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Abstract

Unsupervised and self-supervised deep learning networks for semantic segmentation of images have made impressive progress in
the last years. They can be trained without any labelled data and yet are able to effectively segment RGB images into meaningful
semantic groups. In remote sensing, supplementary information, such as elevation, improves class separation by differentiating
classes based to their height above ground. We take SmooSeg, a recently developed, state-of-the-art unsupervised network for
semantic segmentation, and guide its training process by infusing elevation information into its projector and smoothness prior.
This ensures global label consistency across the entire dataset and improves the segmentation performance, since patches of the
same semantic group often exhibit similar elevation characteristics. We also extend the Conditional Random Field (CRF) to refine
the low-resolution segmentation results in a post-processing step with elevation information. We introduce a second pairwise
potential that encourages neighboring pixels with similar elevation to have the same label, ensuring local label consistency. Our
multi-modal training strategy remains unsupervised and improves the segmentation performance on the ISPRS Potsdam-3 dataset
by +4.0% in mIoU over the RGB-only SmooSeg baseline and by 4.4% when also using the multi-modal CRF post-processing.
Collectively, our approach surpasses all state-of-the-art unsupervised segmentation networks that rely solely on RGB data for the
Potsdam-3 dataset, highlighting the important role of elevation data in label-free segmentation for remote sensing applications.

1. Introduction

Semantic segmentation of urban scenes using aerial images is
important for various applications, such as assessing land seal-
ing, creating digital twins, conducting thermal simulations, and
urban planning (Tuia and Camps-Valls, 2011; Marmanis et al.,
2016; Bulatov et al., 2020). Traditional supervised semantic
segmentation methods depend heavily on large and diverse label-
ed datasets, which are often limited in the field of remote sens-
ing (Yuan et al., 2021). To overcome this, self-supervised and
unsupervised networks present an interesting alternative. While
these networks may produce inferior segmentation maps com-
pared to fully supervised models, they can still be useful for
providing initial segmentation estimates, conducting anomaly
detection, or serving as a feature extractor for downstream tasks,
all without the need for costly labeled data.

Self-supervised learning is usually defined as a subset of un-
supervised learning and generates its own supervisory signals
from the data itself, without explicit labels. A fundamental
principle is semantic consistency, which asserts that an object’s
semantic label must remain invariant regardless of any photo-
metric or geometric transformations it undergoes. Here, DINO
(self-Distillation with No labels) (Caron et al., 2021) is a model
that utilizes a teacher-student framework to improve the quality
of learned representations by encouraging the student model to
mimic the teacher model’s outputs on unlabeled data. SmooSeg
(Lan et al., 2024) employs a frozen DINO backbone for fea-
ture extraction for semantic segmentation. SmooSeg leverages
the smoothness prior, positing that similar features within im-
age patches should share semantic labels. By treating this seg-
mentation task as an energy minimization problem, SmooSeg
introduces a pairwise smoothness loss that encourages coher-
ence within segments while preserving discontinuities between
them. This is achieved through the modeling of relationships

among observations, within and across images, using high-level
features extracted from DINO. While DINO is a self-supervised
network, SmooSeg is considered unsupervised since it essen-
tially performs clustering on the DINO features by minimizing
an energy function, even though it uses a teacher-student archi-
tecture that is often found in self-supervised networks.

As SmooSeg relies on low resolution features, a Conditional
Random Field (CRF) refines the segmentation result. It smooths
the labels using the unary potential from initial segmentation
probabilities and using the pairwise potentials from neighbor-
ing pixels’ labels and features. Here, unary potentials measure
label fit, while pairwise potentials usually use RGB information
to encourage similarly colored neighboring pixels to share the
same label. Note that CRFs are class-agnostic, which is neces-
sary because the order and semantics of semantic groups from
unsupervised networks are random and undefined. Our contri-
butions are as follows:

• We extend the Potsdam-3 dataset, adding elevation inform-
ation in the form of the Normalized Digital Surface Model
(NDSM).

• We develop a method to inject elevation information into
the predictor and smoothness prior of SmooSeg, to help
the network better separate classes (global smoothness).

