
Introducing server-side support for 3DCityDB 5.0

to the 3DCityDB-Tools plug-in for QGIS

Bing-Shiuan Tsai1, Giorgio Agugiaro1, Camilo Leon-Sanchez 1, Claus Nagel2, Zhihang Yao3

1 3D Geoinformation group, Department Urbanism, Faculty of Architecture and Built Environment, Delft University of Technology,

Delft, The Netherlands – bstsai1022@gmail.com, {g.agugiaro, c.a.leonsanchez}@tudelft.nl
2 Virtual City Systems, Tauentzienstr. 7 B/C, 10789, Berlin, Germany – cnagel@vc.systems

3 Centre for Geodesy and Geoinformatics, Stuttgart University of Applied Sciences (HFT Stuttgart), Stuttgart, Germany –

zhihang.yao@hft-stuttgart.de

Keywords: 3D City Database, QGIS plug-in, CityGML 3.0, PostgreSQL

Abstract

The 3DCityDB-Tools plug-in for QGIS enables users to connect to the open-source 3D City Database (3DCityDB) 4.x, load

CityGML 1.0 and 2.0 data, and structure it as GIS layers within QGIS. The plug-in simplifies interaction with the complex structure

of the 3DCityDB 4.x by providing a GUI-based tool and a server-side package for seamless data retrieval and management from

QGIS. With the release of the CityGML 3.0 conceptual data model in 2021, the 3D City Database has been updated to version 5.0,

introducing several changes to support the new characteristics of CityGML 3.0 and a significant redesign and restructuring of the

database schema. However, the current 3DCityDB-Tools plug-in for QGIS does not support the latest CityGML and 3DCityDB

versions. This paper presents the findings and experiences gathered to modify the plug-in’s server-side architecture to cope with the

new 3DCityDB 5.0. Similar to what already happens with the current plug-in version, the proposed new approach enables the

generation of GIS layers following the Simple-Feature-for-SQL model, optimising query performance and improving attribute

management. The resulting vector-based layers can be seamlessly imported into QGIS, allowing for interaction between QGIS and

the underlying CityGML data stored in the latest version of the 3DCityDB.

1. Introduction

Semantic 3D city models are essential for visualising,

analysing, and managing the built environment (Biljecki et al.,

2015). The Open Geospatial Consortium (OGC) has adopted

CityGML as an international standard for representing 3D

spatial information. CityGML data is typically encoded in

XML, JSON, or SQL, such as, for the last, the 3D City

Database (3DCityDB) (Yao et al., 2018). CityGML 2.0 was

released in 2012 and remains widely used, while CityGML 3.0,

released in 2021, is gaining gradual adoption. The latter

represents a major overhaul of the data model, including

improvements such as a revised Level of Detail concept, an

updated spatial model, and support for temporal data,

versioning, and point clouds. Given the generally large size of

3D city models, a database encoding offers a scalable and

structured approach to spatial data management instead of a

file-based approach. The 3DCityDB is an open-source project

designed for PostgreSQL, Oracle, and PolarDB/Ganos

relational databases and the de facto standard solution for the

SQL encoding of CityGML. It implements the CityGML

standard, supporting detailed semantics and multi-level

representations of city objects. The 3DCityDB Suite1 includes a

set of tools which enable CityGML and CityJSON data

exchange between the database and the file encodings.

3DCityDB 4.x supports CityGML 1.0 and 2.0, whereas the

latest version 5.0 (released in 2025) also supports CityGML 3.0.

The 3DCityDB 4.x consists of 66 tables storing the feature data

and managing relationships between them. Attributes and

geometries of the same city object (e.g., buildings, bridges,

roads, etc.) are often distributed across multiple linked tables.

For example, a LoD2 building can be represented as a solid, a

multi-surface geometry or thematic surfaces (e.g., WallSurfaces,

RoofSurfaces, GroundSurfaces). While the complexity of

1 https://github.com/3dcitydb/3dcitydb-suite

3DCityDB 4.x reflects the rich structure of CityGML data, it

also represents a challenge to access the stored data for those

GIS practitioners who may lack advanced SQL skills. To hide

the complexity of the 3DCityDB 4.x, the “3DCityDB-Tools”

plug-in for QGIS has been developed to simplify the database

interactions by hiding the schema complexity and providing a

user-friendly, GUI-based interface within QGIS. Users can

interact with CityGML data through “standard” GIS layers

(Agugiaro et al., 2024). The newly released 3DCityDB 5.0 (Yao

et al., 2025) significantly simplifies the database schema,

reducing the number of tables from 66 to 17, facilitating easier

data access and adding support for CityGML 3.0.

