ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D Geolnfo Conference 2025, 2-5 September 2025, Kashiwa, Japan

Unsupervised Domain Adaptation for Remote Sensing Data Classification Model Transfer

Melanie Boge, Dimitri Bulatov, Edwin Deisling, Gisela Haufel, Kevin Qiu

Fraunhofer IOSB Ettlingen, Germany - (melanie.boege @iosb.fraunhofer.de)

Keywords: Histogram matching, Canonical Correlation, DeepLab, Random Forest

Abstract

In this paper, we explore the application of domain adaptation techniques for semantic land cover segmentation using aerial remote
sensing data. We leverage canonical correlation and histogram matching to facilitate the transfer of knowledge from pre-trained
classification models to new datasets without the need for additional labeled data. Specifically, we perform Canonical Correlation
to align feature distributions between the source and target domains and Histogram Matching to enhance the correspondence of
pixel distributions across datasets. The effectiveness of these domain adaptation techniques is assessed through improvements
in semantic segmentation performance of the Random Forest and DeepLabV3+ classifiers on German city datasets. Our results
indicate a substantial increase in segmentation accuracy when using domain adaptation methods. Furthermore, we examine the
role of elevation data, represented by Normalized Digital Surface Models (NDSM), which enhances segmentation performance on
unseen datasets. These findings underscore the efficacy of domain adaptation and the value of elevation data in remote sensing
classification, particularly in dynamic environments where models encounter new datasets.

1. Introduction

In recent years, the rapid advancement of machine learning has
led to the development of powerful classification and semantic
segmentation models capable of achieving remarkable perform-
ance on various tasks. However, these models are often trained
on specific datasets, which can limit their effectiveness when
applied to different data sources. This phenomenon, known as
domain shift, occurs in the case when the distribution of the
training data differs significantly from that of the target data.
Consequently, models that perform well in one domain may ex-
hibit degraded performance in another, leading to challenges in
real-world applications.

Domain adaptation (DA) has emerged as a crucial area of re-
search aimed at bridging this gap between training and target
domains. By leveraging knowledge from the source domain,
DA techniques facilitate the transfer of classification models to
new environments, enabling them to generalize better to unseen
data distributions. This transfer is crucial in numerous fields,
such as medical imaging, speech recognition, and remote sens-
ing classification tasks, where labeled data in the target domain
may be scarce or expensive to obtain.

As shown in the next section, most DA methods rely on adapt-
ing features derived from the target domain images rather than
modifying the classification models themselves. We assume the
existence of a pre-trained model that is optimized for a source
dataset while adapting the target dataset to align with the train-
ing source data. This process enhances the model’s applicabil-
ity to a different dataset, allowing it to maintain its effectiveness
even when faced with variations in data characteristics. As we
continue to confront challenges posed by diverse data condi-
tions in practical applications, it is imperative to explore and
develop effective domain adaptation strategies that successfully
utilize pre-trained models across varying data sources.

Domain adaptation is significant in high-resolution airborne re-
mote sensing (RS) because the images can vary significantly
due to different acquisition conditions, atmospheric effects, or

changes in the observed objects. Even when elevation data
is available, occlusions and intense variations of appearances
within the same class are abundant in urban terrain. At the same
time, access to labeled data is costly.

In this paper, we focus on methods to align the feature distri-
butions between the source (S) and target (7) domains for RS
applications in urban areas. We seek methodologies that are in-
dependent of labeled data and can effectively handle various
remote sensing (RS) data modalities. While some advanced
techniques demand extensive training data, such resources are
often limited in many remote sensing contexts. Deep learn-
ing approaches, particularly Generative Adversarial Networks
(GANS), require substantial computational power and can be
challenging to train. Additionally, there is a risk of overfitting
with these powerful methods, especially when working with
smaller datasets, which should be avoided. In contrast, tradi-
tional methods mitigate these risks and provide the added bene-
fit of producing results that are generally easier to understand
and interpret. This clarity is crucial in applications where hu-
man decision-making relies on these outcomes.