• We explore parameter sensitivity through an ablation study
focusing on the fusion parameter as well as other design
decisions.

• Utilizing the framework established in Qiu et al. (2025),
we integrate elevation information into the pairwise poten-
tial of the CRF post-processing step to further enhance the
segmentation quality during inference (local smoothness).
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Our approach remains fully unsupervised, solely relying on the
additional information and patterns contained in the elevation
data with no prior knowledge or handcrafted rules. Thus, this
might not be the most effective way to improve the segmenta-
tion results of an unsupervised model such as SmooSeg. How-
ever, the decision to maintain an unsupervised framework stems
from academic interest in exploring the potential and recent
advancements within this intriguing field. Unsupervised ap-
proaches are free from human bias, explore data-driven intrinsic
patterns in the data, do not require any a-priori knowledge, and
adapt easily to different domains.

2. Previous works

Semantic segmentation is a key area within deep learning and
computer vision, where the goal is to classify each pixel in a
given image. Numerous well-known supervised convolutional
networks, like U-Net (Ronneberger et al., 2015), SegNet (Bad-
rinarayanan et al., 2017), and DeepLab (Chen et al., 2018) of-
ten utilize ResNet (He et al., 2016) backbones to effectively
analyze remote sensing data. For instance, SegNet has been ap-
plied to the ISPRS Potsdam dataset in Song and Kim (2020).
Remote sensing imagery frequently includes additional modal-
ities beyond RGB, such as infrared and elevation data obtained
from LiDAR or photogrammetry. The Normalized Digital Sur-
face Model (NDSM), which represents height above ground, is
particularly beneficial for distinguishing classes like buildings,
ground, trees, and vehicles, as they usually share similar elev-
ation characteristics. Although supervised convolutional net-
works are relatively straightforward to train and many studies
explore the integration of additional channels (Qiu et al., 2022a;
González-Santiago et al., 2023; Hong et al., 2020), their reli-
ance on large labeled datasets poses a significant limitation.

In recent years, self-supervised learning (SSL) has gained trac-
tion in various fields, including remote sensing (Wang et al.,
2022), following advancements in natural language processing.
SSL allows for pre-training on extensive unlabeled datasets. A
notable early example is SimCLR (Chen et al., 2020), which
utilizes contrastive learning to maximize agreement between
augmented versions of the same image while minimizing sim-
ilarity between different images. Building on the principles of
SSL, the work in González-Santiago et al. (2022) employs SSL
for pixel-level classification of hyperspectral images, achieving
strong performance with minimal labeled data.

Self-supervision techniques enable label free image segmenta-
tion networks, such as InfoSeg (Harb and Knobelreiter, 2021),
which presents a method that maximizes mutual information
between local and global high-level features through a two-step
learning process. PiCIE (Cho et al., 2021) improves unsuper-
vised image segmentation by employing pixel-level contrastive
learning to enhance the understanding of pixel relationships.
The previously mentioned methods are all CNN based. The
introduction of vision transformers (Dosovitskiy et al., 2020)
has further revolutionized computer vision methods by employ-
ing self-attention mechanisms. This has led to the development
of DINO (Caron et al., 2021), which uses self-distillation and
contrastive learning to generate high-quality visual representa-
tions from large datasets. Extending the capabilities of DINO,
STEGO (Hamilton et al., 2022) introduces a segmentation head
and CRF module for semantic segmentation. This approach
distills unsupervised features from the frozen DINO backbone
into semantic labels using a contrastive loss. Also based on
DINO, HP (Seong et al., 2023) enhances unsupervised semantic

segmentation by promoting task-specific training guidance and
local semantic consistency. Similarly, EAGLE (Kim et al., 2024)
focuses on object-centric representation learning, employing the
spectral technique EiCue and object-centric contrastive loss us-
ing DINO to improve semantic accuracy. PriMaPs-EM (Hahn
et al., 2024), also using DINO, enhances unsupervised semantic
segmentation by using Principal Mask Proposals to decompose
images into semantically meaningful masks, fitting class pro-
totypes via a stochastic expectation-maximization algorithm.
Lastly, SmooSeg (Lan et al., 2024) addresses the limitations
of previous methods, like subpar global label coherence. It dir-
ectly integrates a global smoothness prior into its framework,
allowing for more coherent segmentation results.

