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ABSTRACT:

Image-based 3D reconstruction uncovers many applications in documenting the geometry of the environment. Nonetheless, the 
assumption that images are captured in clear air rarely holds in real-world settings where adverse weather conditions are inevitable. 
We are particularly interested in rain as dynamic occlusion which degrades image quality and can hinder complete and accurate 
3D scene reconstruction of the underlying features. In this contribution we analyze the geometry behind rain reconstructed by 
traditional Multi-View Stereo (MVS) and radiance field methods, namely: Neural Radiance Fields (NeRFs), 3D Gaussian Splatting 
(3DGS) and 2D Gaussian Splatting (2DGS). To assess the impact of rain to the 3D reconstruction we consider occlusion masks with 
different mask coverage. The results demonstrate that although MVS shows lowest accuracy errors, the completeness declines with 
rain. NeRFs manifest robustness in the reconstruction with high completeness, while 2DGS achieves second best accuracy results 
outperforming NeRFs and 3DGS. We demonstrate that radiance field methods can compete against MVS, indicating robustness in 
the geometric reconstruction under rainy conditions, allowing applicability to large-scale scenes, city modeling, digital twins and 
urban planning which is important for a multidisciplinary approach in problem-solving environmental challenges.

1. INTRODUCTION

Traditional Multi-View Stereo (MVS) recovers depth and geo-

metry from multiple images with known camera poses by search-

ing correspondences along epipolar lines, which is inefficient.

Moreover, MVS struggles with homogeneous areas (Remondino

et al., 2023) and occlusions (Petrovska and Jutzi, 2024, Pet-

rovska and Jutzi, 2025c) assuming Lambertian surfaces. Over-

coming these constraints, Neural Radiance Fields (NeRFs) (Mild-

enhall et al., 2021) involve training a neural network to create a

volumetric radiance field where the scene is represented impli-

citly by predicting density and color at any given 3D point from

images associated with viewing direction. However, NeRFs as-

sume controlled conditions and are computationally demand-

ing due to the costly ray marching. Furthermore, the continu-

ous density distribution stores points in empty space and may

contain multiple peaks, making it difficult for accurate surface

reconstruction (Wan et al., 2023b, Petrovska et al., 2023, Pet-

rovska and Jutzi, 2025a, Petrovska and Jutzi, 2025d). Recon-

structing scenes as radiance fields without the slow neural ren-

dering part, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023)

emerged as an explicit point-based 3D representation. Starting

from sparse points usually produced during camera calibration,

the scene is represented by 3D Gaussians with position, rota-

tion, scale, opacity and color. During optimization the Gaus-

sians are densified undergoing adjustments in color and shape,

until the photometric error between rendered and training im-

ages is minimized (Petrovska and Jutzi, 2025b).

Nonetheless, the assumption that images are captured in clear

air rarely holds in real-world setting where adverse weather

conditions are inevitable. Being a part of our environment, we

are particularly interested in rain as dynamic occlusion which

degrades captured image quality and can hinder complete and

accurate 3D scene reconstruction of the underlying geometry.
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In this contribution we qualitatively and quantitatively analyze

the geometry under rainy conditions reconstructed by traditional

MVS and radiance field methods, namely: NeRFs, 3DGS and

2DGS due to the different geometric representation addressing

accuracy and completeness. Our investigations are based on

real-world scenarios captured without and with camera flash to

investigate how different type and level of rain occlusions affect

the geometric reconstruction. The rain is always in front of the

object to investigate how the methods allow to reconstruct the

underlying geometry behind occlusions, thus investigating if ra-

diance field methods can challenge traditional MVS for scen-

arios where the latter falls short. To assess the impact of rain to

the 3D reconstruction we exclude the rain by considering occlu-

sion masks with different mask coverage. For comparability we

include an indoor scenario without occlusions. With a view to

aid the benchmark progress, the images and masks are available

at https://github.com/sqirrel3/STELLA because there is

no existing dataset dedicated to this problem setting.

In summary, our main contributions are:

• We show that radiance field methods: NeRFs, 3DGS and

2DGS can compete against MVS showing robustness for

a complete reconstruction under rainy conditions.

• We provide a comprehensive qualitative and quantitative

3D comparison among MVS, NeRFs, 3DGS and 2DGS

reporting accuracy and completeness.