Two methods, among others, fulfill these requirements: Ca-
nonical Correlation Analysis (CCA) can effectively align fea-
tures across domains by maximizing the correlation between
the source and target feature sets. A further simple and effect-
ive tool of domain adaptation techniques is histogram match-
ing (HM), which effectively aligns the intensity distributions of
source and target images. We employ the conventional Random
Forest (RF) classifier and a Deep-learning-based semantic seg-
mentation method (DeepLabV3+) for land cover classification,
adjusted to take multi-modal data as input.

2. Related Work

After reading a few survey papers [Tuia et al., 2016, Wang and
Deng, 2018, Xu et al., 2022], we could conclude that there are
four main categories of methods for DA, whereby the bound-
aries between them are often fuzzy, so that one can mention a
fifth category, denoted hybrid methods.
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The first family of DA methods is based on the selection of
invariant features, which exhibit a certain robustness regard-
ing their change from the source to the target domain. Ac-
cording to [Tuia et al., 2016], a trade-off must be found here
between the domain shift between the features in the subset
and their discrimination capability regarding the separation of
classes [Bruzzone and Persello, 2009].

Secondly, selection can affect not only features but also the
data points. In this case, we speak about instance weighting.
In [Cai et al., 2024], the authors cluster target domain samples
based on entropy, which helps dynamically produce more ac-
curate pseudo-labels and align clean subdomains with noisy
ones. Techniques like the self-adaptive pseudo-label assigner
(SPA) adjust class-wise confidence thresholds to generate high-
quality pseudo-labels, which are crucial for reducing domain
bias [Han et al., 2024]. The data-invariant samples can also be
synthetic [Cai et al., 2023]. For example, the network SRDA-
Net [Wu et al., 2022] simultaneously performs super-resolution
and domain adaptation tasks, addressing resolution discrepan-
cies and enhancing the segmentation accuracy, particularly for
small objects.

Thirdly, adjusting the classifier opens the way to semi-super-
vised classification or active learning. Either way, the paramet-
ers of a pre-trained learner are fine-tuned using a few labeled
samples of a new dataset. Adding new data references is costly,
so they must be carefully selected. In their survey, [Tuia et
al., 2016] mentioned a DA technique based on jointly consider-
ing the information contained in the source and target domains
within a Bayesian framework [Bruzzone and Prieto, 2002]. The
work of [Huang et al., 2024] represents a more recent example
of this category of methods. The Joint Distribution Adaptive-
Alignment Framework (JDAF) combines marginal and condi-
tional distribution alignment to dynamically update and align
feature representations, enhancing the model’s adaptive perfor-
mance. The authors optimize the parameters of a backbone net-
work so that the method is deep-learning-based. The method
called Class Centroid Alignment aligns class centroids between
domains by moving target domain samples toward the source
domain, making the data distributions more similar and improv-
ing classifier performance [Zhu and Ma, 2016].

The last and most popular category of methods is to perform
domain transfer while keeping the classifier and the sample in-
dices fixed. For unsupervised domain adaptation, traditional
methods include multidimensional histogram matching, data
alignment with PCA [Inamdar et al., 2008], KPCA (kernel Prin-
cipal Component Analysis, [Nielsen and Canty, 2009]), or CCA
(Canonical Correlation Analysis) [Volpi et al., 2015]. Trans-
formation into new, latent space is often implicitly combined
with de-noising, opening the way to sparse representations and
low-rank reconstructions, which are meant to avoid the influ-
ence of outliers and noise in the source domain samples. Al-
though many representation-based domain adaptation methods
attempt to find a total transformation matrix for all samples in
the source domain and ignore the individual changes in each
class, [Shi et al., 2015] attempt to find new representations for
samples in different classes in the source domain by multiple
linear transformations. Furthermore, manifold alignment meth-
ods apply the maximum mean discrepancy method to the non-
linear projections of the feature vectors to adjust the distribu-
tions of source and target domains. Three types of manifold
learning, according to [Liu et al., 2021], are locally linear em-
beddings, Laplacian Eigenmaps, and local tangent space align-
ment. All this is done to maintain the characteristics of the ori-