Markov and conditional random fields (CRFs) have long been
used for post-processing of semantic segmentation (Albert et
al., 2017; Bulatov et al., 2019), especially for traditional meth-
ods like Random Forests or for specific landcover classes, like
roads (Wegner et al., 2013). With the advancement of super-
vised, high-resolution deep networks, CRF have received less
attention, since these networks already take neighborhood in-
formation into account, for example through their convolutional
layers. However, if a network is purely image-based, the priors
reflected in unary or pairwise potentials of the CRF can include
additional channels or multi-modal information. For instance,
in Qiu et al. (2022b), the incorporation of height information
into a Markov Random Field (MRF) post-processing routine
has proven beneficial for refining existing low-quality segment-
ations of cars.

3. Methods

Both SmooSeg and CRFs approach semantic segmentation as a
dense prediction task, focusing on identifying a labeling func-
tion L that assigns a semantic category l(f) ⊂ {1, 2, . . .K}
for each observation f (which may represent pixels, patches, or
features) and where K is the number of categories or clusters.
This can be framed within an energy minimization framework
(Boykov et al., 2001) by:

L∗ = argmin
L

E(L), where EL = Esmooth(L)+Edata(L). (1)

Here, Edata is a pointwise data term that quantifies the fit of l(f)
to the observation f while Esmooth serves as a pairwise smooth-
ness term that encourages coherence among observations f . We
inject elevation information in the form of the NDSM into the
smoothness terms of both SmooSeg and CRF. This smoothness
term in SmooSeg enhances the consistency of label assignments
across all f (global consistency) during training. In contrast, the
smoothness term in CRFs focuses on smoothing labels in the
spatial dimension by considering neighboring patches or pixels
(local consistency). Figure 1 shows the overview of our pro-
posed pipeline.

3.1 Integrating elevation into SmooSeg

SmooSeg’s architecture consists of three main components: a
feature extractor fθ , a lightweight projector hθ , and an asym-
metric predictor gθ , where θ are the learnable parameters. The
frozen feature extractor (Caron et al., 2021) generates high-
dimensional feature representations Xi = fθ(Ii) ∈ RC×N ,
where C is the number of channels and Ii is the current (i-th,
where i ∈ {1, . . . B}) image. For simplicity, we flatten the two
spatial dimensions of an image into a single dimension N , the
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Figure 1. Overview of our elevation guided SmooSeg architecture for training on image Ii with elevation data zi. Another image Ii′ is
randomly chosen to act as a negative force for the smoothness prior. z is concatenated using a weight parameter γ with the respective
output X from the frozen DINO extractor fθ , fed to the projector and used to calculate the closeness matrices W . The latter are then
used to calculate ESmooSeg

smooth for training the predictor gθ and projector hθ . The CRF is only applied during evaluation and also uses the
elevation zi in its smoothness term. The entire network is trained without any labels, including the frozen feature extractor fθ .

number of patches of an image. The projector then maps Xi

into a compact, low-dimensional embedding space, such that
Zi = hθ(Xi) ∈ RD×N , where D is the reduced dimension-
ality. The output of DINO (we use the ViT-B/8 backbone) has
a dimensionality of C = 768 and D in the projector is set to
64. The input image size during training is 224 × 224, yield-
ing N = 28 · 28 = 784 patches from fθ . A smoothness term
encourages the model to assign identical labels to patches with
similar Xi, measured by closeness matrix W , effectively pro-
moting global semantic continuity:

E
SmooSeg
smooth =

B∑
i=1

N∑
p,q=1

W ii
pq · δ(Yi,p, Yi,q), (2)

where δ is a penalty function that takes the value of 1 if Yi,p ̸=
Yi,q , and 0 otherwise. Y = argmax(A) are the predicted la-
bels of the soft label At

i from the predictor. During training,
At

i make δ differentiable, allowing δ to be defined in terms of
the cosine similarity between the soft labels, where a larger δ
indicates greater dissimilarity and thus a higher penalty. Fur-
thermore, W ii ∈ RN×N is the closeness matrix for the im-
age Ii with itself to capture the relationships between its im-
age patches based on their feature representations. Specifically,
each element W ii

pq of the closeness matrix is calculated using
the cosine similarity of the feature vectors coming from fθ cor-
responding to patches p and q of the image Ii, by:

W ii
pq =

Xi,p ·Xi,q

∥Xi,p∥ ∥Xi,q∥
, (3)

where Xi,p and Xi,q are the normalized high-level feature vec-
tors for patches p and q, respectively. A higher value of W ii

pq

indicates a greater similarity between patch p and q, suggesting
that these patches are likely to share one semantic label. While
W ii is used to calculate smoothness within images, W ii′ cal-
culates it across images i and a randomly chosen image i′. A
second smoothness term with W ii′ prevents the model from
converging to a trivial solution.

To introduce the elevation information zi, we concatenate the
extractor output Xi with zi in the form of an NDSM. This
NDSM is down-scaled bilinearly to match the spatial dimen-
sion of Xi. The NDSM is in its original units, where each value
corresponds to real-world measurements (e.g., a value of one
represents one meter elevation above ground). We use a para-
meter γ to weigh the NDSM channel.

Xz,i =

[
Xi

γzi

]
∈ R(C+1)×N . (4)

This vector Xz,i is given to the projector hθ and is used to cal-
culate the new closeness matrices W ii

z and W ii′
z according to

Eq. (3). In computing cosine similarity of two patches, adding
a zero entry in both vectors does not affect similarity. Non-zero
similar values increase similarity due to better alignment, while
differing values decrease it. This is beneficial for our approach,
as we want to avoid misclassifying ground-level classes (e.g.,
grass, asphalt, car) based solely on similar elevation values.
Instead, we aim for notable (dis-)similarity between patches
with (non)similar high elevation values, as these primarily rep-
resent the building class. We therefore do not need an offset
parameter. Figure 2 shows down-scaled NDSM patches before
weighting and concatenation with Xi along with the RGB input
and ground truth of the Potsdam-3 dataset (see Section 4.1).

Figure 2. RGB (224× 224), NDSM z (28× 28) in Eq. (4) for
training SmooSeg, and ground truth (only used for evaluation) of
Potsdam-3. The usefulness of the NDSM in class delineation is

immediately obvious, especially for buildings.
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Like the original architecture, to ensure stability during optim-
ization, zero-mean normalization is applied to the closeness
matrices: W̄z,p = Wz,p − 1

N

∑
q Wz,pq . This normalization

balances the positive and negative influences in the optimization
process, thereby enhancing the performance of the smoothness
prior. Furthermore, dropout is applied to Xz,i in the projector.
The data term Edata remains unchanged wrt to Lan et al. (2024):

E
SmooSeg
data = −

B∑
i=1

N∑
p=1

K∑
k=1

I(Yt,i,p = k) log(As,i,p,k), (5)

where summation takes place over cluster indices (K), patches
(N ) and images (B), and As

i represents the soft label assign-
ments produced by the student branch in the predictor. There,
SmooSeg employs an asymmetric teacher-student architecture,
where the teacher predictor generates pseudo labels Yt for the
student predictor to learn from. Both teacher and student net-
works are updated using an exponential moving average to sta-
bilize training. The smoothness within one image, across im-
ages, and the data term are summed and minimized according
to Eq. (1). In evaluation and inference, only the teacher pre-
dictor that outputs At

i ∈ RK×N is used, where K is the num-
ber of clusters. For more details on the SmooSeg architecture,
please refer to the original paper Lan et al. (2024).

We use the default Potsdam-3 settings and parameters as the
authors of SmooSeg. As explained in more detail in Section
4.4, we set γ = 2.5. We train and evaluate on Windows and an
Nvidia V100 GPU with 16 GB of memory.

