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Abstract

Roofing material classification is critical for urban sustainability, energy efficiency, public health, environmental protection, and
regulatory compliance. Despite the need for scalable solutions, existing approaches are hindered by reliance on oftentimes expensive
and rare multi- or hyper-spectral satellite imagery, application-specific assumptions and biases, and oversight of deep learning
and multimodal data fusion. This paper addresses these gaps by introducing RoofSense, a multimodal semantic segmentation
dataset for roofing material classification in diverse urban contexts, leveraging 8 cm aerial true-color imagery and airborne laser
scanning data. Representing eight classes and encompassing over 138 ha and 480 buildings across five Dutch cities, RoofSense is
the largest publicly available dataset of its kind. By combining spectral and geometric information at the pixel level and adopting a
novel weighting scheme to address class imbalance, RoofSense can be used to achieve competitive classification and segmentation
performance in downstream tasks. This was demonstrated in a comprehensive purpose-designed benchmarking experiment with
an off-the-shelf model based on ResNet-18-D and DeepLabv3+. Although lidar-derived features improved performance in difficult
classes and materials commonly used on pitched roofs, results were sensitive to material and building context, clutter, and modality
alignment, indicating that the theoretical benefits of data fusion are not straightforward. The implementation is publicly accessible

at https://github.com/DimitrisMantas/RoofSense.

1. Introduction

Roofing material classification is vital for urban sustainability
and building management, addressing energy efficiency, public
health, and environmental protection (Abbasi et al., 2022). Ma-
terial choices influence the urban heat island effect (Ilehag et
al., 2018), wind turbulence (Zheng et al., 2021), and regulatory
mandates (Abbasi et al., 2022) necessitate mapping for retro-
fitting (Gibril et al., 2017). Although essential, comprehensive
material inventories are scarce, as in situ audits are expensive
and limited in application and scale (Abriha et al., 2018).

Existing datasets are constrained by two-dimensional (2D) true-
color (RGB) imagery and application-specific assumptions and
biases, oftentimes representing pseudo-labelled materials (e.g.,
“Material 1”’; Tommasini et al. 2019) or small study areas (Sam-
sudin et al., 2016). Furthermore, the performance potential
of incorporating lidar-derived features data to capture three-
dimensional (3D) structural features (e.g., elevation, slope, etc.)
remains largely underexplored (Hamedianfar et al., 2014b; Nor-
man et al., 2020). Image classification methods typically assign
a single label to each input scene, making material delineation
difficult and unsuitable for detailed mapping. Object-based im-
age analysis (OBIA) addresses this issue, but requires data- and
study area-specific tuning which can lead to improper segment-
ation if suboptimal (Hamedianfar et al., 2014a). Although se-
mantic segmentation does not inherently have such issues, it
is often ignored, as most relevant works favour classical ma-
chine learning models, which are inefficient in dense prediction
tasks (Feng and Fan, 2021).

This paper addresses these research gaps by introducing Roof-
Sense, a multimodal semantic segmentation dataset for roof-
ing material classification in diverse urban contexts, lever-
aging 8cm aerial RGB imagery and airborne laser scanning
(ALS) data. Representing eight classes and encompassing
over 138 ha and 480 buildings across five Dutch cities, Roof-

Sense is the largest publicly available dataset of its kind. By
combining spectral and geometric information at the pixel level
and adopting a novel weighting scheme to address class imbal-
ance, RoofSense was used to achieve competitive classification
and segmentation performance in a purpose-designed, compre-
hensive benchmarking experiment with an off-the-shelf model
based on ResNet-18-D (He et al., 2019) and DeepLabv3+ (Chen
et al., 2018). While lidar-derived features improved perform-
ance in difficult classes and materials commonly used on
pitched roofs, results were sensitive to material and building
context, clutter, and modality alignment, indicating that the the-
oretical benefits of data fusion are not straightforward.