ginal data structure in the transformed domain for which [Liu
et al., 2021] have proposed a manifold regularization frame-
work. Deep-learning-based approaches have been subdivided
into generative, adversarial, and self-training [Xu et al., 2022].
Generative methods presuppose (deep-learning-based) transfor-
mation from target to source [Wittich and Rottensteiner, 2021]
or vice versa. In the first case, the model of S is applied to the
modified data of T, and in the second case, it is trained on the
modified data of .S and then applied to 7". The typical losses to
be minimized often result from cyclicity (transform from one
domain to another and back must match the first). However,
other penalty terms, such as “visiting loss”, intended to ensure
that pixels from the other domain are visited wherever possible,
have also been proposed. Again, here, the authors of [Wittich
and Rottensteiner, 2021] balance the classification accuracy and
generation quality by training the transferred samples with the
same classifier as the original ones. In the second case, the
transfer affects feature vectors, and new images are not gen-
erated. As a frequently cited example, [Ganin and Lempitsky,
2015] introduced a technique called domain-adversarial neural
network architecture that consists of a feature extractor, a label
predictor, and a domain classifier and minimizes the so-called
domain confusion loss within the training process. The do-
main classifier’s goal is to distinguish between features from
the source and target domains, while the feature extractor aims
to confuse the domain classifier. This adversarial training en-
courages the model to learn domain-invariant features. Here,
advanced concepts like attention and self-attention can be ap-
plied. For example, a multi-level attention mechanism, which
includes a feature level attention generated by shallow features
and an entropy level attention produced by a deep discriminat-
ive feature, was presented in [Zheng et al., 2020]. In this regard,
the fastest progress is achieved by self-learning algorithms, of-
ten based on visual transformer outputs that have been pre-
trained on massive data sets. However, integrating elevation
data is problematic because typical computer vision methods
only work with RGB data. To summarize, we will stick to this
last category and present two methods for domain adaptation
that do not rely on labeled examples.

3. Methodology

In this work, we perform DA using multi-modal RS images
of two close-range datasets, described in more detail in Sec-
tion 4. We consider the raw image channels (red, green, blue,
and near-infrared (NIR)), the relative elevation, and the so-call-
ed planarity map (PMAP). The relative elevation, denoted as
Normalized Digital Surface Model (NDSM) in RS, in the case
it is not provided, can be retrieved from the absolute elevation
and the ground model using one of the numerous methods pre-
viously developed, such as [Bulatov et al., 2012, Piltz et al.,
2016]. PMAP assesses how likely a neighborhood of a single
pixel can be approximated by a plane. It is computed from
the eigenvalues of a structural tensor [Gross and Thoennessen,
2006]. In our implementation, additional robustness has been
proposed for a given DSM rather than a purely 3D point cloud.
Hereby, pixels with elevation jumps from the structural tensor
formation are ignored. To take into account texture information
for the superpixel-based Random Forest, we retrieved the re-
sponses of the rotationally-invariant MRS filter bank of Varma
and Zisserman [Varma and Zisserman, 2005] from the intensity
and NDSM image.
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3.1 Domain Adaptation Methods

3.1.1 Canonical Correlation Analysis CCA is important
for DA in image analysis. It aligns the feature spaces of source
and target domains by maximizing correlations between their
feature representations, reducing domain discrepancies, and im-
proving model performance. CCA is a statistical method for ex-
ploring the relationships between two multivariate datasets by
identifying linear combinations of variables that maximize their
correlation. Given two datasets S € R" P and T' € R"*9,
where n is the number of observations and p and ¢ are the
number of variables in each dataset, CCA seeks to find linear
transformations U = SW, and V' = TW, that maximize the
correlation between the resulting canonical variables U and V.
Hereby, W, and W, are weight matrices that define the linear
combinations for S and T, respectively.

