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Abstract

Point cloud analysis is rapidly evolving, targeting new applications and use cases with novel information retrieval needs that chal-
lenge existing solutions’ scalability, robustness, and reusability to manage and process point cloud data. Analytical approaches to
gain insights are increasingly based on machine learning and tend to turn away from data management solutions in favour of intern-
alizing custom, dedicated workflow-specific query capabilities, satisfying their requirements. Unfortunately, these ad-hoc solutions
often fail to scale well with large point cloud datasets generated through terrestrial, aerial, or mobile laser scanning. To address
these limitations, we propose a point cloud search taxonomy and use it to identify fundamental requirements for a scalable, robust,
and reusable data management system for state-of-the-art point cloud retrieval and data analytics. Our findings build a foundational
analysis serving as a basis for the holistic development of point cloud data management solutions to overcome current bottlenecks.

1. Introduction

In recent years, there has been a surge in interest and atten-
tion to point clouds driven by an ever-increasing deployment of
data acquisition techniques such as light detection and ranging
or photogrammetry. A wide variety of sensors can be mounted
on different platforms, such as satellites, low-altitude drones,
vehicles, and even mobile devices, greatly enhancing the per-
ception of their environment, respectively, three-dimensional
space, by machines for assisted and autonomous navigation,
depth perception, or 3D scanning (Toth and Jóźków, 2016).
Point clouds have become popular data sources in applications
such as urban mapping, traffic modeling, environmental monit-
oring, and autonomous driving by providing accurate 3D geo-
metry and attribute information of the entities in the real world.
The usefulness and benefits of these applications are profoundly
intertwined with the extent to which information needs can be
satisfied by point cloud search.

Point cloud search is fundamental in almost any analytical pro-
cedure involving point cloud data. Examples of searching in-
clude querying the nearest neighborhood of a given point (Rous-
sopoulos et al., 1995) or extracting subsets based on defined
spatiotemporal extents. However, more elaborate searches like
farthest point sampling (Qi et al., 2017b) or ray queries (Chang
et al., 2023) are often implemented ad-hoc as a necessity to
satisfy the contextual needs of a given method. Unfortunately,
transferring these approaches to larger datasets is rarely applic-
able. Further, while scalable data management systems exist
(Lokugam Hewage et al., 2022), they are often not considered
viable for the implied retrieval needs. The reasons for this are
high integration and maintenance costs, and the lack of query
capabilities, among others. To overcome these shortcomings,
we would like to revisit the problem of point cloud search from
the information retrieval perspective.

From the information retrieval perspective, point cloud search
is the procedure of obtaining information system resources rel-
evant to an information need from a collection of those re-

Figure 1. Basic structure of the information retrieval process,
adapted from Buckland and Plaunt (1994) and Rijsbergen

(1979).

sources (Manning, 2009). It entails an information need or a
question that needs to be translated into a query that the inform-
ation system is matching against (indexed) documents to answer
with retrieved documents (Buckland and Plaunt, 1994). A feed-
back loop finally completes the iterative information retrieval
process by refining the query formulation and adaptations to
the information need as visualized in Figure 1.

This paper aims to investigate point cloud search from an in-
formation retrieval perspective, systematically abstract the steps
of point cloud search, summarize the common search scenarios,
and evaluate the corresponding strategies, to provide a play-
ground for discussing point cloud search problems and how
to overcome them. From examining existing and emerging re-
trieval needs, a more formalized point cloud search taxonomy is
built that is generic over many possible point cloud transform-
ations presented thereafter. Based on gained insights, recom-
mendations are formulated towards scalable, unified point cloud
data management systems for contemporary retrieval tasks.
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Our main contributions are (1) an introduction to point cloud re-
trieval and the underlying theoretical problems, such as search,
optimization and ranking, (2) reviewing and analyzing existing
point cloud information retrieval needs, (3) proposing a new
point cloud search taxonomy including a reflection on the man-
ifold possible point cloud representations and transformations
and their implications, and, (4) formulate recommendations for
improving point cloud data retrieval and management systems.