After a brief summary of the main changes between 3DCityDB

4.x and 5.0 and how such changes affect the plug-in's layer

generation mechanism, the paper examines the integration of

the updated schema into the existing architecture of plug-in,

focusing on server-side adaptations required to generate GIS

layers from spatial and non-spatial data. In particular, the

current (for 3DCityDB 4.x) and the newly proposed (for

3DCityDB 5.0) approach for layer generation are presented,

providing insight into the data extraction methods based on

feature geometry and attribute types. The paper then presents

the implementation results using test datasets and displaying the

resulting GIS layers in QGIS. Finally, the current limitations are

discussed, and some potential future improvements are outlined.

2. The 3DCityDB 5.0 in a nutshell

The 3DCityDB 5.0 maps the CityGML classes and their

properties to 17 tables. Although providing a detailed overview

of the complete database schema is beyond the scope of this

paper, this section focuses on the tables crucial for this work.

More details can be found in the online manual2. The starting

point is the FEATURE table, which is the entry point of all

2 https://3dcitydb.github.io/3dcitydb-mkdocs

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-193-2025 | © Author(s) 2025. CC BY 4.0 License.

193

https://github.com/3dcitydb/3dcitydb-suite
https://3dcitydb.github.io/3dcitydb-mkdocs

Figure 1. Example of the FEATURE table in 3DCityDB 5.0 (excerpt).

Figure 2. Example of the PROPERTY table in 3DCityDB 5.0 (excerpt).

Figure 3. Example of the GEOMETRY_DATA table in 3DCityDB 5.0 (excerpt).

features within the dataset. The PROPERTY table stores all

feature attributes and the relations between them. The feature

geometries, including the template geometries of implicit

representations, are stored in the GEOMETRY_DATA table,

while table IMPLICIT_GEOMETRY contains the geometry

roots to reference the template implicit geometries. The

following points detail these four tables:

• The FEATURE table registers all existing features stored in

the 3DCityDB 5.0. Column id contains the primary key. Like

the 3DCityDB 4.x, column objectclass_id adds semantic

information about the different classes. The column objectid

is used to store the feature gmlid. Column envelope stores the

3D bounding box of each feature (Figure 1).

• The PROPERTY table accommodates all feature attributes

and relations following a schema-less model (Figure 2). The

main columns are:

- id is the primary key;

- feature_id is a foreign key that links the attribute to the

corresponding feature;

- parent_id stores the relation of nested attributes, i.e.,

complex attributes that are further split into simpler parts

and stored across multiple rows. “Parent” attributes appear

first, followed by their “children” attributes linked via

parent_id keys;

- datatype_id is a foreign key to the DATATYPE table,

which contains metadata for the data types in CityGML.

Metadata is available for simple types such as integers,

strings, etc., and complex types such as geometries or

implicit geometries;

- namespace_id specifies the namespace of the respective

attribute. It can be linked to table NAMESPACE;

- name stands for the property name. This can be a simple

attribute name (e.g., “class”, “name”, or “year of

construction”) but also a spatial property such as

“lod1Solid”, specifying, for example, that the feature is

represented as a solid geometry in LoD1 and providing the

link to the table containing its geometry;

- val_* stands for a set of columns storing the attribute

values. Based on the attribute type, values are stored across

different columns, starting from val_int to

val_content_mine. There are 18 different val_* columns.

• The GEOMETRY_DATA table stores the geometries of

existing features. It contains the primary key id as geometry

identifiers to be joined with val_geometry_id or

val_implicitgeom_id from the PROPERTY table. The

feature_id is a foreign key directly linked with the features

(Figure 3). Unlike the 3DCityDB 4.x, type solid or multi-

surface geometries are stored as polyhedral surface or multi-

polygon objects, respectively, instead of being decomposed

into the polygons composing them (details in section 5.2.2).