The canonical correlation can be mathematically expressed as:

_ Cov(U,V) 0
r= /Var(U) - Var(V)’

and the goal of CCA is to maximize p subject to the constraints:
W, S W, =T and W,' S, W, = I, 2

where ¥, and X4, are the covariance matrices of S and 7" and
I the identity matrix. By S’ = (U — mean(U) + mean(V)) -
W, ! we compute the adapted data. Note that the CCA can
only be applied to random variables of the same size. In this
paper, we replicate the shorter dataset to match the larger one,
ensuring that no image information is lost, even at the cost of
some redundant information.

3.1.2 Histogram Matching HM is a valuable tool in image
processing that allows the adjustment of image histograms to
achieve desired visual characteristics. This enhances the inter-
pretability and analysis of images in various applications. In
a nutshell, it is a technique in image processing used to adjust
the histogram of a source image to resemble the histogram of
a target image. The primary goal of this method is to modify
the source image to enhance its visual quality or to standard-
ize the appearance of images captured under different lighting
conditions or environments.

The algorithm for HM involves three steps. First, for each fea-
ture of both the source and the target image, we compute the
probability density function p of each pixel value r; among all
n pixels and the corresponding cumulative distribution function
(CDF)

k
CDF(ry) = Zp(rj), k € {pixel values}, 3)

=0

represented by a cumulative histogram. Second, a mapping
M is created from the intensity values of the source image to
those of the target image based on the normalized CDFs, such
as CDFsource ($) < CDFiarget(t), M(s) = t. Finally, this map-
ping is applied to the source image to generate the matched out-
put image. Therefore, the intensity values in the source image
are replaced with the mapped values according to the mapping
function.

One interesting theoretical question deals with filter banks, such
as [Varma and Zisserman, 2005]. Its filters are primarily based

on gradient operators (G), and performing both M (G(s)) and
G(M(s)) has certain advantages and disadvantages. The for-
mer strategy presupposes applying HM directly to the output of
the filter banks of S and 7. This approach could work if the
derivatives V.S and VT have similar statistical distributions.
However, derivatives often amplify noise and may not have dis-
tributions as smooth or comparable as the original features. Ap-
plying HM directly on derivatives might yield less reliable res-
ults if the derivatives are noisy or irregular. Hence, we opt for
the latter strategy, which preserves the statistical relationship
between S and T before gradient calculation.

3.2 Classification Models

3.2.1 Random Forest REF, [Breiman, 2001] is an ensemble
learning method widely used for classification (and regression)
tasks. It operates by constructing multiple decision trees during
training and outputting the classification probability p. as the
relative frequency of individual trees.

pe(s) = ne(s)/n, )

ne(s) is the number of trees voting for the class of instance s
(pixel or superpixel) to be ¢, and n is the total number of trees.
The class of s corresponds to the most frequent tree.

Random Forest is a quite popular conventional classifier due
to its ease of use, minimal parameter tuning, ability to handle
missing values and categorical features effectively. This en-
semble approach enhances predictive accuracy and controls
overfitting by increasing the minimum leaf size parameter, mak-
ing RF particularly robust in handling large datasets with high
dimensionality, including those with multi-modal data.

In our application, the number of trees was set to 20 while the
minimum leaf size parameter was set to 4. These are default
values for the configurations mentioned in Section 4. Also, we
accelerated the computation by training and evaluating the RF
on superpixels retrieved using the SLIC algorithm [Achanta et
al., 2012], which is quite fast and easy-to-use.