2. Related Work
2.1 Roofing Material Classification Datasets

Existing roofing material classification datasets primarily use
aerial RGB imagery or multi- or hyper-spectral satellite
products, with spatial resolutions for the former datasets typ-
ically ranging between 5cm and 25cm (Abbasi et al., 2022).
Although satellite imagery provides superior spectral resolu-
tion, its limited availability and high cost have popularised
more common modalities, such as near-infrared (Ilehag et al.,
2018). Recent studies indicate that RGB imagery can achieve
performance comparable to hyperspectral products when com-
bined with deep learning (DL) (Kréwczynska et al., 2020).
Furthermore, incorporating lidar-derived features, such as di-
gital surface models, intensity, and slope, with optical imagery
shows considerable promise. Specifically, pixel-level fusion
demonstrates accuracy improvements ranging between 8% and
25% in difficult classes (Hamedianfar et al., 2014b; Norman
et al., 2020). However, existing datasets are limited in mater-
ial and spatial coverage, use inconsistent class definition and
annotation protocols, and inadequately address inter- and intra-
class variability. This paper addresses these research gaps by
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introducing RoofSense, a large-scale, multimodal semantic seg-
mentation dataset providing broad material coverage across di-
verse urban contexts. It overcomes the shortcomings of relevant
works by adopting comprehensive class definition and annota-
tion schemes and thoroughly investigating the fusion of high-
resolution RGB imagery with ALS data.

2.2 Roofing Material Classification Methods

Existing roofing material classification methods are image-
(Raczko et al., 2022), object-(Trevisiol et al., 2022), or pixel-
based (Abriha et al., 2018). Image-based methods typically as-
sign a single label to each input scene, requiring minimal la-
belling effort. However, capturing material variations within a
single building or roof segment requires special measures, mak-
ing this method unsuitable for granular mapping. Even then,
the corresponding material may be difficult to delineate. OBIA
addresses this issue by first segmenting each input scene into
superpixels which it then operates on as described above, but it
requires data- and study area-specific tuning which can lead to
improper segmentation if suboptimal. Furthermore, the super-
pixels continue to suffer from label localisation issues. Pixel-
based, more commonly known as semantic segmentation, meth-
ods, effectively solved these issues by providing dense predic-
tions, which can later be aggregated, as required. Although
relevant DL models, such as convolutional neural networks,
have addressed past difficulties in image processing and fea-
ture extraction, most relevant works favour classical machine
learning models, which are inefficient in dense prediction tasks.
This paper addresses these research gaps by using RoofSense to
achieve competitive classification and segmentation perform-
ance in a comprehensive purpose-designed benchmarking ex-
periment, demonstrating the contemporary relevance of the un-
derlying method.

3. The RoofSense Dataset

This paper introduces RoofSense (Figure 1), a multimodal se-
mantic segmentation dataset for roofing material classification
in diverse urban contexts. RoofSense comprises 300 images
and corresponding ground truth masks spanning Den Hoor,
Dordrecht, Enschede, Hoofddorp, and Papendrecht, the Neth-
erlands. The images were extracted from five parent rasters,
corresponding to randomly sampled 3DBAG (Peters et al.,
2022) tiles (Section 3.4). The total annotated area is approx-
imately 138.58 ha, spanning 488 buildings, making RoofSense
the largest publicly available dataset of its kind. Each image
in RoofSense is a seven-band 512 x 512 px* raster. The first
three bands form its RGB component (Section 3.1), while the
latter four derive from ALS data (Section 3.2). These com-
ponents were fused at the pixel level with respect to the RGB
constituent (Section 3.3). Cells on the exterior of the corres-
ponding building footprints, referred to as the background, have
been masked. Finally, each mask provides an integer mapping
for each pixel to one of eight roofing materials (Section 3.5) or
the background. The semi-automated annotation process (Sec-
tion 3.6) required circa 80 hours.

3.1 True-colour Component Construction

The RGB component of each parent image was constructed us-
ing BMS, a dataset containing aerial RGB imagery of the Neth-
erlands at a ground sampling distance (GSD) of 8 cm (Het Wa-
terschapshuis, 2023b). Relevant images were cropped to the ex-
tent of the corresponding LoD2.2 (Level of Detail; Biljecki et
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Figure 1. Construction of a single image-mask pair. The
corresponding parent image is first constructed and split into
chips. The RGB and lidar-derived components of the image are
fused at the pixel level. The nDRM band relies on auxiliary
per-building attributes (DRM), extracted from 3DBAG. The
building footprints used to mask the background are also
contained in this dataset. Finally, the RGB component of the
chip is annotated.

al. 2016) building footprints, extracted from 3DBAG, and the
resulting images were then collated at their original GSD.