• The IMPLICIT_GEOMETRY table is only referenced when

features have an implicit spatial representation. Similarly to

3DCityDB 4.x, it stores the primary key of the implicit

geometry attributes, and the relative_geometry_id key is used

to join with the id keys from the GEOMETRY DATA table,

retrieving geometries for the feature implicit representations.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-193-2025 | © Author(s) 2025. CC BY 4.0 License.

194

SELECT f.id AS f_id, g.geometry::geometry(MultiPolygonZ,28992) AS geom

FROM citydb.feature AS f

 INNER JOIN citydb.property AS p ON (f.id = p.feature_id

 AND f.objectclass_id = 901) -- choose buildings

 AND p.name = 'boundary' -- choose boundary relation properties

 INNER JOIN citydb.feature AS f1 ON f1.id = p.val_feature_id

 AND f1.objectclass_id = 712 -- choose roof surfaces

 INNER JOIN citydb.property AS p1 ON f1.id = p1.feature_id -- choose LoD & geometry representation

 AND p1.name = 'lod2MultiSurface'

 INNER JOIN citydb.geometry_data AS g ON g.id = p1.val_geometry_id; -- link to GEOMETRY_DATA table

Listing 1. Example of a query to extract all roofs of buildings in LoD2 Multi-Surface from the 3DCityDB 5.0.

Figure 4. Example of the differences between 3DCityDB 4.x [top] and 5.0 [bottom] schemas to store building data.

Listing 1 shows an example of a SQL query to retrieve all

building roofs represented as LoD2 multi-surface from the

3DCityDB 5.0 schema “citydb”. It involves repetitively

referencing the FEATURE table to access the feature entries,

the PROPERTY table for querying the feature attributes and

relations between them and providing geometry roots to link the

corresponding geometries from the GEOMETRY_DATA table.

3. Major differences between 3DCityDB 4.x and 5.0

In 3DCityDB 4.x, standard attributes and the LoD geometry

roots are mapped to joined tables, starting from the

CITYOBJECT table down to a specific thematic table, such as

the BUILDING table. The feature geometries such as solids and

multi-surfaces are decomposed into polygons and stored in the

SURFACE_GEOMETRY table, together with all necessary

hierarchical information to re-aggregate them upon export. Only

the root ID of the composite geometry is referenced via foreign

keys from the thematic tables. Regarding CityGML generic

attributes, they are mapped to a single table named

CITYOBJECT_GENERICATTRIB.

In contrast, the starting table in 3DCityDB 5.0 is the FEATURE

table. All attributes and spatial properties are mapped to the

PROPERTY table following a type-enforced EAV (Entity-

Attribute-Value) model. Figure 4 illustrates schema differences

between 3DCityDB versions for a building (objectid

“id_building_01”) with two functions (residential and youth

hostel), one height value (49.21 ft) and a lod1Solid

representation. In 3DCityDB 4.x, attributes are accessed via the

CITYOBJECT and BUILDING tables. In 3DCityDB 5.0,

attributes are retrieved from the PROPERTY table: the function

values and the geometry property are attributes stored in

separate rows, while the height is a complex attribute spread

across multiple interconnected rows via parent_id. Finally, the

feature geometries are not decomposed but directly stored in the

GEOMETRY_DATA table.

4. Layer generation in the 3DCityDB-Tools plug-in

The server side of the 3DCityDB-Tool plug-in, also called the

“QGIS Package” (for 3DCityDB 4.x), is written in PL/pgSQL.

The main functions offered by the “QGIS Package” are targeted

at layer creation and the management of users and their database

privileges. The “QGIS Package” allows users to define and

create a layer by extracting a specific geometry according to its

LoD and to associate it with all corresponding attributes. The

resulting layer follows the Simple Feature for SQL (SFS)

model. The reason is that QGIS supports only SFS vector

layers. It is therefore necessary to choose beforehand one of the

multiple representations that a CityGML feature can have.