3.2.2 DeepLab Convolutional Neural Networks (CNNs)
are a significant advancement in image segmentation. Unlike
RF, which relies on handcrafted features, CNNs automatically
learn hierarchical features from the data, capturing complex
spatial relationships. In computer vision, the input modalit-
ies are usually limited to RGB images. However, additional
modalities exist in RS, like more spectral bands or elevation
information. We therefore follow to [Qiu et al., 2022] and ex-
tend a supervised state-of-the-art semantic segmentation model,
DeepLabV3+ [Chen et al., 2018], based on a ResNet101 [He
et al., 2016] encoder, with a second input branch. While the
first branch processes RGB input, the second branch processes
a multi-band image consisting of NDVI, PMAP, and NDSM.
NDVI is the Normalized Vegetation Index and is calculated us-
ing the red and NIR channel. The features f1 and f> of the two
input branches, as shown in Eq. (5) and in Fig. 1 below, are
fused by convex combination after the first residual block.

f=afi+(1—a)fs where0 <a<1. 5)

We train and evaluate the two-branch network, which we will
denote as DeepLab for the sake of brevity, with « = 0 (only
the second branch contributes with features f2), & = 0.5 (both
branches contribute equally), and o = 1 (the original version
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Figure 1. The modified DeepLabV3+ architecture to accept two input images.

of DeepLab, because only the first branch (RGB) contributes
while the second branch is disregarded). The DeepLab model
is pre-trained on ImageNet [Deng et al., 2009] as well as the IS-
PRS Potsdam [Rottensteiner et al., 2014] dataset, down-scaled
to 10cm to match the resolution of Munich and Moabit. All in-
put data for DeepLab is converted to uint8, with PMAP, NDVI,
and NDSM scaled to utilize the entire 0-255 range.

4. Results and Discussion

We evaluate the DA performance by applying to 7" models trained
on S and those trained on 7'. In the first case, we will assess
whether it is worth performing DA at all, and in the second, we
will track the so-called performance gap. Please note that to
track the performance gap, one cannot use all available data of
S but should always keep the validation data. The ratio between
training and validation data is 70:30. Due to the limited amount
of labelled data, we do not use a separate test set. However,
since DA testing is carried out across datasets, this is less of
an issue. Domain adaptation is applied to RGB and NIR chan-
nels, while 3D data and geometric properties such as planarity
remain unaltered.

To track the quantitative results, we use the usual metrics Over-
all Accuracy (OA), Cohen’s Kappa (k) and the F1-Score (F1).
Two latter metrics are important because our datasets contain a
few small classes.

4.1 Datasets and domain adaptation

We consider one pair of datasets from two large German cit-
ies: Munich’s city center and Berlin’s Moabit district. Both
datasets exhibit a ground sampling distance (GSD) of 0.1m,
are available as uint16 data, providing a color depth of 65536,
and are results of a photogrammetric reconstruction from a se-
quence of images taken by two different airborne cameras: an
airborne camera DMC II 230 at a GSD of 10cm for Munich
and the DLR MACS-HALE camera [Brauchle et al., 2015] for
Moabit, respectively. Besides, two different methods — [Bu-
latov et al., 2012] for Munich and [Piltz et al., 2016] for Mo-
abit — were applied for calculating the NDSM. The acquisition
times were also different: The Moabit dataset was captured
on a cloudy day in March, so the image is very sallow, with
many leafless trees, while Munich, taken during a summer day,

is very contrast-heavy, especially between sunlit and conspicu-
ous shadow regions. The Moabit dataset has a more versatile
land use because the North-Western fragment resembles a fact-
ory, the North Eastern part is residential, and there is a river
in the South, which is not even present in the Munich dataset.
There are some green areas along the river, but overall, the Mo-
abit dataset contains fewer green areas than the Munich dataset,
which are also more difficult to recognize due to lighting con-
ditions. Inspired by the Potsdam dataset [Rottensteiner et al.,
2014], we manually labeled 40 patches of 512 x 512 pixels for
each dataset with six classes: building, road, grass, tree, car,
and clutter. We split the patches into training and validation set
with the aforementioned ratio.