• We introduce two scenarios tackling rainfall for the 3D re-

construction task.

We give an overview of radiance field reconstruction under rainy

conditions in Section 2. In Section 3 the applied 3D reconstruc-

tion methods are presented. The data capturing is explained in

Section 4. In Section 5 information about the evaluation metrics

along with implementation details is provided. The qualitative
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and quantitative results addressing accuracy and completeness

are presented in Section 6. The discussion is laid out in Section

7 and Section 8 concludes this contribution.

2. RELATED WORK

In the following, we summarize radiance field geometric re-

construction under rainy conditions and provide an overview of

current rain benchmark datasets.

Radiance Field Reconstruction with Rain. Tackling recon-

struction in adverse weather conditions, DehazeNeRF (Chen et

al., 2024) and ScatterNeRF (Ramazzina et al., 2023) learn a

separate representation of the clear scene and the participating

media for real-world scenarios. DerainNeRF (Li et al., 2024)

addresses the challenge of raindrop removal by leveraging a

NeRF-based network and a pre-trained detector. The rain is

masked leading to rain-free reconstruction. RainyScape (Lyu et

al., 2024) extends the reconstruction to rain streaks. WeatherGS

(Qian et al., 2024) and DeRainGS (Liu et al., 2024) address

the complexities of 3D reconstruction under rainy conditions

in synthetic and real-world setup. The 3DGS-based framework

learns rain-free novel views from rainy input images with rain-

drops and streaks. However, the rain is weak and the droplets

are small with regular circular shape. Additionally, the meth-

ods are more suitable for novel view synthesis since the scenes

have a small number of images and the rain occupies small im-

age parts.

Rain Benchmarks. Several benchmark datasets (Bijelic et al.,

2020, Xiao et al., 2023, Kenk and Hassaballah, 2020, Zhang et

al., 2023, Wan et al., 2023a, Vora et al., 2023, Pham et al., 2020)

focus on occluded parts behind rain droplets and streaks in real-

world setup. Nevertheless, the images are non-overlapping us-

ing single image annotations and masking for semantic extrac-

tion and object detection in adverse weather environments.

We can conclude that NeRFs and Gaussian Splatting (GS) meth-

ods are primarily focused on novel view synthesis hence, the

evaluation refers to the radiometric image quality. Moreover, a

critical aspect still remains unexplored; evaluating the underly-

ing geometry of object’s occluded parts behind rain occlusions.

We bring the evaluation from image to 3D metric space through

a point cloud comparison, addressing accuracy and complete-

ness to investigate if NeRFs and GS can challenge traditional

MVS. Current benchmark datasets tackling rain occlusions con-

sist of non-overlapping images and thus are only suitable for se-

mantic segmentation and object detection. In contrast, our two

rain scenarios consist of overlapping images with different rain

coverage, enabling 3D reconstruction and evaluation.

3. METHODOLOGY

We describe the applied 3D reconstruction methods in Section

3.1. The MVS dense scene representation is briefly summarized

in Section 3.1.1, in Section 3.1.2 the geometric reconstruction

of NeRFs is described, then the principles of 3DGS (Section

3.1.3) and 2DGS (Section 3.1.4) are laid out, followed by oc-

clusion mask generation in Section 3.2.

3.1 3D Reconstruction Methods

3.1.1 Multi-View Stereo (MVS). After feature extraction

and matching, to establish correspondences between the im-

ages, the camera poses are estimated through Structure-from-

Motion (SfM) (Schonberger and Frahm, 2016) which addition-

ally produces a sparse point cloud. Then, bundle adjustment to

minimize re-projection errors and refine the camera parameters

and 3D points is applied. This allows triangulation of corres-

ponding features in multiple images through pixel-wise com-

putation of depth information with MVS (Schönberger et al.,

2016). In a final step, the geometric consistent depth maps are

fused into a dense point cloud. Additionally, we consider the

occlusion masks (Section 3.2) in MVS by setting a value of 0

for the masked parts in the input images. The poses are input

for training NeRFs (Section 3.1.2), while the SfM sparse point

cloud is used for 3DGS and 2DGS initialization (Section 3.1.3

and 3.1.4).