3.2 Lidar-derived Component Construction

To address the limitations of 2D RGB imagery and improve the
discrimination of visually similar materials, lidar-derived fea-
tures were incorporated. The lidar-derived component of each
parent image was constructed using the AHN4 point cloud (Het
Waterschapshuis, 2023a) and relevant 3DBAG attributes, cap-
turing 3D structural features (e.g., elevation, slope, etc.) and
complementing visual cues with reflectance information.

3.2.1 Point Cloud Preprocessing: To minimise computa-
tional overhead and ensure correct density calculations, the rel-
evant point cloud tiles were cropped, merged, and duplicate
points were removed (Figure 2a). In the context of this paper,
points with identical X and Y data records were considered du-
plicates. Duplicate sets were resolved by preserving the point
with the largest z-coordinate.
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3.2.2 Point Cloud Rasterisation: Once the point cloud was
processed, its elevation and reflectance (RIEGL, 2017) fields
were rasterised using inverse distance weighting (IDW) inter-
polation at the centre of each target cell with a power of two.
Only points whose 2D projection intersected the cell were con-
sidered. The target GSD was set to 24 cm. This ensured spa-
tial alignment between the components while maximising lidar-
derived feature exploitation. To eliminate NaN values and avoid
relevant processing issues, empty cells were filled with a single
targeted IDW pass using GDAL.
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Figure 2. Point cloud preprocessing and rasterisation. First,
duplicate point sets are resolved by preserving the point with the
largest z-coordinate. Subsequently, the preprocessed point cloud

is rasterised. The reflectance, slope, and nDRM bands are
constructed using IDW interpolation considering the points
whose 2D projection intersects each target cell (b). For the
density band, the relevant points are counted, and their sum is
assigned to the target point (c).

3.2.3 Reflectance, Slope, and nDRM Band Construction:
Following rasterisation, the first three component bands were
constructed: (1) The reflectance band, serving as a range-
normalised proxy of the titular material property, was produced
by converting the source raster to a linear scale and clipping
values corresponding to non-Lambertian reflectors (i.e., ;1) to
one. This modification ensured correct upsampling to the GSD
of the RGB component and guaranteed that such values would
not be present in the resampled band; (2) The slope band was
derived from the elevation raster using Zevenbergen and Thorne
(1987); (3) The normalized digital roof model (nDRM), a
quasi-normalised elevation model relative to the median roof
level of each corresponding building, was also constructed us-
ing the elevation raster as well as the relevant rasterised attrib-
ute (DRM), extracted from 3DBAG. This signed metric distin-
guishes low from high roof surfaces, enabling material differ-
entiation by position (e.g., membranes at a lower height relative
to solar panels installed above them).

3.2.4 Density Band Construction: Finally, the density
band, indicating surface completeness, opacity, and texture, was
constructed at a coarser GSD of 1 m to better capture point dis-
tribution patterns. Each target cell was assigned the count of
points whose 2D projection intersected it (Figure 2c). To pre-
serve its total sum, representing the point cloud population, the
resulting raster was not post-processed.

3.3 Component Fusion

To create a unified image and leverage complementary inform-
ation, the RGB and lidar-derived components were fused at
the pixel level. The lidar-derived component of each par-
ent image was upsampled to the GSD of the RGB compon-
ent for spatial alignment. To preserve their range and phys-
ical interpretation, the continuous reflectance, slope, and nor-
malized digital roof model (nDRM) bands were resampled
using bilinear interpolation. The nDRM band was clipped
([2“‘1, 98‘}‘] percentiles) to reduce temporal misalignment arte-
facts between AHN4 and 3DBAG. The discrete density band
was resampled using nearest-neighbour interpolation. The res-
ulting raster was scaled by its pre- and post-resampling total
sum ratio, preserving the point cloud population. Each as-
sembled image contained seven bands along its spectral axis,
inserted by construction order.