2. Background

At the core of information retrieval is matching, where queries
are resolved by evaluating predicates against the indexed doc-
uments. As such, point cloud search is essentially a search,
optimization, or ranking problem.

2.1 The Search Problem

A search problem is a fundamental computational problem of
theoretical computer science. It entails looking for the set L(R)
formed by the values of x such that the predicate, respectively,
the binary relation R(x, y) is true for a given y (Eq. 1).

L(R) = {x | ∃yR(x, y)} (1)

For example, x is a data point in the dataset, and y is a query or
reference point. The equation 1 defines the subset of data that
matches the query condition (i.e., when R(x, y) is true).

Search algorithms describe implementable solutions to the the-
oretical search problem. Since search problems are expected
to always return an explicit result, meaning the predicate in-
variably evaluates to true or false, this can be denoted as an
exact predicate search. There are two basic types of search al-
gorithms for exact predicate search: linear and binary. Linear
search approaches perform a sequential scan on a set of records
or documents. Binary search approaches repeatedly divide the
search space in the middle of the data structure by performing
a comparison. The latter requires the records to be represented
in an ordered set. In the context of point cloud data retrieval,
basic examples are evaluating whether a point exists in the set
or a range query to extract a spatial subset.

2.2 Optimization Problem

Finding the best solution from all feasible solutions is denoted
as an optimization problem. Depending on whether the vari-
ables are continuous or discrete, it is a continuous optimization
or a discrete, respectively, combinatorial optimization. The lat-
ter can be expressed as a decision problem, while the former is a
minimization problem or an equivalent maximization problem
with a reversed sign. Finding a nonexact solution to an optim-
ization problem is denoted as an approximation. Common op-
timization problems in point cloud retrieval are pose estimation
for localization, registration, or surface intersection.

2.3 Ranking Search

The ranking problem and constraint satisfaction problem are
other similarly fuzzy approaches like approximation. Rank-
ing is widely explored in information retrieval. It addresses
the ordering of matched results based on criteria correspond-
ing to the importance and measure of goodness to answer the
given information need. A classic example of ranking in point

clouds is nearest neighbor queries, where the points are ordered
by increasing distance to a query point, often accompanied by
a parameter k to constrain the size of the result set. Address-
ing the large result set problem occurring from queries with low
selectivity is a key aspect of ranking.

3. Related Work

Taniar and Rahayu (2013) proposed a taxonomy for nearest
neighbor queries in spatial databases. Their taxonomy for quer-
ies on stationary objects comprises four perspectives: Space,
Result, Query-Point, and Relationship. The Space perspective
emphasizes the importance of algorithms to respect data se-
mantics in measures by comparing Euclidean distance to net-
work distance when querying against network data like roads.
The Result perspective encompasses nearest neighbor searches
that do not return a predefined number of results; occurring,
for example, from using relative measures, adding constraints,
or combinations with range searches. The Query-Point per-
spective includes queries with multiple points or ranges as in-
put, like all-kNN, Group Nearest Neighbour, Group Nearest
Group, or Range-kNN. Finally, the Relationship perspective
highlights different cases of the traditionally uni-directional re-
lation between point and neighbor, like bi-directional or re-
versed.

Subsequently, a taxonomy for range queries on stationary ob-
jects was proposed that categorizes into finding objects of in-
terest, forming regions, and determining centroids (Taniar and
Rahayu, 2015). Queries in the objects of interest category are
about finding objects in a region and consist of three basic ele-
ments: the region, objects of interest, and the query point. The
category is divided into six types: traditional region queries, ap-
proximate region queries, constrained region queries, clustered
objects region queries, outer/inner fence object queries, and
inverse range queries. The forming regions category is about
forming regions based on a set of objects. It distinguishes fur-
ther between creating polygons, zones of influence, optimum
regions, safe regions, and reverse region queries. Finally, the
determining centroids category covers finding the centroid of
polygons and clustered objects.