3.1.2 Neural Radiance Fields (NeRFs). Given a set of cal-

ibrated images with corresponding poses, NeRFs (Mildenhall et

al., 2021) optimize an underlying continuous volumetric func-

tion. The multi-layer perceptron (MLP) neural network pre-

dicts volume density σ(x) ∈ R and view-dependent radiance

c(x, d) ∈ R
3 for a given 3D position x ∈ R

3 and viewing dir-

ection d ∈ R
3. The color is calculated as a weighted average

of accumulated radiance values along a ray r(t) = o + td, where

the ray origin o coincides with the camera’s projective center.

The neural network is trained by minimizing the image recon-

struction loss over training views through gradient descent, by

leveraging the mean squared error between rendered Ĉ(r) and

ground truth pixel color C(r) for a batch of camera rays R.

LNeRF =
∑

r∈R

∥

∥

∥
Ĉ(r)− C(r)

∥

∥

∥

2

(1)

With the occlusion masks M(u, v) ∈ [0, 1] (Section 3.2), we

train NeRF by restricting the masked pixels not to contribute to

the optimization in the photometric loss.

LNeRF MASK =
∑

r∈R

∥

∥

∥

(

Ĉ(r)− C(r)
)

⊙ (1−M)
∥

∥

∥

2

(2)

where ⊙ represents element-wise multiplication, 1 is a vector

with the same dimension as the mask M .

3.1.3 3D Gaussian Splatting (3DGS). Initialized on a sparse

point cloud, the scene is represented with many differentiable

3D Gaussians (Kerbl et al., 2023) parameterized by position

centered in the Gaussian mean µ ∈ R
3, covariance matrix Σ ∈

R
3×3 decomposed into a scaling vector s ∈ R

3 and a rotation

quaternion q ∈ R
4, opacity α ∈ [0, 1] and color c represen-

ted via spherical harmonics (SH). During training the Gaussian

parameters are optimized through gradient descent by many

rendering iterations to best fit the training dataset. The algorithm

progressively optimizes the scene by cloning, splitting and cull-

ing the Gaussians, resulting in a denser point cloud than the ini-

tial sparse point cloud. The 3D Gaussians are trained to minim-

ize the photometric loss which is a combination of DSSIM term

(Wang et al., 2004) and L1 loss for per-pixel color differences

computed between rendered Ĉ and ground truth C images with

λDSSIM = 0.2.

L3DGS = (1−λDSSIM )∥Ĉ−C∥1+λDSSIM DSSIM(Ĉ, C)
(3)

We consider the occlusion masks (Section 3.2) in the loss func-

tion restricting the gradients to learn only from the unmasked
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pixels. With an indexing operation the pixels corresponding to

masked parts (with 0 value) are replaced in the ground truth

image CM :

L3DGS MASK = (1− λDSSIM )∥Ĉ − CM∥1

+λDSSIM DSSIM(Ĉ, CM ) (4)

The Gaussian mean is considered object geometry as point cloud.

For visualization purposes, we color code the point cloud by

converting the SH back to RGB values.

3.1.4 2D Gaussian Splatting (2DGS). Employing ray-splat

intersection, a 2D Guassian splat (Huang et al., 2024) is charac-

terized by its central point pk, two principal tangential vectors

tu and tv , rotation matrix R = [tu, tv, tw] and a scaling vector

S = (su, sv) controlling the size and shape of the 2D Gaus-

sian surfels, opacity α ∈ [0, 1] and view-dependent appearance

c parameterized by SH. The parameters are learned through

gradient descent between rendered and ground truth images.

Since optimizing solely with photometric loss can lead to noisy

reconstruction, two additional regularization terms are intro-

duced: depth distortion LD to minimize the distance between

ray-splat intersections and normal consistency LN which min-

imizes discrepancies between the rendered normal map and the

rendered depth.

L2DGS = L3DGS + αLD + βLN (5)

Following the original implementation, α = 1000 for bounded

scenes, α = 100 for unbounded scenes and β = 0.05 for all

scenes. Subsequently, considering the occlusion masks (Sec-

tion 3.2) the total loss is minimized guiding the algorithm not

to propagate for the masked image pixels.

L2DGS MASK = L3DGS MASK + αLD + βLN (6)

We consider the center of the Gaussian disks as point cloud

representation and color code the point cloud by converting the

SH back to RGB values.

