows,
doors) and smaller exterior features. However, previous gener-
ative approaches have largely addressed building representation
without explicitly considering LoD standards, thereby creat-
ing a disconnect between generative outcomes and established
urban data management frameworks. This oversight limits the
applicability of the generated models to standardized urban ana-
lysis workflows that rely on consistent LoD classification.

In addition, the availability of high-quality training data presents
significant challenges, particularly for LoD 3 models, which re-
main scarce because of prohibitive acquisition and modeling
costs. The detailed façade elements and architectural features
required at LoD 3 demand substantially more modeling effort
compared to lower LoD representations. When facing train-
ing data deficiencies, we resorted to maintaining a wide-range
LoD 2 data foundation of our generated BDCs. We established
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Figure 1. Illustration of building LoDs from level 0 to 3, from
which we selected level 2 as our target for model generation.

a scalable means for generating models across multiple LoDs,
while suggesting the potential to systematically append open-
ing information (windows, doors, and other façade elements) to
LoD 2 structures to implement a procedural framework for LoD
3 creation. This strategy balances practical data-availability
constraints with the need for standardized models that conform
to established urban data specifications.

3. Methods

3.1 Overview of the approach

BldgWeaver was essentially developed based on a prevailing
transformer-based autoregressive next-token prediction scheme.
To create building cases with a generally interpretable distri-
bution in the coordinate space, all coordinates of the involved
building instances were normalized to a fixed range. Figure 2
illustrates the overall framework. Because the transformer ar-
chitecture can understand and predict discrete tokens, both the
training and generation procedures were initiated with a cus-
tomized token discretization procedure to convert continuous
coordinates into the discrete token space. We referred to the
advanced token discretization strategy proposed in (Chen et al.,
2024). This approach allowed for converting the continuous
vertex coordinates into discrete tokens distributed between [0,
ntoken], in which ntoken refers to the range of available tokens
configured in advance. The token mapping procedure can be
abstracted using the following equation (Equation 1):

ti = round(
ci − cimin

cimax − cimin

∗ ntoken), i ∈ {x, y, z} (1)

Where ci and ti denote the original and discretized coordin-
ate values on x, y, z axes, respectively. cimin and cimax de-
note the minimum and maximum coordinate values from a in-
dividual building on a single axis, and round retains the in-
tegral parts to discretize the normalized values. Therefore, the
mesh-based 3D building model is converted into a token se-
quence {tvx, tvy, tvz}triv∈{1,2,3} (tri indicates the triangle set of an
individual building), in which the vertices are aligned in an as-
cending order of the vertical dimension (y in this paper), as il-
lustrated in Figure 3. During the training procedure, the Trans-
former decoder reads and predicts all discretized tokens based
on an auto-regressive masking strategy, which has been univer-
sally applied in the previous LLM training approaches. Mean-
while, a constant masking strategy adaptive to the building com-
plexity is additionally involved to ignore the prediction of foot-
print tokens, and a parallel conditioner is employed to control
the buildings’ detailed appearances. Subsequently, the genera-
tion procedure imports multiple parallel building footprints as
the initial conditions for the trained decoder to predict remain-
ing portions of building models. Last, a reversed tokenizing
module is applied to convert discrete tokens into continuous co-
ordinates for output.

3.2 Next-token prediction for generating building meshes

As discussed in Section 2, transformer-based AR models have
demonstrated their ability to map token distributions in both
language and visual processing tasks. Principally, an AR model
solves an autoregressive problem by sequentially predicting the
probabilistic distribution of subsequent tokens, using previously
generated tokens as conditions. While the various components
of a building, such as the façade, roof, and attachments, can be
partially or conditionally constrained by the lower components,
especially the footprint shape, it is feasible to utilize autore-
gressive theory to convert the building mapping problem into a
universal sequence processing task. For the model architecture,
we applied the open pretrained transformer (OPT) as our basic
model, with a pretrained model checkpoint available for more
efficient fine-tune training. We employed the checkpoint with
350M parameters to balance efficiency and quality, while train-
ing configuration was further introduced in Section 4. By incor-
porating the token discretization strategy introduced in Section
3.1, we could achieve a robust mapping of building geometries
using a plain autoregressive approach similar to MeshXL.

Furthermore, we manually appended an <sos> token at the be-
ginning and an <eos> token at the end, as start and end iden-
tifications of the sequence. As shown in Figure 2, the stand-
ard version of cross-entropy loss was computed between a pre-
dicted token sequence and its corresponding ground truth, which
is universally applied in general LLM training, as Equation 2:

Lce = − 1

|seq|

|seq|∑
i=1

ntoken∑
j=1

1[yi, j]logP (pij) (2)

where |seq| denotes the discretized token length, yi indicates
the predicted token, pij denotes the probability of token j pre-
dicted at the position i, and 1[yi, j] is a binary function (1 if yi
equals to j else 0). The loss computation automatically omits
<sos> and <eos> tokens since no predictions are required.