3.4 Chip Extraction

To generate model-ready inputs and facilitate granu-
lar quality control, parent images were split into non-
overlapping 512 x 512px* chips. Each chip was added to
RoofSense only if its background content was at most 80%
(Figure 3), ensuring sufficient roof coverage. This measure
was computed by masking the chip with the corresponding
building footprints and counting the masked cells. To avoid
confusion, the background cells of included chips were filled
with zero (i.e., invalidated), ensuring they would not contribute
to feature maps. To increase spatial coverage, each chip
was initially selected for masking using a Bernoulli trial,
meaning that only approximately half of all possible chips were
considered. Consequently, more images were required to con-
struct RoofSense. Finally, to prevent redundant sampling and
maximise spatial exploitation, no more than three sequentially
incorporated chips per parent image were permitted.
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Figure 3. Chips with increasing background content. Each
percentage indicates the ratio of background cells relative to the
corresponding pixel count (i.e., 512%).

3.5 Material Classes

To ensure comprehensive and relevant material coverage, Roof-
Sense represents eight classes (Figure 4), informed by relevant
research (Wyard et al., 2023) and adapted to the typical Dutch
roof morphology, source datasets, and for the absence of prior
knowledge of the spatial distribution of certain materials (e.g.,
asbestos). Therefore, RoofSense balances generalisability with
regional specificity. The intended distinction between light-
and dark-coloured materials refers to their intrinsic colour un-
der neutral viewing conditions, unaffected by texture. As this
property is difficult to capture in aerial imagery, the actual dis-
tinction was subject to expert opinion. Finally, to accommod-
ate its inherent diversity, the tile class is intentionally broad,
encompassing asphalt shingles, ceramic, concrete, metal tiles,
etc., addressing morphological and data limitations which pre-
vented further subclassing (i.e., lack of prior knowledge).
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Figure 4. Material classes represented in RoofSense.
3.6 Annotation Process

Each ground truth mask was constructed by annotating the RGB
component of the corresponding chip in Roboflow Annot-
ate (Roboflow, 2025). Besides traditional tools, a semi-
automatic utility was used to annotate multiple nearby ob-
jects of the same material (e.g., solar panel arrays). All other
annotations were manual. Generally, objects larger than 1—
10 m? were annotated, depending on class. A special label
was used to denote ambiguous, irrelevant, or unknown ob-
jects (e.g., chimneys, electromechanical equipment, flashing,
gutters, ridge caps, vents, etc.) within valid annotation regions.
Isolated, irrelevant regions (e.g., facade segments', poorly illu-
minated surfaces, roofs under construction or featuring severe
clutter or unknown materials, etc.) were not annotated, and re-
creational areas (e.g., atria, balconies, decks, patios, etc.) were
ignored. Finally, the background was remasked to correct an-
notation errors along building edges, and all invalid and un-
labelled cells were mapped to it. The resulting material class
encoding is presented in Table 1.

Label - Colour - Name Label - Colour - Name

1 W Tile 2> Nl Dark-coloured
Membrane
3 Gravel 4 Light-coloured
Membrane
5 Light-permitting 6 Metal
Surface
7 A Solar Panel s M Vegetation

Table 1. Material class encoding in RoofSense.

' BMS is orthorectified using a digital terrain model, and hence elevated
objects suffer from lens distortion effects.

4. Benchmark Design
4.1 Dataset Splitting Scheme

RoofSense is inherently imbalanced due to factors influen-
cing local roof morphology (e.g., architecture, climate, zoning
laws, etc.). To preserve this imbalance, an iterative stratifica-
tion algorithm, inspired by Xiao et al. (2018), was developed.
First, RoofSense was randomly split into training (70%), val-
idation (15%), and test (15%) sets, ensuring non-zero pixel
support per class and split. Subsequently, the splits were
greedily optimised in a pairwise fashion by swapping ran-
domly selected elements to minimise the mean Jensen-Shannon
distance (mJSD) of the corresponding area-normalised histo-
grams. This process continued for 1000 swaps or until conver-
gence (AmJSD < 10~%). The entire routine was repeated 100
times, selecting the split with the lowest overall mJSD.

4.2 Class Weighting Scheme

Since RoofSense represents objects of varying typical promin-
ence and size, certain classes with relatively large pixel support
appear in few images, and vice versa (Figure 5).
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Figure 5. Pixel- and image-level class proportions in RoofSense.