For moving objects, a taxonomy exists that elaborates on the
location, motion, object, temporal, and patterns perspectives of
moving object queries (Alamri et al., 2014). The location per-
spective includes common spatial queries such as nearest neigh-
bors (KNNs), range queries, and others. The motion perspective
covers direction, velocity, distance, and displacement queries.
The object perspective includes type and form status queries.
The temporal perspective includes trajectory, timestamped, in-
side, disjoint, meet, equal, contain, overlap, and period queries.
In the patterns perspective, the moving objects use undefined or
predefined movement patterns, including numerous spatial and
temporal movement patterns.

All the mentioned existing taxonomies and underlying search
engines generally take planar spatial representations as gran-
ted. Some can easily be extended to a third dimension, such as
promoting a bounding box range query to a bounding volume
range query. However, the peculiarities of point cloud search
are neglected. Research in the field of 3D information retrieval
addresses many challenges of 3D search engines and possibilit-
ies to retrieve, respectively search for shapes (Funkhouser et al.,
2003; Tangelder and Veltkamp, 2008; Lian et al., 2013; Grabner
et al., 2018; Williams et al., 2022). Unfortunately these efforts
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are mainly geared towards enclosed small scale models, as used
in computer-aided design or online shopping platforms, which
makes it of little use for the open-ended nature of large scale
terrestrial laser scans.

4. Information Need

A basic premise of database management systems for point
clouds is to offer the required data retrieval needs of users and
applications formulated as explicit queries. These information
needs are as manifold as the branches where point clouds are
used: Fields such as architecture (Zhao et al., 2023), construc-
tion (Mirzaei et al., 2022), agriculture (Song et al., 2025), her-
itage preservation and archeology (Yang et al., 2023), and geo-
morphology (Dumic and da Silva Cruz, 2025) all rely on point
cloud data to model the real world. From a high-level per-
spective, one can loosely distinguish between backward- and
forward-oriented use cases.

4.1 Backward-Oriented Information Need

In backward-oriented use cases, virtual representations are typ-
ically static; observations are a snapshot in time, and changes
are captured through discrete, recurring surveying. Such point
clouds can be large, covering a wide area with varying spatio-
temporal resolution. For example, point clouds in real-world
environmental observations may range from whole districts to
even larger areas, with a centimeter-level spatial resolution and
annually, monthly, or even hourly temporal frequency, result-
ing in tens of thousands of point clouds (Vos et al., 2022). The
retrieval needs concerning such point clouds are characterized
by prevalent analytical approaches like object and change de-
tection, classification, or semantic segmentation over large spa-
tiotemporal extents.

4.2 Forward-Oriented Information Need

In comparison, forward-oriented applications, such as simul-
taneous localization and mapping for autonomous navigation
based on point cloud data from LiDAR sensors or computer
graphics and game design, require (close to) real-time feedback
on their information need. Environment changes are comparat-
ively fast and form the basis for deriving actionable insights.
However, such point clouds have a relatively short temporal
lifespan and predominantly target the environment in the close
vicinity of the surveying entity (car, viewer in computer games).
Consequently, they are relatively small but require low latency
and high query throughput.

4.3 Nature of the Information Need

Meanwhile, the nature of needed information is relatively sim-
ilar in many cases: aggregated or summarized data from the
point clouds (Lu et al., 2021), retrieval of a relevant subset of
the whole point cloud (Asad and Savva, 2023), visualize in-
formation stored in the point cloud (Remondino, 2003; Dumic
et al., 2020), detect and localize objects (Kadam et al., 2022),
or feature extraction and classification (Wu et al., 2019; Qi et
al., 2017b). Depending on the application, the exactness of the
needed information can vary considerably. Point cloud data in
the construction environment may require high-precision res-
ults, while geomorphology observations in post-event evalu-
ations may allow more error tolerance. Some applications may
even display dynamic exactness requirements, like visualiza-
tions where the desired accuracy negatively correlates with the
distance to the viewport.