3.3 Parallel controls for building appearance regulariza-
tion

In addition to this fundamental framework that can achieve se-
quence mapping of building meshes, regularization of the build-
ings’ appearance requires an external embedder to allow in-
tegrating additional parameters such as roof types, in order to
achieve a more precise approximation of building architectures.
Therefore, along with the default decoder-only transformer ar-
chitecture, we inserted an additional cross-attention layer between
the self-attention and feedforward layers in each decoder layer,
enabling cross-computation of internal token distributions and
externally embedded feature distribution to regularize the ap-
pearance of the predicted result in the latent space. Figure 4 il-
lustrates the details of the implementation of the orange blocks
for cross-attention insertion.

Based on the original CE loss computation, the transformer de-
coder with parallel cross-attention control was further used to
optimize the following cross-attention loss target using Equa-
tion 3 as follows:

Lcross
ce = −

|seq|∑
i=1

|text|∑
k=1

logP (pik) (3)

where pik denotes the probabilistic distribution derived from
the cross-attention mechanism,

∑|seq|
i=1

∑|text|
k=1 indicates a token-
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Figure 2. Overall training and generation images of BldgWeaver.

Figure 3. Illustration of the token discretization strategy.

Figure 4. Illustration of the decoder-only Transformer
architecture with parallel cross-attention controls.

wise probability evaluation between the embedded textual fea-
tures and the latent token distribution.

3.4 Adaptive optimization of footprint-masking training

Alongside the next-token prediction with an additional appearance-
contingent mechanism, it is critical to initialize an appropriate
preliminary condition for each autoregressive generation pro-
cedure to ensure the quality of the generated results. While
previous approaches have generally adopted additional mod-

Figure 5. Illustration of the optimized footprint-masked training.

ules for condition encoding, this study proposes an appearance-
contingent masking strategy to add adaptive conditions to vari-
ous building shapes during the training procedure. As each tri-
angle can be represented by nine discretized tokens, the model
automatically generates a parallel mask to constantly reveal the
ground-truth footprint token distribution. Consequently, the loss
is not computed within this token section during the entire train-
ing procedure involving the building data. Figure 5 illustrates
the optimization strategy.

The computation of the optimized cross-entropy loss Lbldg
ce for

the building-oriented training can be mathematically expressed,
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as shown in Equation 4:

Lce(f) = − 1

|seq|

|seq|∑
i=1

logP (pi,yi)1{t}footprint
(i)

Lbldg
ce = Lce(f) + λLcross

ce

(4)

where 1{t}footprint
(i) represents another binary function. which

equals to 1 when i is in the set {t}footprint that includes all
the corresponding footprint tokens. When the remaining part is
identical to Equation 2, this optimization simply implements a
token-wise filter to omit the unnecessary computation upon the
original cross-entropy loss. λ is a contribution parameter for
a weighted control of the cross-attention term and is gradually
tuned during the training procedure. We set the tuning section
as [0.1, 0.5] following the common approach.

4. Experimental Results

Figure 6. Illustration of the selected six roof types generally
visible in Japanese urban built-up areas.

4.1 Data and Implementation

To train the BldgWeaver for wide-range BDC generation, we
obtained a building dataset by sampling approximately 30,000
building mesh models in LoD 2 from the PLATEAU dataset de-
veloped by the Ministry of Land, Infrastructure, Transport, and
Tourism of Japan (MLIT) (MLIT, 2022). We conducted fine-
tuning of the MeshXL-350M model checkpoint using this data-
set, which was pretrained on a combination of four general open
datasets with more than 20 million 3D object instances. For
data augmentation, we assigned random translations in six dir-
ections and horizontal rotations to each building instance. Fur-
thermore, we normalized all data into [-0.95, 0.95] and trans-
lated the floor face to the bottom, where the height coordinates
were constant at -0.95, to ensure identical generation patterns.
Building roofs were categorized into six general types in rela-
tion to Japanese urban scenes: flat (FL), stepped-flat (SFL), fol-
ded (FD), hipped (HP), gabled (GB), and uniform-flat (UFL),
to allow for learning the corresponding optimal roof types for
various building footprint shapes. Figure 6 illustrates the proto-
types of the six selected roof types. The pre-defined roof types
were converted into pure texts and integrated via cross attention
layers as shown in Figure 4.

In order to precisely estimate the proximity of our BDC in-
stances, we used root mean square error (RMSE, σh) assess-

Area (a) Area (c) Area (d) Area (e) AVG.