3.2 Integrating elevation into CRF

The ViT-B/8 DINO extractor used in SmooSeg lowers the im-
age dimension by a factor of 8 from 224×224 to 28×28, result-
ing in segmentations that are quite low resolution. For evalu-
ation, the segmentations have to be upscaled, and local consist-
ency has to be considered. This is necessary since SmooSeg
operates on the patches individually without considering neigh-
boring patches. Similarly to STEGO (Hamilton et al., 2022),
the authors of SmooSeg add a CRF module for post-processing.
CRFs usually consider the RGB values of neighboring pixels
and their (pseudo) probabilities to ensure that close pixels with
similar color values tend to have the same label. this refines a
coarse segmentation map based on the higher resolution RGB
image. Since neighboring pixels with similar elevation values
also tend to have the same label, we also integrate the elevation
z, here without downsampling, into the CRF. To clarify this, we
provide a brief theoretical overview: The soft label assignment
output of the teacher branch At

i is converted to unary potentials
by applying the negative logarithm. These unary potentials,
stored in ECRF

data (see Eq. (1)), must be balanced with piecewise-
smoothness priors that promote label consistency among neigh-
boring data points. These are stored in ECRF

smooth:

ECRF
smooth =

∑
x,y∈N

ωp (x,y, f) dp(lx, ly), where

ωp (x,y, f) = λf exp

(
−

d2xy
2σ2

xyf

− ∥fx − fy∥2

2σ2
f

)
+λxy exp

(
−

d2xy
2σ2

xy

)
, and dp(lx, lx) = lx ̸= lx,

(6)

where dxy = ∥x − y∥ (Euclidean distance), and the neighbor-
hood N is theoretically fully connected; however, in practice,
the decay in the negative exponent is rapid.

In brief, the equation reveals that the penalty for assigning dif-
ferent labels to adjacent pixels x and y is significantly stronger
when these pixels are close together and/or share similar feature
vectors. The nature of the relationship (whether it is an and or
or) depends on the values of λ and σ; notably, exp(− · /σ2)
approaches zero for small values and remains constant for lar-
ger values of σ. Consequently, the utilized implementation 1 of
the CRF with this specific smoothness function offers substan-
tial flexibility. Nonetheless, it is constrained by the inability
to apply it to non-gridded graphs, use other than three-channel
images, or employ location- and feature-dependent terms that
deviate from Gaussian kernels. To minimize implementation
complexity across the workflow, we utilized the CRF defined in
the previous equations, with two terms representing the distinct
data modalities:

ωp (x,y, f) = ωp (x,y, j) + ωp (x,y, z) , (7)

where j and z represent the RGB image and the NDSM feature,
respectively, converted into a three-channel format by replic-
ating along the third dimension. The values for all eight para-
meters in the RGB+NDSM CRF configuration were determined
through a parameter search method using validation data, as
shown in Table 1. The parameters for the RGB CRF are taken
from SmooSeg (Lan et al., 2024).

Table 1. The parameters for the default CRF with RGB and the
multi-modal CRF with RGB + NDSM.

Gaussian Pairwise RGB Pairwise NDSM
CRF modality σxy λxy σxyj σj λj σxyz σz λz

RGB 1 3 67 3 4 - - -
RGB+NDSM 4 3.75 67 3 8 3.35 30 0.8

4. Results

4.1 Dataset

The dataset employed for this study is the photogrammetric IS-
PRS Potsdam dataset (Rottensteiner et al., 2014). This dataset
features a ground sampling distance (GSD) of 5cm and com-
prises of 38 orthophotographic images, each sized at 6000 ×
6000 pixels, covering approximately 2.5 square kilometers of
the German city of Potsdam. In addition to RGB imagery,
it also includes a near-infrared channel and a Digital Surface
Model. The segmentation task involves six classes: buildings,
cars, low vegetation, trees, impervious surfaces, and clutter.