To summarize, the information needed from point clouds mainly
differs in five dimensions, aligning with big data characteristics:

• Volume - size of the queried point cloud data and result set.

• Velocity - retrieval speed, latency, and throughput.

• Variety - data modalities, representations, and transforma-
tions.

• Veracity - exactness requirements.

• Variability - robustness of the acquired information.

If all of these dimensions are adequately addressed for a specific
application, it results in the highest achievable value of the point
cloud search in this particular use case.

So far, no known point cloud retrieval system conforms to the
various information needs of all the applications mentioned above.
Additionally, there is no comprehensive overview of contem-
porary information needs for point cloud search problems in
database management systems. Consequently, in the following,
we strive to structure different aspects of point cloud search into
a taxonomy viable for a wide variety of (even future) informa-
tion needs, to offer a perspective to induce and inform discus-
sions on requirements for such systems.

5. Point Cloud Search

A point cloud search engine is a computational system that
takes a point cloud and provides a query language for retrieving
results. Applying the Input-Process-Output (IPO) model (Goel,
2010) to this definition, the input is a query, the process entails
the query transformation and execution, and the output is the
representation of the query results of the ingested, transformed,
and indexed point cloud. In this work, we formalize a point
cloud P as

P = (ci, ai), (2)

where ci is the spatial location and ai are additional attributes.
It needs to be noted that the spatial dimensions, though required
to qualify as a point cloud, are considered attributes as well,
from which follows

P ⊆
m∏
i=1

Di, (3)

where D represents the data space, equivalent to the search
space. An advantage of these definitions is that they do not
assume any concrete spatial encoding and are therefore suit-
able to cover various transformations like voxelization, raster-
ization, meshing, and arbitrary skeletons. For example, con-
sidering range queries in point clouds to generate patches for
machine learning approaches, the architecture of the specific
algorithm defines whether a sparse voxelization (Engelcke et
al., 2017) or unordered point sets (Qi et al., 2017a) is required.
This is adding a level of complexity to the information needed.
Therefore, we will look at different point cloud transformations
in Subsection 5.5.
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5.1 A Taxonomy

To build our point cloud search taxonomy, we rely on a faceted
approach on the first level that incorporates the overall retrieval
structure and the Input-Processing-Output model view on point
cloud search engines. The input is denoted as query modality,
the processing relates to the query semantics emphasizing user
control over execution, and the output is dubbed result modality
as depicted in Figure 2.

Figure 2. Point Cloud Search Taxonomy.

The query modality encompasses how a query is expressed and
encoded, distinguished between Sub-Cloud, Mesh, Image, or
Concepts. The query semantics entail how the query is inter-
preted and matched against the point clouds, either Invariant,
Approximate, or Probabilistic. The result modality covers dif-
ferent kinds of results, namely Pose, Frequency, Subset, or Sum-
maries. In the following, the different taxonomy facets are ex-
amined in more detail.

5.2 Query Modality

Queries for point cloud retrieval are often formulated in terms
of spatial concepts such as geometric entities and topological
relations. For the query modality, we concentrate on the geo-
metric aspect of queries, specifically their encoding.

Sub-Cloud A sub-cloud defines a query encoded similarly to
the queried documents. The term relates to the mathematical
concept of a subspace in a vector space. It indicates that the
query input should be representable or mapped to the search
space defined by the documents. Therefore, it is not limited
only to spatial dimensions (i.e., x, y, z) but also includes attrib-
utes (e.g., time, features) adhering to our definition of a point
cloud in Equations 2 and 3. Exemplary information needs are
to know whether the point cloud contains specific points, search
points with a particular label or attribute value, find similar parts
in the point cloud, spatio-temporal slicing, or find points along
a trajectory.