To address this imbalance in the training set, a macroscopic
weighting scheme, inspired by term frequency-inverse docu-
ment frequency (Manning et al., 2008), was developed. Let
M = {Mie{0,1,...,cY"W =12, N} denote
the set of N := 300 ground truth masks, where each mask M,
is an H x W integer matrix, encoding the class of each pixel
in the corresponding image: O for the background and 1, ...,C
the C' := 8 material classes in RoofSense. Then, assuming that
C' > 2, the weight w, of a particular class c is defined as:
N N+1
- |1 _— 1l (1
> count (M;c) ["go (|M6|+1> i ] M
MeMm

We =

H W
where count (M;c) := Z Z dem;

i=1j=1

M :={M € M|count (M;c) > 0}

Here, ¢ denotes the Kronecker delta and m;; represents the
entry of M at its " row and j% column. The selected log-
arithmic base scales the information content of c based on its
overall prominence in RoofSense, relative to the remaining
classes. To prevent division by zero, |M€| is incremented by
one, effectively assuming an additional mask containing c. Fur-
thermore, a unit factor is added to the logarithmic component
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of Equation 1 to account for it being zero if c is present in all
masks. The background was assigned zero weight.

4.3 Data Augmentation Policy

To standardise its magnitude while preserving its physical in-
terpretation, each input band was individually scaled to [0, 1].
Images were also concatenated with the scaled CIELAB repres-
entation of their RGB component. Each image-mask pair un-
derwent sequential horizontal and vertical reflection, followed
by up to three 90° rotations, each with a probability of 50%.

4.4 Loss Function

The benchmark model was trained using a loss function based
on cross entropy (CE), weighted using the proposed scheme.
A label smoothing (Szegedy et al., 2016) factor of 10% was
applied to the target labels. To prevent rare classes (e.g., ve-
getation) from dominating more prominent ones (e.g., gravel,
membranes, solar panels, etc.), due to class weighting, CE was
combined with an unmodified Dice component (Milletari et al.,
2016), each with equal contribution. The background was ig-
nored.

4.5 Model Configuration & Training Protocol

The benchmark model was based on DeepLabv3+ (Chen et al.,
2018) and used a ResNet-18-D (He et al., 2019) encoder. En-
coder blocks were augmented with anti-aliasing (Zhang, 2019)
and efficient channel attention (Wang et al., 2020) modules.
The dilation rates in the atrous spatial pyramid pooling block
were set to (20, 15, 6). To mitigate labelling errors and improve
predictions in small regions, the decoder output stride was set
to 16. The encoder was initialised with pre-trained ImageNet-
1K weights (Wightman et al., 2021); the decoder was randomly
initialised. The resulting training protocol is in the implement-
ation repository.

4.6 Tiled Inference Strategy

Although the benchmark model was fully convolutional,
computational constraints necessitated a tiled inference
strategy (Section 5.2). Each input was masked and split
into 512 x 512 px2 patches with a 256 px overlap in a sliding
window fashion. Patch segments extending beyond the input
bounds were filled with zero. To minimise artefacts, patches
which did not border the input edges were cropped by 16 px.
Finally, overlapping probabilities were averaged.

5. Evaluation
5.1 Quantitative Evaluation

Test results using model checkpoint which achieved the highest
validation mean intersection over union (mloU) are presented
in Table 2. Generally, the macroscopic accuracy (84.99%) and
Fj score (84.20%) were similar to relevant works, although dif-
fering test datasets prevented direct comparison. Similarly, the
achieved mloU of 74.74% was considered competitive.

The model best detected gravel, membranes, metal, and tiles,
where the corresponding F; score and mloU were in the or-
der of 90% and 80%, respectively. This was expected as these
classes were not only the most prominent at the pixel-level but
also represent typically large, uniform objects on flat roofs,

Class Label Precision (%) Recall (%) ToU (%)
1 90.49 94.83 86.24
2 96.22 88.26 85.30
3 93.64 98.36 92.22
4 93.95 92.10 86.63
5 57.57 54.59 38.93
6 88.82 97.96 87.20
7 82.56 75.74 65.29
8 66.63 78.09 56.14
Overall Avg. Acc. (%) Avg. Fy (%) mloU (%)
84.99 84.20 74.74

Table 2. Test performance of the benchmark model.

which are associated with relatively higher performance due to
their morphology (Fiumi et al., 2014). Conversely, performance
degraded in light-permitting surfaces, solar panels, and vegeta-
tion. In the case of solar panels, errors primarily involved con-
fusion with tiles, with the low corresponding IoU suggesting
incomplete boundaries® or omissions. This was likely linked
to their relatively small inherent size and large decoder output
stride, particularly concerning black panels on dark or poorly
illuminated tiles (Figure 6a). The most significant issues re-
lated to light-permitting surfaces involved confusion with dis-
coloured skylights, light-coloured membranes, and metal of
similar hue (Figure 6b). Furthermore, confusion between veget-
ation and gravel was concentrated in a single test case featuring
a gravel-ballasted green roof with little healthy vegetation, ex-
posing both materials (Figure 6c).