Potsdam-3 is a version of this dataset for three category un-
supervised image segmentation. The GSD is doubled to 10
cm by downsampling. This dataset consists of 8550 patches
of size 200 × 200 and is also used by InfoSeg, STEGO and
other unsupervised segmentation networks shown in Table 2.
The patches are zero-padded to 224× 224 for the DINO based
networks since that is the resolution DINO expects. The data-
set lacks elevation data. Therefore, we first derive the DTM
(Digital Terrain Model) from the DSM by employing the meth-
odologies outlined in Bulatov et al. (2014). Then, the NDSM
is then calculated by subtracting the DTM from the DSM. We
apply identical scaling and cropping operations as in Potsdam-
3, to create the 8550 individual NDSM patches from the 38
aerial images. Subsequently, we matched and integrated the
NDSM patches with the respective RGB patches, ensuring that
the RGB images and the dataset split remain identical and there-
fore the models comparable. Hungarian matching (König, 1916)
1 https://github.com/lucasb-eyer/pydensecrf
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is used to align and fuse the six classes of Potsdam to the K = 3
predicted semantic groups of SmooSeg. Then, evaluation met-
rics such as mIoU (mean Intersection over Union) and Accuracy
are computed using the three fused classes.

4.2 Quantitative findings

Table 2 compares the results on Potsdam-3 of various state-of-
the-art unsupervised semantic segmentation models based on
DINO with the elevation integrated SmooSeg. Reproducing the
SmooSeg on our setup yields slightly worse (70.1% vs. 70.3%
mIoU) results than reported in Lan et al. (2024). Integrating the
NDSM into SmooSeg drastically improves the results by +4.0%
to an mIoU of 74.1%. Further integrating the NDSM into the
CRF improves the mIoU further by +0.4%, reaching an mIoU
of 74.5%. The NDSM integrated SmooSeg surpasses all other
RGB only SOTA methods by at least +3.4% based on the same
backbone (DINO ViT-B/8), like EAGLE (Kim et al., 2024) or
PriMaPs-EM (Hahn et al., 2024).

Table 2. SmooSeg performance with(out) NDSM and other
unsupervised, RGB only models on the Potsdam-3 dataset. All

models are based on the DINO ViT-B/8 backbone.

Method (DINO backbone) Acc. mIoU
DINO ViT-B/8 (Caron et al., 2021) 66.1 49.4
STEGO (Hamilton et al., 2022) 77.0 62.6
HP (Seong et al., 2023) 82.4 69.1
PriMaPs-EM+HP (Hahn et al., 2024) 83.3 71.0
EAGLE (Kim et al., 2024) 83.3 71.1
SmooSeg (Lan et al., 2024) 82.7 70.3
SmooSeg (reproduced) 82.6 70.1
+ NDSM in SmooSeg 85.1 (+2.5) 74.1 (+4.0)
+ NDSM in SmooSeg & CRF 85.3 (+2.7) 74.5 (+4.4)

Table 3 shows the mIoU scores broken down into the three
semantic groups, approximately corresponding street, building
and vegetation. The building class improves by +8.2% with
NDSM in SmooSeg and further by +0.8% with the NDSM-
integrated CRF. Similar improvements can be seen in the street
class. Conversely, the integration of the NDSM leads to a slight
decline of approximately -2% in the IoU scores for the vegeta-
tion class. This may be attributed to the heterogeneous nature of
the vegetation class, which includes both low vegetation (grass),
and high vegetation (trees). Consequently, the elevation charac-
teristics of this class are more variable, whereas the building and
street classes exhibit more consistent elevation values, resulting
in more substantial improvements in their respective scores.

Table 3. Individual IoU scores for the three semantic groups,
roughly corresponding to street, building and vegetation.

Method (DINO backbone) Street Build. Veg. mIoU
SmooSeg (reproduced) 64.1 68.1 78.2 70.1
+ NDSM in SmooSeg 70.0 76.3 76.0 74.1
+ NDSM in SmooSeg & CRF 70.4 77.1 76.0 74.5

4.3 Qualitative findings

Figure 3 shows predictions of some of the patches of the Pots-
dam-3 dataset using the baseline method SmooSeg with only
RGB and our improved version and CRF with NDSM. The
baseline SmooSeg classifies cars as part of the building class
and struggles with erroneous detections of buildings, resulting
in both false positives and false negatives, while also exhibiting
unclear building boundaries. The NDSM-enhanced SmooSeg
reclassifies cars into the street class, has more accurate building

boundaries, and produces fewer erroneous detections. Veget-
ation is sometimes confused with street, reflecting the slightly
worse scores for the vegetation class as mentioned in Section
4.2.