Mesh Similar to unordered point clouds, meshes can faith-
fully represent manifolds such as surfaces and volumes. Their
benefit is accurately defining split planes, including potentially
inside and outside semantics. The inputs of many queries, such
as arbitrary range queries, bounding box queries, view frustum
queries, or even spatio-temporal slicing, are representable as a
mesh and therefore considered in this modality.

Image Querying based on images is a prominent use case
when working with point clouds. Examples are image registra-
tion in photogrammetry and image localization through depth

maps. The primary information retrieval need is the pose estim-
ation and alignment of images’ discrete two-dimensional pro-
jections to the unordered three-dimensional point clouds. This
often means finding out the extrinsic camera matrix in the ref-
erence system of the queried point cloud.

Concepts Concepts entail queries formulated based on an ab-
stract notion, such as a “car” or a “church”. Herby, the “car”
or “church” is not encoded as a sub-cloud, mesh, or image but
as a textual description or term. Unlike the other modalities,
where a transformation is enough to match against the search
space, concepts require a translation into the search space be-
fore matching and retrieving results. However, if the point cloud
is semantically enriched with an attribute for a car label, such a
query would be demoted to the sub-cloud modality.

5.3 Query Semantics

The query semantics facet can be considered an extension of
the query modality. It captures essential aspects for scalability
and performance, such as sampling and approximation, crucial
for efficient information retrieval in large datasets.

Invariant Queries with invariant semantics are expected to
return the complete and exact result set given the predicates.
This is often implied because one expects to get all matching
documents when issuing a particular query. For point clouds,
this means they require, e.g., the retrieval of every and all points
matching the query. A significant drawback of invariant query
semantics is their subpar scalability when the dataset size in-
creases and predicates are not selective enough.

Approximate Queries with approximate semantics emphas-
ize not expecting an exact result. Most prominent are approx-
imate nearest neighbors queries, where the results are in close
proximity to the query point but not necessarily the closest ones.
The benefits of approximate queries are fuzzy searching meth-
ods and early stopping of the matching process, which can help
to increase retrieval performance by sacrificing accuracy.

Probabilistic Queries that include probabilistic semantics. A
straightforward example is to reduce the result set to meet a
specific budget by random sampling for visualization purposes.
Another is common to machine learning methods, where prob-
abilistic samples generate multiple inputs from the same per-
spective.

5.4 Result Modality

The result modality distinguishes queries based on the result
produced and returned.

Pose A pose consists of a location and orientation. Queries
with the intent to localize a given input return a pose. This
is commonly done for image and point cloud registration and
localization tasks.

Frequency Queries returning frequencies comprise the num-
ber of matching observations instead of the matched documents
or data points. Given the name, the results can be aggregated
continuously or discretely across a given domain, like time.

Subset A subset implies that the result set is part of the ori-
ginal data set. This is often the case when queries contain pre-
dicates that translate into a binary search and, hence, resemble
filtering.
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Summaries A summary is derived from the original dataset
through descriptive statistics or other functions. Summary res-
ults can relate to the search, respective data space (e.g., centroid,
mean), or be unrelated (e.g., count, size). The commonality is
that the returned information is condensed and representative of
a subset of the dataset.

5.5 Representations

Querying and matching against raw point clouds does not ne-
cessarily serve the information needs or the presented query
modalities, query semantics, and result modalities sufficiently.
Hence, retrieval systems often operate on derived high-level de-
scriptions (e.g., a skeleton) to find matching results. The multi-
tude of transformations possible to generate a searchable rep-
resentation from raw point cloud data represents a principal
challenge in point cloud search and in building the taxonomy.
Several transformations are presented in the following, includ-
ing their implications for searching.

Figure 3. Illustration of various point cloud representations:
a) raw points, b) mesh, c) grid rounded, d) voxel, e) raster,

f) skeleton.