3.2 Occlusion Masks

To investigate how different type and level of rain occlusions

affect the geometric reconstruction, we consider binary masks

M(u, v) ∈ [0, 1] (Table 1). We first convert the images to gray

scale and apply histogram equalization for contrast enhance-

ment. We generate the binary masks by filtering through in-

tensity values. For General-Rain: if gray value is between 150

and 200 set mask to 0, otherwise set to 1, while for Illuminated-

Rain the threshold is between 250 and 255. However, due to

the brightness the plate is also masked, so we derive annota-

tions using Segment Anything Model (SAM) (Kirillov et al.,

2023) in Roboflow1, then with Boolean operations subtract that

part from the masks. Captured without camera flash the rain

appears as continuous streaks, while with flash as large elong-

ated droplets. The zero-valued pixel coverage is 23.99 and 4.29

respectively. For simplicity and readability we round the per-

centages to 24 and 4. The masks are in the same 1840x1228px

resolution and .png format as the images.

1 https://roboflow.com/

Table 1. Occlusion rain masks for both scenarios without and

with flash. The rain is always in front of the object with 24% and

4% masked pixels accordingly.

Scenario General-Rain Illuminated-Rain

RGB Image Preview

Binary Mask Preview

Without Flash With FlashDescription

Percentage 24% 4%

4. DATA

The images for both rain scenarios are captured outdoors with

Nikon D810 SLR digital camera with a 36MP sensor, 20mm

focal length and f/8 aperture size. Due to the high resolution,

the camera is mounted on a tripod to prevent shivering and vi-

brations during acquisition. The object behind rain whose geo-

metry ought to be evaluated is a 0.7m tall Buddha statue (further

on referred to as object) on a rectangular plate. The object is

placed on a chair and the images are captured from two camera

heights of approximately 0.6m and 1.4m (Figure 1) in a circu-

lar trajectory from a uniform distance around the object for full

coverage (Figure 2). To generate rain occlusions, we pour water

from a watering can in front of the object and capture images

from same positions without and with flash, thus acquire two

scenarios: General-Rain and Illuminated-Rain. Each scenario

consists of 125 images with 1840x1228px resolution in .png

format for lossless compression.

(a) (b)

Figure 1. Image capturing setup from two camera heights of ap-

proximately (a) 0.6m and (b) 1.4m for full coverage. We simulate

rain by pouring water from a watering can in front of the object

and capture images from same positions without and with flash.

5. EXPERIMENTS

We first explain the 3D evaluation metrics, followed by the im-

plementation details for each 3D reconstruction method.

3D Evaluation. As ground truth, we use a mesh generated

using Structured Light Imaging (SLI) with 0.1mm accuracy.

We remove redundant data and keep just the object. All point

clouds are aligned in the same metric space as the ground truth

for qualitative and quantitative evaluation addressing accuracy

and completeness. The geometric distortions are estimated by:

Mean Error (Mean), Standard Deviation (SD) and Root Mean
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Squared Error (RMSE). Completeness (Cpl) is calculated as the

ratio of covered points to the total number of points in the refer-

ence cloud within 5mm distance threshold. Thus, we converted

the mesh into a point cloud by evenly subsampling 10M points

on the mesh.

Implementation Details. We use COLMAP2 as it implements

an end-to-end MVS pipeline. As NeRF representative we train

Nerfacto (Tancik et al., 2023) in Nerfstudio3 v1.1.0. with de-

fault parameters without pose refinement. In the original imple-

mentation, we use the default hyperparameters for 3DGS and

2DGS. NeRFs and GS are trained for 30.000 iterations with

every 8th frame taken for test. Training and evaluation are per-

formed on a Nvidia RTX3090. The accuracy is calculated in

CloudCompare4, while the completeness in our python script.

(a) (b)

Figure 2. Image capturing trajectory with visualized camera

poses for both rain scenarios (a) without and (b) with flash. The

red rectangle indicates (11) images not taken for pose estima-

tion due to homogeneous and repetitive texture, challenged by

the rain.

6. RESULTS

We report qualitative, where the geometric reconstruction as

point clouds are visualized (Figure 3) as well as the cloud-to-

mesh errors (Figure 4) and quantitative results addressing ac-

curacy and completeness for each method separately (Table 2).