Each layer consists of a view that links all underlying tables

containing the feature attributes and a materialized view

containing the feature geometries of the selected LoD. For

example, in case of the buildings, the standard feature attributes

of the "Building" class are stored in tables CITYOBJECT and

BUILDING. These two tables are therefore linked. The id keys

in the BUILDING table are then joined with the respective

materialized view of geometries. Unlike CityGML “standard”

feature attributes (e.g. class, function, usage, etc.), CityGML

generic attributes are not attached to the layers. Instead, they

are linked as a child table in the QGIS GUI, so a user can

explore (and edit them) via a nested table. Upon layer creation,

specific trigger functions are deployed to update each view (as

far as the attributes are concerned).

The use of materialized views for the geometries has been

chosen as a compromise to provide a better user experience at

the cost of (temporarily) consuming storage space and the time

needed to generate them upon layer creation. Otherwise,

aggregating all geometries from the component polygons every

time or performing a 3D affine transformation on implicit

representation geometries would negatively affect the user

experience. Additionally, a check counts the number of existing

features. If there are no data regarding a specific class (e.g.

“Room”) in the database, these layers will not be generated.

Finally, users can specify the extents of the layers to be

generated. This is particularly useful for huge city models,

allowing users to create materialized views for only a selected,

smaller area. This approach reduces the (temporary) storage

space required by the materialized views and significantly

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-193-2025 | © Author(s) 2025. CC BY 4.0 License.

195

decreases the time needed to refresh them. More details are

provided in Agugiaro et al. (2024).

5. Methodology

This section describes the methodology defined and

implemented for the server-side part of the QGIS plug-in for the

3DCityDB 5.0. This results from the changes in CityGML 3.0,

the 3DCityDB 5.0 schema differences, and the server-side

implementation of the 3DCityDB-Tools plug-in. The

methodology consists of three parts:

1) Database preparation: This paper takes this step for granted,

i.e., that the 3DCityDB 5.0 has already been installed.

Successively, the “QGIS Package for 3DCityDB 5.0” can

be installed on top of the 3DCityDB instance.

2) QGIS Package: The new “QGIS package for 3DCityDB

5.0” installs upon the 3DCityDB 5.0 instance a set of tables

and functions that follow a similar logic as in the previous

version, however with slightly different steps, such as:

a) Users can specify the geographical extents of the to-be-

generated layers;

b) An improved scan is performed to check for the

existence of the feature geometries stored in the

database, compatible with how geometries and LoDs are

dealt with in CityGML 3.0 and 3DCityDB 5.0;

c) A new scan has been added to check the existing feature

attributes. Attributes are classified into four different

classes (details will be given later on)

d) Information collected about geometries and attributes is

stored in the corresponding metadata tables. Such

metadata is later needed to convert the 3DCityDB 5.0

data into layers supported by QGIS.

3) Data interaction: After collecting information on existing

feature geometries and attributes, users can select the

desired geometry representation of a feature class and

choose which attribute to add to the respective layer for

QGIS. Unlike the previous “QGIS package” for 3DCityDB

4.x, editing attribute data via specific forms in QGIS has

not been implemented yet, and is left for future

improvements. The following sections provide more details

about each part of the methodology.

5.1 Part 1: Database preparation

Once 3DCityDB 5.0 is successfully set up, users can download

the “QGIS Package for 3DCityDB 5.0” from the GitHub 3 .

Detailed instructions for the setup are provided in Tsai (2024).

This process creates a new schema named "qgis_pkg" in the

3DCityDB 5.0 database instance. In short, the QGIS Package

provides functions to generate SQL queries dynamically to

create GIS layers from data stored in 3DCityDB 5.0. Users must

first create a custom schema to store the generated layer views

using the script in Listing 2. The newly created schema follows

the naming convention "qgis_{user_name}", referred to as

"usr_schema" throughout this paper. Within “usr_schema”, four

auxiliary tables are generated: (1) EXTENTS (2)

FEATURE_GEOMETRY_METADATA (3)

FEATURE_ATTRIBUTE_METADATA (4)

LAYER_METADATA. These tables correspond to the four

main steps required for GIS layer creation.

-- create user schema for QGIS Package
SELECT qgis_pkg.create_qgis_usr_schema('user_name')

Listing 2. Query example to create a user schema.