Meshing and Sampling Meshing and sampling are two in-
terrelated methods. Sampling is merely the process that oc-
curs when scanning a real-world object to create a point cloud.
Sampling spatial objects, like polygons and other geometries,
offers the interesting trait of producing a consistent and generic
representation for any object as a point cloud. Meshing, on the
other hand, is the reverse process of reconstructing the surface
representation by a point cloud as a mesh. One advantage of
meshes is their continuous, well-defined surface representation,
which allows faithful interpolation and surface intersection, in-
cluding normals.

Grid Rounding and Voxelization Grid rounding moves the
coordinates of the points to the nearest center or corner of a cell
in a predefined grid. This offers the possibility of transforming
the coordinates from continuous to discrete variables and thus
moving them from floating point to integer types. One can fur-
ther aggregate the points corresponding to a cell into a so-called
voxel. Depending on how the aggregation is done, this process
of voxelization can reduce the complexity of the data by redu-
cing it to a single representation of the cell. However, it comes
at the cost of information loss.

Projections (Rasterization) Projections of point clouds are
commonly used to reduce dimensionality and discretize the in-
formation. Further, this is used to map raw point clouds in array
data structures. Prominent applications are, for example, raster-
ized digital elevation and surface models.

Aggregation (Skeleton / Graph) Aggregation is a common
principle to derive a higher-level skeleton for point clouds or

parts thereof. Aggregation often involves semantic enrichment
of points through clustering, classification, or semantic seg-
mentation to group points into more meaningful entities. These
objects or segmented parts are generally composed of individual
observations and are more suitable for formulating queries. This
is similar to words being composed of letters in a text search.
For certain retrieval needs, it can be beneficial to put such a
higher semantic layer at the core of the retrieval system, as doc-
uments, respectively, records in a database, instead of single
observations.

6. Discussion

Our developed taxonomy consists of the three facets Query Mod-
ality, Query Semantics, and Result Modality. To evaluate its ap-
plicability to a wide variety of point cloud queries, we identify
typical examples and situate them in the taxonomy for valida-
tion. Based on this integration and the reflection in the context
of the existing system capabilities, we derive recommendations
for improving existing and future point cloud retrieval systems.

6.1 Examples

Based on various literature, we identified about twenty typ-
ical point cloud queries, which are presented in Table 1, in-
cluding the applied taxonomy and prominent application con-
text. They can loosely be categorized as neighbourhood, range,
sampling, visualization, registration, aggregation, or semantic
queries, and discussed accordingly hereafter.

Neighbourhood Queries Neighbourhood queries, such as ra-
dius and kNN queries, are the most specific for point cloud
analysis. They often either return points (Subset) or derived
neighborhood descriptors thereof (Summary) in the vicinity of
a query point (Sub-Cloud). Apart from kNN with approximate
semantics, they are generally invariant. A special case are vec-
tor queries in higher dimensions, which are not widely used for
point cloud analysis primarily focusing on spatial dimensions.
However, we predict this will become more important for se-
mantically enriched point cloud analysis with large language
models (LLM).

Range Queries Range queries are the most elemental in data-
base management systems as they integrate well with typical
indexing facilities. Likewise, axis-aligned bounding box pre-
dicates based on a spatial extent are fundamental to spatial op-
erations for extracting subsets. More complex queries, such as
slicing and polygons (often generated by buffering geometries),
support more elaborate predicates for spatio-temporal and to-
pological analysis. Even though topological relationships with
polygons are not directly matchable through range queries, they
are often used in a filter and refine strategy with their bounding
box. The query modality is mesh, given that all the geometries
involved are representable with meshes, and the result modality
is subset. Current systems predominantly only support invariant
semantics.

Sampling Queries Sampling queries can have any query mod-
ality since this refers to our taxonomy’s semantic facet. Sampling
can be discrete, random, or pseudo-random, like poison disk
sampling. Especially for large point clouds, sampling becomes
paramount; nevertheless, this is rarely considered in existing
solutions apart from the explicit data organization for visualiz-
ation in formats. Further, modern machine learning based ap-
proaches heavily use downsampling and scaling; these models

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025 
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-185-2025 | © Author(s) 2025. CC BY 4.0 License.