Finally, the low precision and IoU in light-permitting surfaces
and vegetation suggested oversegmentation or hallucinations.
This was expected in the case of light-permitting surfaces (Fig-
ure 6d) due to their size and visual similarity with small, (i.e.,
<1-2 mz) reflective, metal objects, as well as the decoder out-
put stride. For vegetation, misdetections in dark regions (Fig-
ure 6e), albeit with low margin3 , potentially stemmed from an-
notation quality issues, adjacent tall vegetation, and modality
misalignment.

5.2 Qualitative Evaluation

Because the size of the test set (i.e., 45 images) limited the
impact of quantitative conclusions, additional qualitative eval-
uation was performed on a separate 3DBAG tile containing
buildings of varying use, including two with unrepresented ma-
terials. Tiled inference was performed according to Section 4.6.

In general, performance was best in isolated commercial and
industrial buildings with uniform flat roofs (Figures 9a and 9b),
consistent with test performance in the corresponding materi-
als. Conversely, the model struggled with adjacent residential
buildings featuring clutter and relatively small objects repres-
ented by materials featuring with and high inter- and intra-class
variability (Figure 7c). Suggesting the effectiveness of the test
set, and hence the proposed splitting scheme, this result was
also aligned with the corresponding quantitative results. Fur-
thermore, unknown materials were handled appropriately. For
instance, asphalt was mainly labelled as dark-coloured mem-
branes (Figure 7a-Top Left), the most visually similar class in
RoofSense.

2 Relatively high precision implied that positive predictions were gener-
ally smaller than the corresponding ground truth.

3 Defined as the difference between the top two corresponding probabil-
ities (Scheffer et al., 2001).
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Image Prediction

Image Prediction

(a) Commercial

(a) Omission of black solar panels installed on dark-coloured tiles.

(b) Industrial

(b) Confusion between light-permitting surfaces
and light-coloured membranes.

(c) Incomplete green roof detection.

(c) Residential

Figure 7. Tiled inference in various neighbourhoods using the
benchmark model.

RGB Lidar Prediction

(e) Vegetation hallucinations.

(a) Good alignment.
Figure 6. Characteristic prediction errors of the benchmark
model in the test set.

In summary, performance depended heavily on material and
building context (e.g., use, isolation, complexity, etc.), clutter,
and modality alignment (Figure 8).

5.3 Performance Impact of Lidar Data

To assess the performance impact of the lidar-derived compon-
ent, an ablation study was conducted (Table 3). Each experi-
ment was repeated three times using different seeds. The last
model checkpoint was used in the name of fairness.

In general, performance was only marginally affected by the

ablation of the lidar-derived component, indicating potential in- (c) Temporal misalignment due to AHN4 precedence.
terference amongst the corresponding bands, or with the RGB

component. Specifically, the reflectance and slope bands ap- Figure 8. Characteristic modality (mis)alignemnt cases in the
peared to offer little overall added value, with slope ablation test set. The lidar-derived component is visualised using the
even resulting in negligible mean segmentation improvement. reflectance band.

Furthermore, the limited effectiveness of the reflectance band

4 Incorrect prediction scores are negated and invalid regions ignored.
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Ablated Band APrecision (%) ARecall (%) AmloU (%)
Reflectance 0.58 £0.14 1.01 £0.16 0.07 £0.20
Slope 0.26 £0.26 0.58+0.21 0.11 £0.34
nDRM 0.85+0.29 1.24 £0.29 1.75£0.18
Density 1.76 £ 1.05 2.46 +0.63 2.85+1.12
All 0.08 +0.40 0.33+0.23 0.18+0.48

Table 3. Macroscopic test performance of the benchmark model
for each ablated band of the lidar-derived component of the
corresponding images. The mean of three trials and
corresponding standard error are reported relative to the
baseline. Negative changes are denoted in red.

was attributed to uncalibrated atmospheric, instrument, target,
and operating parameters (RIEGL, 2024). Although slope in-
formation may appear redundant at a macroscopic level given
the context provided by the nDRM band, its ablation actually
degraded performance in tiles, suggesting the importance of
lidar in providing relevant 3D cues for detecting materials on
pitched roofs.