3 https://github.com/tudelft3d/3DCityDB-Tools-for-

QGIS/tree/thesis_bingshiuan

5.2 Part 2: The QGIS package for 3DCityDB 5.0

5.2.1 Extents selection: Once the CityGML/CityJSON data

are imported into the 3DCityDB schema, the bounding box

extents for GIS layer generation can be set by the user, similar

to the current QGIS plug-in implementation. The example in

Listing 3 shows how to use the SQL function to set default or,

alternatively, user-specified extents using the PostGIS

ST_MakeEnvelope function. The extents specified are stored

and used in all successive steps. The target data schema is called

“cdb_schema”, i.e. the schema that contains the 17 tables.

-- full-schema extents (default)
SELECT qgis_pkg.upsert_extents('usr_schema’, ‘cdb_schema');
-- user-defined extents
SELECT qgis_pkg.upsert_extents('usr_schema’, ‘cdb_schema',
 'm_view', ST_MakeEnvelope(Xmin, Ymin, Xmax, Ymax, SRID));

Listing 3. Query example to define the extents of the layers to

be generated.

5.2.2 Feature geometries: Once the geographical extents are

set, a schema-wise scan is performed to check the existence of

feature geometries within the chosen “cdb_schema”. This

operation is carried out by function

update_feature_geometry_metadata, which takes objectclass_id

as input. For instance, the objectclass_id 901 stands for

buildings, while 709 represents WallSurfaces. The results of

this scan are stored in the

FEATURE_GEOMETRY_METADATA table. The function

shown in Listing 4 must be executed whenever users specify a

new extent. Figure 5 shows an example of the results stored in

the FEATURE_GEOMETRY_METADATA table.

-- full-schema extents (default)
SELECT qgis_pkg.update_feature_geometry_metadata(
'usr_schema', 'cdb_schema');
-- user-defined extents
SELECT qgis_pkg.update_feature_geometry_metadata(
'usr_schema', 'cdb_schema', 'm_view');

Listing 4. Example of query to check the existence of feature

geometries.

Once the FEATURE_GEOMETRY_METADATA table is

updated, users can choose which feature LoD geometry

representation they want. The QGIS Package functions will then

dynamically create and run SQL scripts to generate views (or

materialized views) of the geometries. This process involves

joining the FEATURE, the PROPERTY, and the

GEOMETRY_DATA tables. In the case of implicit geometries,

the table IMPLICIT_GEOMETRY is also used.

Although 3DCityDB 5.0 directly stores surface geometries

without disaggregating them, which in theory should reduce

query times compared to previous 3DCityDB version, the

PROPERTY table could be huge for large datasets, affecting the

query time efficiency. Tests comparing views versus

materialized views show that, while views are sufficient for

space features (e.g., buildings), materialized views still offer

better time performance for boundary features (e.g., building

roofs) and space features with implicit representation (e.g.,

trees), where queries involve intensive cross-referencing

between FEATURE and PROPERTY tables (Tsai, 2024).

Despite materialized views (temporarily) consuming storage

space and taking longer to create and refresh, they are used by

default in the QGIS Package for 3DCityDB 5.0 to enhance the

user experience.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-193-2025 | © Author(s) 2025. CC BY 4.0 License.

196

https://github.com/tudelft3d/3DCityDB-Tools-for-QGIS/tree/thesis_bingshiuan
https://github.com/tudelft3d/3DCityDB-Tools-for-QGIS/tree/thesis_bingshiuan

Figure 5. Example of FEATURE_GEOMETRY_METADATA table (excerpt).

Figure 6. Examples of “inline” and “nested” attribute.

5.2.3 Feature attributes: In 3DCityDB 5.0, CityGML

standard and generic attributes are all stored in the PROPERTY

table. To comply with the SFS model when generating GIS

layers, they must be joined with the (materialized) views

containing the geometries. This operation is generally done by

pivoting the query results on the attributes and joining them to

the respective geometry (materialized) views using attribute

names as column headers. Particular care is required in case of

nested attributes. The “QGIS Package for 3DCityDB 5.0” first

classifies all attributes in the PROPERTY table into two main

types:

• "Inline" attributes are single-row records directly associated

with a feature via the feature_id. Their data types are

indicated by datatype_id, and the corresponding values are

stored in specific columns based on these types. An example

is provided in Figure 6 for the attribute “description”.