 
189



Query Query
Modality

Query
Semantic

Result
Modality

Use Cases /
Prominent Application

k-Nearest Neighbor (kNN) Sub-Cloud I Subset /
Summary

Neighbourhood descriptors and features

Approximate kNN Sub-Cloud A Subset /
Summary

Neighbourhood descriptors and features

Radius Sub-Cloud I, (A, P) Subset /
Summary

Neighbourhood descriptors and features

Vector Sub-Cloud P, (I, A) Subset /
Summary

Similarity search

Range / Box Mesh I, (A, P) Subset Spatio-Temporal filtering
Slicing (Mesh) I, (A, P) Subset Spatio-Temporal subsetting
Polygon / Cone / Solid Mesh I, (A, P) Subset Manifold intersection, Topological analysis
Discrete Sampling Any I, (A) Subset Environmental Data Retrieval
Random Sampling Any P Subset continuous Level of Detail, Thinning, Sampling
Poisson Disk Sampling Any P Subset Disk-/blue noise sampling, Downsampling
Furthest Points Sampling
(FPS)

Any I Subset Downsamling, Representative points

View Frustum Mesh I, (P) Subset Visibility analysis (Field of View), Visualization
Ray Sub-Cloud I, (P) Pose /

Frequency
Rendering, Surface intersection, Visibility analysis

Trajectory Sub-Cloud I, (P) Subset Movement analysis, Collision detection
Co-registration Sub-Cloud Any Pose Iterative closest point (ICP) / Alignment
Point set registration Sub-Cloud Any Pose /

Frequency
Part search, Alignment

Image registration Image A, (P) Pose Camera position and orientation / Photogrammetry
Aggregate Any Any Summary Point density, Centroid, Representative points/values
Window Any I Summary Spatio-temporal change detection
Join Any I Subset Elevation, Data fusion, Topological analysis
Attribute Sub-Cloud I, (A, P) Subset Filter by class or label, Semantic search
Text Concept P, (I, A) Any Natural language, Semantic search

Table 1. Example queries and their situation in the query taxonomy. Query semantics are invariant (I), approximate (A), and
probabilistic (P).

inevitably lead to creating probabilistic patches. The sampling
strategy and quality have been shown to substantially influence
the performance and quality. However, more research is needed
to investigate sampling strategies based on semantic import-
ance.

Visualization Queries Visualization queries, such as ray tra-
cing queries or view frustum, are similar to other queries, such
as trajectory or solid queries. Even though visualization re-
quires relatively simple queries, it heavily relies on augment-
ing points with an importance semantic, such as continuous or
discrete Level of Detail (LoD). The reliance on custom formats
that incorporate this in the data organization and representa-
tion, and the failure of database management systems to easily
provide such features, indicates a general problem of such solu-
tions to cope with adding additional attributes and executing
predicates on them efficiently.

Registration Queries Registration queries, such as image re-
gistration or point set registration, intend to localize a given
query input by returning a pose. While iterative query semantics
are possible (e.g., when having an exact subset), approximate
or probabilistic semantics are the norm. They are common in
3D reconstruction workflows and present higher-level queries
that are often solved iteratively while maintaining intermedi-

ate results generated and updated by many simpler range and
neighbourhood queries. Even though such complex retrieval
workflows are not expected to be directly integrated by retrieval
systems, they should at least be able to serve as a backend for
doing so. Similarly, this is also desirable for machine learning
workflows such as object detection, classification, and semantic
segmentation.

Aggregation Queries Aggregation queries, such as window
functions, generally entail some subquery run over the win-
dows or partitions and can therefore have any query modality,
semantic and result modality, of which summarization is most
common for the latter. Use cases are extracting representat-
ive values/points (Summary), such as change or centroid, or
partitioning into tiles (Subset). Interestingly, such queries are
predestined to apply transformations such as voxelization, ras-
terization, or generating skeletons.