Overall, MVS demonstrates superior accuracy in all scenarios

with lowest error displacements among the methods. How-

ever, it struggles to reconstruct object’s geometry behind oc-

clusions, especially in Illuminated-Rain and Illuminated-Rain

Masks where only the edges are reconstructed resulting in low

completeness scores of 31.57% and 18.89% respectively. Due

to the costly dense matching, MVS reconstruction time is above

1h enough for third place. On the other hand, radiance field

methods provide higher point coverage and perform better un-

der rainy conditions, able to approximate the geometry of the

occluded object parts. Although NeRF exhibits highest RMSE

of above 10 and 20mm in General-Rain and Illuminated-Rain

it shows robustness in the reconstruction as the surface repres-

entation remains stable with highest and second highest com-

pleteness scores. This is complimented by fastest training time

within few minutes without and with masks. 3DGS struggles

with accuracy and completeness, but maintains stable recon-

struction in both rain scenarios and the masks don’t have a

strong impact on the evaluation metrics. Regarding training

time, the performance is moderate with slightly more than 30min.

2DGS exhibits second best accuracy outperforming NeRF in all

scenarios and highest completeness in Illuminated-Rain without

and with masks. However, challenged by the complex light

2 https://github.com/colmap/colmap
3 https://github.com/nerfstudio-project/nerfstudio
4 https://github.com/CloudCompare/CloudCompare

transmission properties of the rain as it assumes surfaces with

full opacity, it fails to reconstruct the object in General-Rain

Masks. After around 14.000 iterations it runs Out Of Memory

(OOM) caused by an explosion in Gaussian count as it adds

Gaussians per-view optimizing in screen space. This explains

the slow training time of above 6h in rainy conditions.

NeRF, 3DGS and 2DGS show lower accuracy than MVS since

the optimization is based on minimizing the difference between

predicted and actual pixel color from the input images through

gradient descent without additional geometric constraints. On

top of that, artifact points inside the object which are projec-

tions from input views that weren’t moved into their correct

place geometrically are present which distort the accuracy and

don’t contribute to the completeness. Thus, the error displace-

ments tend to increase faster to the negative because those are

the points behind the mesh surface. The errors with positive

values lie above the nearest mesh triangle and thus most likely

represent noise and outlier points. We can also observe color

differences in the point clouds among the scenarios. Original

is captured indoors under controlled lighting, which is different

from General-Rain and Illuminated-Rain captured outdoors un-

der different camera exposure, without and with camera flash.

7. DISCUSSION

The geometric reconstruction under rainy conditions depends

on the 3D reconstruction method, image capturing setup and

rain occlusion masks. In both scenarios, the rain acts as semi-

transparent dynamic reflections that can blend into the back-

ground and may be misinterpreted as actual scene geometry,

leading to incorrect depth estimates. Captured with flash, the

rain appears as bright, high-contrast spots creating distinct oc-

clusions imposing challenges for all methods leading to reduced

accuracy and completeness metrics compared to without flash

(Table 2).

During pose estimation, specular reflections cause mismatches

between corresponding points in different images. Moreover,

the presence of glare can distort or eliminate key features neces-

sary for accurate feature extraction and matching. Complemen-

ted by homogeneous background and repetitive texture, in total

11 images captured from the right object side (Figure 2(b)) are

not taken for pose estimation in Illuminated-Rain. Additionally,

multi-path reflections where light bounces off multiple reflect-

ive surfaces before reaching the camera may confuse the match-

ing algorithm to incorrectly associate features from different

reflections, leading to erroneous depth information and distor-

tions in the 3D reconstruction (Previtali et al., 2024). Thus,

MVS struggles to reliably reconstruct the object geometry with

low completeness scores (Figure 3).

Although NeRF achieves second best completeness score in all

scenarios, the accuracy is lowest among the methods due to

the ambiguity between light-reflecting solid surfaces and light-

scattering atmospheric particles since both are interchangeably

modeled as a light-emitting volume.