RGB
orthophoto

SmooSeg
RGB

SmooSeg
RGB+NDSM

Ground
truth

Figure 3. Qualitative results of baseline SmooSeg with CRF and
our NDSM enhanced SmooSeg and multi-modal CRF compared
to the ground truth on patches of the Potsdam-3 dataset. Color

legend: Street, Building, Vegetation.

We also run inference on the full Potsdam images (scaled to
3000 × 3000). We employ an overlap of 40 pixels (equival-
ent to 4m GSD) when dividing the full images into patches of
200 × 200 for inference, ensuring a seamless transition in the
stitched prediction image. CRF is then applied across the entire
image. Figure 4 shows the resulting predictions of the default
RGB SmooSeg and our NDSM-enhanced SmooSeg and CRF.
Similar to the individual patches, the results on the full images
demonstrate a significant improvement with our method com-
pared to the baseline, with better building outlines and fewer
artifacts. For instance, on the lower left of the second image
(marked in red), a soccer field and running track are incor-
rectly classified as a building but are accurately identified as
a street using our method. Additionally, a building located in
the interior block of the upper right quadrant (marked in red)
is only fully detected with our approach. SmooSeg, in gen-
eral, struggles with trees, as the Potsdam dataset was captured
in winter. Furthermore, street and low vegetation are occasion-
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RGB orthophoto SmooSeg (RGB) SmooSeg (RGB+NDSM) Ground truth

Figure 4. RGB orthophotos and qualitative results of baseline SmooSeg and our NDSM enhanced SmooSeg and multi-modal CRF
compared to the ground truth on full images of the ISPRS Potsdam dataset. Color legend: Street, Building, Vegetation.

ally confused due to their ambiguous characteristics, like on
unpaved roads.

4.4 Ablation study

0 1 2 3 4
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Figure 5. Sensitivity study of the NDSM weight γ from Eq. (4)
and the Accuracy and mIoU scores with DINO in the NDSM

enhanced SmooSeg with the default CRF. The dotted lines
represent the baseline (Lan et al., 2024) without NDSM.

Figure 5 shows our sensitivity study of the NDSM parameter
γ on Accuracy and mIoU. γ = 0 is equivalent to the RGB-
only original SmooSeg. Since the semantic groups are fairly
balanced, both the Accuracy and mIoU follow a similar pattern.
With increasing γ, the scores increase at the beginning, remain
quite stable in a large interval between 1.5 and 3, and then drop
off. The best result is achieved with γ = 2.5.

Since the elevation z is injected separately into the projector

hθ and smoothness matrices, we evaluated a configuration with
two separate weights. However, after optimizing these weights,
the mIoU and accuracy scores remain similar. The parameter
space is fairly broad as well, as a similarly wide range of values
produces good performance. Due to this stability and to avoid
an extra parameter, we use a single value γ = 2.5 to obtain the
results in Sections 4.3 and 4.2 of this paper.

The input Xz,i into the projector is subject to random dropout
during training. While that makes sense for the DINO features,
it might not for a measurable, physical feature like the NDSM.
Still, we found no discernable difference to the final perform-
ance of applying dropout to the NDSM or not and decided to
keep it for (theoretically) improved adaptability and reliability
of the model towards the NDSM.

5. Discussion and Conclusion

A clear and strong improvement of SmooSeg is achieved by
our method of incorporating the NDSM into the unsupervised
learning mechanism. The NDSM is injected into the smooth-
ness term and the projector with a weight γ, and also in the CRF
post-processing step. We achieve a combined improvement of
+4.4% in mIoU on the Potsdam-3 dataset over the baseline (Lan
et al., 2024). Interestingly, the addition of NDSM pushes the car
class from the building into the street class, which happens to
be a welcome change from an applications perspective. This
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is not an issue for evaluation because of Hungarian matching.
EAGLE (Kim et al., 2024), for example, also assigns cars to
the street class. The building class shows clear improvements,
featuring sharper edges, reduced false detections, fewer missing
parts, and less confusion with the street class, which in turn en-
hances the performance of the latter as well. The vegetation
class, unfortunately, performs slightly worse. With minimal ad-
ded complexity, training (20 min on Potsdam-3) and inference
– 4 min per 3000× 3000 image with overlap, due to CRF – re-
main virtually unchanged. The only additional time-consuming
step is computing the DTM once if it is not already available.