Similarly, nDRM ablation resulted in relatively noticeable per-
formance degradation, supporting the contextual added value
of the corresponding band. This was reflected at the class level,
with a performance decrease observed in tiles, light-permitting
surfaces, and solar panels. The density band also appeared
to be impactful overall, and its removal disproportionately af-
fected segmentation performance in light-permitting surfaces
and solar panels, consistent with the implicit author assumption
that light-permitting surfaces were associated with low density.

The analysis also revealed more complex interactions between
the RGB and lidar-derived components. Specifically, the incor-
poration of lidar-derived features resulted in marginal perform-
ance degradation in certain classes. For instance, classification
performance in metal improved slightly when all lidar-derived
bands were removed. This outcome suggests that, for materi-
als with a highly distinct visual appearance due to colour, re-
flectance or texture (i.e., light-permitting surfaces, metal, solar
panels, etc.), lidar can introduce confounding signals rather
than complementary information, particularly due to modal-
ity misalignment. Similarly, performance in solar panels was
mixed. While slope, reflectance, and nDRM ablation gener-
ally decreased performance, the removal of the density band
particularly impacted segmentation more than classification. In
addition, the ablation of the lidar-derived component resulted
in a slight increase of the corresponding F; score. This finding
reflects scenarios where certain panels were easily identifiable
in the visible light spectrum, while lidar introduced conflicts in
other cases due to modality misalignment.

In summary, the performance effect of the lidar-derived com-
ponent, albeit potentially positive, was not immediately appar-
ent. This discrepancy with relevant works may stem from dif-
ferences in the particular study area and source datasets, the size
of RoofSense increasing uncertainty and limiting statistical sig-
nificance of such experiments, and the dominance of the RGB
component due to the annotation process in combination with
sensitivity to modality alignment. These results suggest that
the relatively simple pixel-level fusion strategy employed in the
context this paper may not be sufficient to optimally leverage
the complementary information provided by lidar, and that a
more refined approach to feature engineering (e.g., radiometric
reflectance calibration; Wu et al. 2021) and data fusion could
have yielded better results.

6. Conclusion

This paper addresses pressing research gaps in the field of roof-
ing material classification by introducing RoofSense, a mul-
timodal semantic segmentation dataset designed for use in di-
verse urban contexts, leveraging 8cm aerial RGB imagery
and ALS data. Representing eight diverse classes and spanning
more than 138 ha and 480 buildings across five Dutch cities,
RoofSense is the largest publicly available dataset of its kind.
Using an off-the-shelf model based on ResNet-18-D and Dee-
pLabv3+, RoofSense achieved competitive classification and
segmentation performance in a purpose-designed, comprehens-
ive benchmarking experiment, thus demonstrating the contem-
porary relevance of the underlying method, particularly a novel
weighting scheme to address class imbalance.

Despite this outcome, experimental results were ultimately
sensitive to material and building context, clutter, and modal-
ity alignment, hindering the otherwise positive effect of the in-
corporated lidar-derived features. A relevant ablation study re-
vealed that the performance impact of the lidar component was
marginal and, in certain cases, counterintuitive. This observa-
tion indicates that, despite the theoretical benefits of data fusion,
its implementation remains critical. Hence, the incorporated
features and corresponding preprocessing and fusion strategies
should be refined to better leverage the complementary inform-
ation provided by lidar while addressing clutter and modality
alignment issues. Furthermore, future work should focus on
extending RoofSense and enriching its annotation protocol with
semi-automated tools, facilitating the eventual inclusion of di-
verse geographic regions outside of the Netherlands to increase
its robustness and applicability. These efforts will further so-
lidify the role of semantic segmentation for roofing material
classification in enabling data-driven urban sustainability and
infrastructure management, particularly for applications such
as energy studies and material inventorying.
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