RMSE (m)

LoD1 0.37 0.49 0.47 0.34 0.41
LoD2 0.22 0.25 0.19 0.17 0.21

Table 1. Quantitative evaluation of BldgWeaver in four selected
testing areas. (a), (c), (d), and (e) correspond to the numbering

in Figure 8.

ment to evaluate the global errors in relation to mesh geometries
for quantitative evaluation, which was calculated using Equa-
tion 5 as follows:

σh = µn

∑
i∈m,k∈n

∥zi − zik∥ (5)

where m and n represent the sampled point cloud from the
two sets, zi and zik indicate the pairwise height value between
two point clouds, and µn indicates the building-wise average
RMSE.

Both the model training and BDC generation experiments were
conducted on a single NVIDIA RTX 4090 GPU owing to the se-
lection of a smaller model size. Similar to the MeshXL pattern,
the model was trained using bfloat16. We used the AdamW op-
timizer with a learning rate decaying from 1e-4 to 1e-6 and a
weight decay of 0.1. In the prediction of the BDC instances, we
generated 3D meshes using top-k and top-p sampling strategies
with k = 50 and p = 0.95.

Figure 7. Results of single-footprint BDC generation under the
configuration of six roof types. The polygon positioned at the

center indicates the footprint involved.

4.2 Results from PLATEAU dataset

We conducted a visual evaluation of the selected footprint and
several test areas around Meguro Ward, Tokyo, and Kashiwa
City, Chiba Prefecture, Japan, to demonstrate the capability of
BldgWeaver in mapping various building geometries regardless
of the complexity of urban environments.
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Figure 8. Visualization of the generated BDCs in six testing areas. (a)-(c) are from the Meguro downtown areas and (d)-(f) are from
the country areas of Kashiwa City.

Figure 9. Exceptional errors in generating BDCs due to irregular
or over-complex footprint shapes. The upper footprints
correspond to the lower generated results by column.

Figure 7 illustrates the single-footprint evaluation of the gener-
ated BDC instances configured with the six preset roof types.
The proposed model successfully mapped the corresponding
geometric distributions for each roof type, such as the minor
protrusions in the FL case and slope-like structures in the HP
and GB cases.

Based on the reliable results demonstrated, we conducted quant-
itative and qualitative experiments on six selected testing areas:
three from downtown districts and three from outlying country
areas. Figure 8 illustrates the visual BDC results. This visu-
alization demonstrated the capability of the proposed model to
create a building geometric representation in satisfactory prox-
imity to real-world building architectures. In addition, Table 1
lists the quantitative evaluation results from the following four
representative areas: (a), (c), (d), and (e) for a sampled evalu-
ation, compared with the geometries in LoD 1 in white boxes,

while areas (b) and (f) showed similar performance patterns.

The results in Table 1 indicated an average improvement of
49% in geometric proximity, demonstrating the robustness of
our method. It was illustrated that simpler roof types (FL, GB,
HP) show more consistent generation quality, while complex
types (FD, SFL) occasionally produce geometric inconsisten-
cies, particularly for irregular footprints. However, some ex-
ceptional error cases were encountered when attempting to map
the mesh units with over-complex footprint shapes containing
irregular shapes or various edges, such as the zigzagging case
in the middle of area (c) and the uncommon horizontal protru-
sion on the left of area (e), as shown in Figure 9, which reveals
a magnified view of these unexpected errors. Although errors
were observed in less than 5% of the overall cases. Neverthe-
less, this still indicated that there are limitations to our proposed
method, which need to be addressed in future work.

5. Conclusion

To resolve issue related to data deficiencies and generalization
problems in creating urban digital twins of buildings, this study
proposed a novel and reliable generative model, BldgWeaver,
for mapping wide-range urban BDC instances using GLM the-
ory, attempting to replace 3D reconstruction in scenes with data
deficiencies to approximate building geometries instead of com-
plete reconstructions. The proposed model employs an advanced
tokenizing strategy to discretize the continuous mesh coordin-
ates into tokens that are understandable to our applied trans-
former AR model. In addition, we contribute to the field of
urban 3D mapping by integrating a parallel controlling mod-
ule to embed appearance parameters and reveal footprint priors
during the training procedure, which enables the appearance-
contingent generation of respective BDC representations for in-
dividual buildings with greater robustness. Our proposed method
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achieved satisfactory performance with an average improve-
ment in geometric proximity of 49%, as shown by hybrid ex-
periments conducted in six independent testing areas. However,
the proposed method still has some limitations in terms of gen-
eralization, such as the failure to map reasonable upper-mesh
geometries when encountering over-complex footprints. Nev-
ertheless, we were able to integrate the horizontal geometric
features of the footprint shapes with existing priors to further
improve the generalized understanding of 3D architectures for
GLMs.
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