Semantic Queries Semantic queries, such as attribute or text
queries, instead target non-spatial information of points. Still,
attribute queries are considered to belong to the sub-cloud mod-
ality, as they make up the search space given our inclusive defin-
ition of point clouds (see Equation 2 and 3). Text queries, con-
versely, embody concepts of information in point clouds, from
well-defined objects such as cars and trees up to arbitrary ques-
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tions expressed in natural language. Necessary semantic en-
richment of points to facilitate such queries, such as classific-
ation and semantic segmentation, is a vividly explored topic.
However, their integration into retrieval and data management
systems based on and for semantically enriched point clouds
is still in its infancy. Some current systems even struggle to
support simple attribute queries, like, for example, key-value
stores, which only expose the key transparently, whereas the
rest of the information, even spatial dimensions, are in a binary
blob.

6.2 Recommendations

Investigating point cloud search from a retrieval perspective re-
vealed a high variety of information needs and possible repres-
entations. A key issue of the taxonomy surfaced from the open-
ness of what dimensions are part of the search space. From an
inclusive viewpoint, one could argue that every existing attrib-
ute of any point in a point cloud constitutes a dimension. The
implication would be to assign a mere attribute query to the
sub-cloud query modality. However, existing retrieval systems
seldom treat all attributes equally.

Spatial dimensions often get treated preferentially while others
are neglected. This is usually deeply projected into the data
model, hindering queries from seamlessly supporting semantic
enrichment and probabilistic query semantics. Further, point
cloud data is frequently integrated into existing systems as an
extension, poorly integrated with their capabilities, diminish-
ing their usefulness. For example, using space-filling curves
because only binary tree indices are supported is a viable work-
around, but it will ultimately become inefficient as the system
fails to understand this concept and act upon it.

Supporting a wide variety of queries is necessary to empower
point cloud database management systems to back up modern
analytical retrieval needs. While the multitude of possible trans-
formations of point clouds presents an obstacle, it also opens up
an interesting view of a foundational multimodal data represent-
ation intertwined with respective indices for a dedicated system
to support a wide range of use cases. Towards building reliable
and robust systems that manage to address the presented and
future needs, the following recommendations are made:

• Even though spatial attributes are prominent, allow equal
treatment of all attributes for query support.

• Facilitate dynamic schema evolution to support semantic
enrichment by adding attributes transparently and readily
queryable.

• Support heterogeneous data representations and seamless
transformations between them.

• Assume probabilistic and approximate query semantics as
the default to incorporate scalability.

• Consider a multimodal data model tightly integrated with
indexing capabilities.

A step in this direction has been explored in a retrieval system
for point cloud data from vehicles integrating semantic inform-
ation of points combined with sampling and approximate query
execution (Li et al., 2025). Another system based on the lake-
house architecture, incorporating ideas and recommendations
presented in this paper, has been evaluated by exemplifying

probabilistic range queries for scalable visualization (Teuscher
and Werner, 2025). Even for existing systems, these recom-
mendations are interesting to consider for incremental improve-
ments.

7. Conclusions

This work investigated point cloud search from an information
retrieval perspective. Founded on emerging and novel inform-
ation needs, a query taxonomy encompassing query modalit-
ies, query semantics, and result modalities was introduced that
is generic over the manifold possible representations of point
clouds. The gained insights allowed us to derive recommenda-
tions for the evolution of point cloud data management systems
to serve the retrieval needs of contemporary analytical methods.
Key features surfaced from this are the support for probabilistic
query semantics, the possibility for extending points with ad-
ditional attributes, their equal treatment compared to the spa-
tial dimensions for query and indexing, and support for vari-
able point cloud representations and seamless transformation
between them. Following up on these, we envision manifesting
a point cloud database management system for scalable point
cloud analytics where the peculiarities of point clouds are an
integral part instead of an afterthought towards semantic point
cloud data retrieval with text queries expressed in natural lan-
guage.
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