Overlapping rain streaks create uncertainty in Gaussian place-

ment, especially for 2DGS. Since the 3D Gaussians are pro-

jected to screen space and evaluated in 2D, per-view Gaussi-

ans may be misaligned, leading to incorrect surface orienta-

tion. The raindrops create many small, high-intensity Gaussians

which can collapse to very small points in screen space increas-

ing computational complexity. This explains the long training
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Figure 3. Point cloud reconstruction for both rain scenarios without and with masks. MVS completeness is significantly affected, while

NeRF exhibits highest point coverage indicating robustness in the reconstruction. 3DGS struggles with point coverage, but maintains

stable reconstruction under masks. 2DGS fails in General-Rain Masks running Out Of Memory caused by an explosion in Gaussian

count. Captured with flash the rain creates distinct occlusions, thus Illuminated-Rain imposes bigger challenges for all methods.
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Figure 4. Geometric accuracy through cloud-to-mesh distances against the ground truth mesh. Positive values indicate points above

the mesh and negative when behind. Except MVS, the reconstructed point clouds have artifact points inside the object with high errors

degrading the accuracy. 2DGS fails in General-Rain Masks running Out Of Memory caused by an explosion in Gaussian count.
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Table 2. Quantitative cloud-to-mesh results addressing accuracy and completeness along with training time. 2DGS exhibits second best

accuracy just behind MVS, experiencing slowest reconstruction. With fastest training time, NeRF shows poor correspondence with the

ground truth, however maintaining stable point coverage. The first , second and third best results are highlighted.

Scenario Method
Accuracy (mm) Completeness (%)

Time↓
Mean↓ SD↓ RMSE↓ Npts Cpl↑

Original

MVS 0.16 1.42 1.43 845.456 97.35 1h 22min

NeRF -2.10 3.78 4.32 842.308 96.13 16min

3DGS -2.02 4.29 4.74 352.298 82.75 33min

2DGS -1.22 3.59 3.79 156.465 90.73 54min

General-Rain

MVS 0.42 2.15 2.19 313.555 70.97 1h 13min

NeRF -5.98 10.37 11.97 330.299 86.55 14min

3DGS -2.93 7.89 8.42 53.995 41.79 34min

2DGS -1.07 7.19 7.27 41.470 59.19 6h 52min

General-Rain Masks

MVS 0.38 2.08 2.12 219.572 64.78 1h 22min

NeRF -5.21 9.62 10.94 232.297 85.87 13min

3DGS -2.86 8.01 8.50 42.493 40.53 32min

2DGS Failed

Illuminated-Rain

MVS 0.38 5.45 5.46 46.918 31.57 1h 05min

NeRF -11.69 17.32 20.89 48.546 36.88 13min

3DGS -1.82 10.36 10.52 20.619 25.12 31min

2DGS -1.96 10.13 10.31 18.531 37.11 5h 41min

Illuminated-Rain Masks

MVS -1.08 5.32 5.43 20.741 18.89 1h 13min

NeRF -11.39 16.72 20.23 20.672 26.51 12min

3DGS -1.79 10.19 10.35 20.352 25.13 32min

2DGS -2.00 10.12 10.32 18.450 34.63 7h 38min

time of above 6h in rainy conditions (Table 2). With high opa-

city, their movement can cause significant pixel changes, lead-

ing to pronounced positional gradients. Moreover, some points

project smaller than one pixel, resulting in their covariance be-

ing replaced by a fixed value. Consequently, these points can’t

properly adjust their scale and rotation causing rapid gradient

accumulation. This triggers exponential increase in Gaussian

count as 2DGS keeps adding Gaussians per-view leading to

OOM after approximately 14.000 iterations. Until 7.000 itera-

tions the number of Gaussians is around 3.6M, almost the same

as 3DGS after 30.000 iterations (Table 3).

Table 3. We use SfM for GS initialization (No. of Points). We

report the number of Gaussians after 30.000 iterations, except

for 2DGS in General-Rain Masks until 7.000 (*) because it runs

OOM after around 14.000 iterations due to high Gaussian count.