First, we visually assess the domain adaptation results (see
Fig. 2). Moabit and Munich are visually quite distinct what
can be seen from the first part of each figure. The Moabit data-
set appears much darker, with a few very bright objects. By
adapting the Munich dataset to Moabit, the Munich image is
darkened. While the CCA results flatten the contrast, and the
result appears a little blurred, the adaption by HM keeps the
coloring and highlighting of building roofs. The adapted results
are shown in the middle and right-hand part of each image. The
more similar one of these parts is to the first part of the other il-
lustration (here Moabit), the more successful the adaptation has
been. Adapting Moabit’s dataset to Munich makes the Moabit
data brighter, and green areas become visible. Again, results
obtained by the CCA approach appear blurred. Further, some
flat gray entities, such as the parking lot in the upper left corner
and some streets, become more green. The HM approach res-
ults in the most visually correct adapted image in both datasets.

4.2 Classification accuracy

The final assessment of the improvement of results through do-
main adaptation is carried out indirectly by evaluating the clas-
sification results. Therefore, the datasets adapted using domain
adaptation are classified using Random Forest and DeepLab and
compared with ground truth.

4.2.1 Random Forest The results of Random Forest clas-
sification are given in Table 1. The best results are always
achieved with DA using HM. In all cases, an improvement in
the classification accuracy can be achieved. Before adapting
the Moabit data according to Munich features (without domain
adaptation) and by applying the Munich classification model
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(b) Munich

Figure 2. Results of the domain adaptation of Moabit and
Munich. From left to right: initial RGB status, CCA-based DA
and HM-based DA to the respective other data set. In other
words, the reader is supposed to compare the left-most column
of (a) with the middle and right column of (b) and viceversa.

directly to the original Moabit data, the maximum overall ac-
curacy is 60% even when 3D data is added. With domain adapt-
ation, this value can be increased by +5% with CCA and even
increased to 72% with HM. Using only color information, the
results can be improved by +7% in the case of adapting Moabit
to Munich and by +4% the other way around concerning the
F1 Score. If DA is performed using CCA, we only improve the
F1 Score by incorporating 3D information into the classifica-
tion process and by adapting Moabit to Munich. Unfortunately,
in other cases, the performance is worse than without domain
adaptation.

As expected, using 3D information stabilizes the classification
strongly since elevation information is an essential parameter
for class separation. We obtain the peak accuracy increase in
F1 of +19% for HM.

The impact of filter banks varies from feature set to feature set
and from one direction of DA to another. One conspicuous ob-
servation is that, in the case of Munich to Moabit, x and F1 al-
most always degrade up to 3 percent points, meaning that small
classes are negatively affected. An improvement effect is barely
noticeable, even in the case of fine-tuned data. One possible
explanation for this contradiction to many related works is that
superpixel-wise features may neutralize the positive effect of a
filter bank.

Next, we discuss the performance gap. Regarding F1 Scores, it
measures around 15% and 20% of difference for HM in case of
considering respectively not considering the 3D data. Regard-
ing overall accuracy, Moabit had a better outcome than Munich,
reaching 4 percent points versus 11. This means either the Mo-
abit data’s adaptability to the Munich data works better, or the
extracted classification model on Moabit data is less suitable
for the classification process. Both match the visual impression
that many details are lost in the very dark Moabit data set.

4.2.2 DeepLab The results of DeepLab are shown in Table 2.

DA by HM yields better results than CCA. At « = 1 (RGB
only), HM improves the F1 score by about +9% when adapting
the Munich dataset and +29% when adapting the Moabit data-
set over the non-adapted versions. The gaps to the fine-tuned
models now are about 24pp. and 7pp. respectively. There is
a significant difference between the two datasets. We will dis-
cuss this in the qualitative analysis. Interestingly, the results
for « = 0 and @ = 0.5 also improve by about +1% to +4%
over the unadapted versions in both datasets. Since NDSM and
PMAP are unadapted, the changes must be traced back to the
adapted red and NIR channels used to calculate the NDVI.