Improvements through the multi-modal CRF, however, are mod-
est. The DSM of the Potsdam dataset is somewhat blurry and
contains artifacts and outliers, which hinders a high-resolution
refinement through a CRF. Using the multi-modal CRF on a
dataset with a higher quality DSM is expected to result in a
more significant improvement. In future work, CRFs with ad-
vanced, possibly learnable terms may represent an interesting
research direction as well.

In Qiu et al. (2022a), the enhancement through the addition of
NDSM with RGB in two supervised deep learning models on
the ISPRS Potsdam dataset was relatively modest at around 1%.
Similarly, Koppanyi et al. (2019) report only minor improve-
ment by adding NDSM information using supervised learning.
Improvements by only +0.5% were observed in the middle fu-
sion experiment of Audebert et al. (2018) on a different dataset.
Meanwhile, in this study, including NDSM alongside unsuper-
vised segmentation significantly improved the mIoU by +4.4%.
While the numbers are not directly comparable, this seems to
suggest that NDSM data plays a more important role in unsu-
pervised learning scenarios, where the model has to rely on the
input data itself for effective class separation rather than on ref-
erence data, indicating that the NDSM is a valuable modality
for this purpose. However, as observed in the vegetation class,
the NDSM may also negatively affect performance. This could
be mitigated with methods such as adaptive weighting or hier-
archical clustering. Further research is also necessary to invest-
igate the influence of NDSM when segmenting into more than
three semantic groups, especially when some of these groups
may exhibit less distinct and less characteristic elevations.

One consideration of our approach is the necessity to determine
the weight γ for the NDSM, as well as the parameters for the
multi-modal CRF. This challenge is common in unsupervised
learning, as the original SmooSeg also requires tuning multiple
parameters, among them two in the smoothness term that we
adopted. Luckily, γ seems to exhibit a convex search space and
performs well across a broad range of values. Another gen-
eral consideration in state-of-the-art unsupervised learning ap-
proaches, particularly those based on DINO, is the low-resolu-
tion input. This results in a limited receptive field, posing chal-
lenges for detecting large objects like buildings that have to be
divided across multiple, separate inputs. We partially address
this issue by downscaling the images, employing overlap for
qualitative analysis, and running CRF across the stitched pre-
diction images. Moreover, DINO is designed for image-level
classification, leading to even smaller output feature maps due
to the absence of a decoder, which necessitates the use of CRFs
or similar methods for refinement. Additionally, different data-
sets, number of clusters K, and different feature extractors like
DINOv2 (Oquab et al., 2024) tend to yield varying semantic
clusters, which is inherent to unsupervised methods. This in-
consistency highlights the need for further research into retain-
ing semantic groups across datasets, transfer learning, domain

adaptation techniques, practical (real-time) applicability, and
scalability of these models.

Ultimately, we present a novel approach for enriching networks
built on frozen foundation models, which are typically limited
to RGB inputs, with additional modalities. Our fully unsu-
pervised method requires neither labeled data nor handcrafted
rules, yet delivers notable performance improvements. As we
could see on the current dataset, self-supervised approaches,
and our method in particular, readily support applications such
as land-sealing analysis and building-density estimation.
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Bulatov, D., Häufel, G., Lucks, L., Pohl, M., 2019. Land cover
classification in combined elevation and optical images suppor-
ted by OSM data, mixed-level features, and non-local optimiza-
tion algorithms. Photogrammetric Engineering & Remote Sens-
ing, 85(3), 179–195.
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González-Santiago, J., Schenkel, F., Gross, W., Middelmann,
W., 2022. Deep self-supervised pixel-level learning for hyper-
spectral classification. 2022 12th Workshop on Hyperspectral
Imaging and Signal Processing: Evolution in Remote Sensing
(WHISPERS), 1–5.
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