Scenario Method No. of Points Gaussian Count

Original
3DGS

42.580
1.893.679

2DGS 822.797

General-Rain
3DGS

123.761
4.857.840

2DGS 5.093.434

General-Rain Masks
3DGS

123.761
3.909.893

2DGS 3.562.482*

Illuminated-Rain
3DGS

76.395
4.035.943

2DGS 3.255.605

Illuminated-Rain Masks
3DGS

76.395
4.117.921

2DGS 3.849.476

The occlusion masks also have limitations. Although we ap-

plied histogram equalization to adjust the pixel intensity dis-

tribution, the elongated rainfall effects are not masked in both

scenarios, especially without flash (Figure 5) due to the low

contrast and semi-transparency. This imposes challenges for

the 3D reconstruction methods especially 2DGS which optim-

izes per-image causing it to fail in General-Rain Masks. Fur-

thermore, object parts not being rain are masked, causing gaps

in the geometry especially noticeable in MVS. Although the oc-

clusion percentage for General-Rain is 24% (Table 1), some of

the background and floor is masked and rain steaks are missed.

In contrast, in Illuminated-Rain captured with flash the mask

percentage is 4 but the rain occupies bigger image part.

General-Rain Illuminated-Rain

Figure 5. Mask overlay for both rain scenarios. The rain streaks

are missed and non-occluded object parts are masked, challen-

ging the 3D reconstruction methods.

8. CONCLUSION

We provide a qualitative and quantitative analysis of the accur-

acy and completeness of the 3D geometry behind rain recon-

structed by traditional MVS and radiance field methods: NeRF,

3DGS and 2DGS. We acquire two real-world rain scenarios

captured without and with flash from the same camera position

for compatibility. To investigate the impact of rain occlusions

on the 3D reconstruction we consider occlusion masks. Cap-

tured with flash, the rain appears as bright, high-contrast spots

creating distinct occlusions imposing bigger challenges for all

methods. MVS excels in pin-point accuracy, however the com-

pleteness declines under rain conditions, making it sensitive

to occlusions. NeRF exhibits robustness in the reconstruction

with high completeness. 3DGS struggles to reliably reconstruct

the geometry behind rain, while 2DGS outperforms NeRF and
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3DGS regarding accuracy in all scenarios. We demonstrate that

radiance field methods can compete against traditional MVS,

showing robustness in rainy conditions. Moreover, we indic-

ate radiance fields ability to reliably reconstruct the geometry

behind rain showing potential for larger geospatial scenes.

REFERENCES

Bijelic, M., Gruber, T., Mannan, F., Kraus, F., Ritter, W., Diet-
mayer, K., Heide, F., 2020. Seeing through fog without seeing
fog: Deep multimodal sensor fusion in unseen adverse weather.
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 11682–11692.

Chen, W.-T., Yifan, W., Kuo, S.-Y., Wetzstein, G., 2024. De-
hazenerf: Multi-image haze removal and 3d shape reconstruc-
tion using neural radiance fields. 2024 International Conference
on 3D Vision (3DV), IEEE, 247–256.

Huang, B., Yu, Z., Chen, A., Geiger, A., Gao, S., 2024. 2d gaus-
sian splatting for geometrically accurate radiance fields. ACM
SIGGRAPH 2024 conference papers, 1–11.

Kenk, M. A., Hassaballah, M., 2020. DAWN: vehicle detection
in adverse weather nature dataset. arXiv:2008.05402.

Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G., 2023. 3D
Gaussian Splatting for Real-Time Radiance Field Rendering.
ACM Trans. Graph., 42(4), 139–1.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gust-
afson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo, W.-Y. et al.,
2023. Segment anything. Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 4015–4026.

Li, Y., Wu, J., Zhao, L., Liu, P., 2024. Derainnerf: 3d scene
estimation with adhesive waterdrop removal. 2024 IEEE Intern.
Conf. on Robotics and Automation (ICRA), IEEE, 2787–2793.

Liu, S., Chen, X., Chen, H., Xu, Q., Li, M., 2024. De-
RainGS: Gaussian Splatting for Enhanced Scene Reconstruc-
tion in Rainy Environments. arXiv preprint arXiv:2408.11540.

Lyu, X., Liu, H., Hou, J., 2024. Rainyscape: Unsupervised
rainy scene reconstruction using decoupled neural rendering.
Proceedings of the 32nd ACM International Conference on
Multimedia, 10920–10929.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., Ng, R., 2021. Nerf: Representing scenes as
neural radiance fields for view synthesis. Communications of
the ACM, 65(1), 99–106.
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