Unfortunately, the results are worse with CCA as the domain
adaptation method than without any adaptation. In the o = 1
case, it performs about —23% worse in both directions com-
pared to no adaptation. The other « values also perform worse.
The performance gap between the results with or without do-
main adaptation is less significant for « = 0 and @ = 0.5
than for « = 1. This is not surprising since the datasets have
totally different RGB looks, whereas the NDVI and NDSM rep-
resent an index and a physical attribute and, therefore, vary
less between datasets. Overall configurations, the second in-
put branch aids the segmentation task when combined with the
RGB data (o = 0.5).

The best results are yielded by models trained and evaluated on
the same dataset, also called fine-tuned and shown in the right
half of the table. The a = 0.5 configuration is mostly the best,
reaching an OA of about 86% on Munich and 92% on Moabit,
though the other configurations are not far behind. This means
that even in the fine-tuned case, NDSM and NDVI information
mainly benefits classification. This confirms the finding of [Qiu
et al., 2022].

4.3 Qualitative Reults

In Figure 3, the predictions on the Moabit dataset are shown.
The classes can be worked out using only RGB information,
and DeepLab is far better than RF. However, even with Deep-
Lab, misclassifications between buildings and grass occur.
This deficiency will be remedied as soon as elevation informa-
tion is included, so the higher classes will always be well sep-
arated from the lower classes. In RF, HM adaptation dramat-
ically improves the prediction by reducing false predictions of
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DA RF param Moabit to Munich Munich to Moabit Munich on Munich Moabit on Moabit
mode | 3D MR8 | OA K F1 OA K F1 OA K F1 OA K F1
n n 39.62 593 1772 | 4546 2750 29.86 | 69.79 5344 46.07 | 69.50 57.85 53.75
noDA LM y 4222 500 16.10 | 4526 26.61 26.76 | 69.47 5225 46.04 | 68.62 57.02 56.79
y n 53.68 36.67 3322 | 79.70 71.67 57.02 | 8598 7841 65.63 | 84.50 7891 72.99
y y 60.44 4292 33.11 | 77.74 68.85 51.88 | 8593 7822 6495 | 84.74 79.19 72.75
n n 36.85 3.57 1473 | 3741 8.62 1693
CCA n y 38.60 4.88 15.06 | 3359 2.17 14.61
y n 64.36 49.58 40.82 | 61.41 43.40 30.68
y y 66.00 50.17 36.83 | 59.53 40.90 29.66
n n 43.11 1473  24.65 | 46.98 24.81 33.62
HM n y 4451 1537 27.14 | 4645 2278 33.88
y n 74.17 6250 5293 | 8195 7452 58.15
y y 72.57 60.08 49.54 | 80.56 72.51 54.88

Table 1. Random Forest classification results. In the first column, we record the mode for domain adaptation. The RF classifier uses
mean and standard deviation (STD) of the raw channels and, if there is a y (=yes) in the second or third column, 3D information and
filter banks MRS, are included, respectively.

DA Moabit to Munich Munich to Moabit Munich on Munich Moabit on Moabit
mode Q@ OA K F1 OA K F1 OA K F1 OA K F1
1 64.78 52.66 5127 | 55.10 30.10 39.46 | 83.95 7635 72.10 | 89.67 84.80 77.68
noDA | 0.5 | 89.06 84.03 73.36 | 75.81 6622 6633 | 8551 78.67 70.59 | 92.06 88.27 81.45
0 | 87.26 81.14 68.23 | 8226 74.06 6392 | 83.60 75.67 67.52 | 90.73 86.28 76.08
1 48.82 2170 2844 | 41.57 17776 1643
CCA 0.5 | 77.62 6594 50.60 | 61.27 4625 34.45
0 | 72.63 58.51 4229 | 57.58 42.14 41.11
1 83.50 75.79 70.99 | 58.16 4095 4822
HM 0.5 | 91.09 86.88 77.10 | 8042 7231 70.52
0 | 87.93 82.11 68.90 | 83.19 7537 67.28

Table 2. DeepLab classification results. With o = 1 only RGB information will be used for classification; o = 0 only uses information
of the second branch, namely NDVI, NDSM, and PMAP; o = 0.5: features proceedings from both branches are equally weighted. In
case of domain adaptation (DA), color information only (RGB and NDVI) is adapted.

low vegetation on the street and trees on the buildings. With
CCA, the prediction worsens compared to the unadapted case.
With DeepLab at o = 0.5, the unadapted prediction is already
quite good, thanks to that second input branch. HM adapta-
tion improves the predictions by removing false positive clutter
along the building outline and cars. Again, CCA worsens the
prediction. Compared to RF, most cars could be retrieved with
DeepLab.

On the Munich dataset in Figure 4, DeepLab without DA yields
incorrect predictions in the 2D case, with the building class
overriding most other classes. Domain adaptation using HM
improves the segmentations; the road class is often classified
as low vegetation, and cars are overlooked. With RGB and 3D
data (« = 0.5), higher and lower classes are better separated
when using HM and in the unadapted case (not shown). Still,
shadowy areas are often classified as low vegetation or clutter.

Overall, adapting Munich data according to Moabit features de-
livers worse classification results than the other way around,
especially with DeepLab. One reason is the higher intra-class
variability of Munich data. From the right Tables 1 and 2, we
can see that Moabit has better classification results despite ap-
pearing more versatile. Adjusting the features according to Mu-
nich allows the classifier to retain its essential properties, with
fewer opportunities to overfit the classifier. Contrarily, in Mu-
nich alone, the shadows are sufficiently misleading for all clas-
sifiers, as, e.g., Fig. 4 shows.

The results demonstrate that DeepLab is a more powerful clas-

sification tool than RF and provides better classification per-
formance. DA has a meaningful impact on both classification
methods, and the application of HM can significantly increase
the accuracy of both classification models. Furthermore, the
second input branch, which includes elevation information,
strongly aids in semantic segmentation across datasets and with-
in a dataset in all cases.

5. Conclusion and Future Work

We demonstrated the effectiveness of DA using CCA and HM
to improve image classification by a peak value of almost 20%.
Our approach reduced the differences between the source and
target domains and laid a strong foundation for classification.
Utilizing Random Forest and DeepLab for adapted image data
highlighted their respective strengths. Random Forest proved
to be robust and efficient, particularly in processing data with
lower complexity, while DeepLab enhanced semantic segment-
ation through deeper feature extraction.

In DeepLab, over all configurations, be it fine-tuned, adapted
using any method, or no adaptation, the second input branch,
consisting of NDVI index and elevation information, is greatly
helpful in the segmentation task. This second branch is less sus-
ceptible to domain shifts, so using it alone achieves good res-
ults even without any adaptation. Similarly, including 3D data
in Random Forest also stabilizes the predictions on a different
dataset.
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Figure 3. Prediction results of RF and DeepLab trained on Munich, applied to Moabit. The RGB was image was brightend for better
visibility. The colors for the classes are provided in the legend below.
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Figure 4. Prediction results of DeepLab trained on Moabit, applied to Munich, with the classes as in Figure 3

The findings suggest combining DA with advanced classifiers
increases accuracy and model robustness across diverse data-
sets.

Future work should refine and apply these techniques to data-
sets from varying regions and climates. Evaluating methods on
complex datasets with high variability and noise will be essen-
tial to assess their generalizability. Exploring transfer learn-
ing and adversarial training could improve performance by en-
abling more sophisticated mappings between domains. This
way, not only color differences, but differences in texture and
noise can be transferred as well.

As the direction-dependent data evaluation has shown, heavily
shadowed areas enormously influence adaptability. Future work
should consider these semantics and, if necessary, adjust or
even preprocess shaded areas separately. Foundation models
promise a future, in which dataset-specific fine-tuning becomes
unnecessary: by training on massive corpora, they gain power-
ful generalization abilities. Future work should explore whether
domain adaptation still adds value—especially for highly un-
usual datasets, like the Moabit dataset in this work.
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