• "Nested" attributes are stored across multiple rows connected

through the parent_id. The first row represents the parent

attribute name and multiple "inline" child attributes. An

example is provided in Figure 6 for the attribute "height".

The first step of the attribute process is checking the existence

of feature attributes within the selected “cdb_schema”. This

operation is performed by function

update_feature_attribute_metadata, which iterates through the

objectclass_id of the existing classes scanning their existing

attributes and determining their type (Listing 5). The results of

the attributes scan are stored in the

FEATURE_ATTRIBUTE_METADATA table, providing a

summary of the existing attributes and their properties. This

function should be executed whenever users specify a new

extent. Figure 7 shows an example of the result.

The multiplicity and attribute value columns are two additional

factors to be checked before performing (if required) the pivot

operation on the attribute query with the PostgreSQL crosstab

function. When an attribute is selected, these two factors are

checked and updated in the attribute metadata table. Multiplicity

is the minimal and maximal number of attribute occurrences per

object, determined using the max and count functions on the

target attribute by referencing the FEATURE and PROPERTY

tables. Once the attribute data types and multiplicity are

determined, all feature attributes can be categorised as “inline-

single,” “inline-multiple,” “nested-single,” and “nested-

multiple.” These four attribute categories require distinct

flattening strategies based on their storage structure. In

particular, the crosstab function in PostgreSQL is used for

flattening feature nested attributes and attributes with

multiplicity greater than 1. Listing 6 provides an example query

for pivoting buildings' "function" attribute. This attribute is

classified as an "inline-multiple" attribute type with two

associated value columns: val_string and val_codespace. In this

case, the crosstab function is required to pivot the query result

-- full-schema extents (default)
SELECT qgis_pkg.update_feature_attribute_metadata(
'usr_schema', 'cdb_schema');
-- user-defined extents
SELECT qgis_pkg.update_feature_attribute_metadata(
'usr_schema', 'cdb_schema', 'm_view');

Listing 5. Example of query to check the existence of feature

attributes.

-- Define a composite type to hold values in tuples
DROP TYPE IF EXISTS "citydb_901_function";
CREATE TYPE "citydb_901_function" AS
 (val_string text, val_codespace text);
-- Flatten attributes using composite type
SELECT f_id AS f_id,
 -- Extract values from composite-type tuples
 (function_1).val_string AS "function_1",
 (function_1).val_codespace AS "function_codespace_1",
 (function_2).val_string AS "function_2",
 (function_2).val_codespace AS "function_codespace_2"
FROM CROSSTAB($BODY$
 SELECT -- 1: row id, 2: category,
 f.id AS f_id, p.name,
 -- 3: values
 (p.val_string, p.val_codespace)::"citydb_901_function"
 FROM citydb.feature AS f
 INNER JOIN citydb.property AS p ON
 (f.id = p.feature_id AND f.objectclass_id = 901)
 WHERE p.name = 'function'
 ORDER BY f_id, p.id ASC $BODY$)
 -- Max multiplicity defines number of value columns
 -- Source value columns cast to composite type
 AS ct(f_id bigint,
 function_1 "citydb_901_function",
 function_2 "citydb_901_function");

Listing 6. Query example to collect and flatten the “function” of

buildings from 3DCityDB 5.0.

Figure 7. Example of FEATURE_ATTRIBUTE_METADATA table (excerpt).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-193-2025 | © Author(s) 2025. CC BY 4.0 License.

197

Figure 8. Example of flattening the inline-multiple attribute “function” of class Building.

The value columns are collected and cast into a composite type

with its definition header added dynamically at the beginning,

as the crosstab function only accepts one value column from the

source table. The FROM clause includes the attribute retrieval

source query enclosed within $BODY$ tags passed into the

crosstab function, reflecting the multiplicity (in this case, two).

The resulting table columns are named according to the target

attribute ("function"), prefixed with their multiplicity numbers

and explicitly cast as composite types. After pivoting the query

results, the individual values are extracted from their composite-

type tuples. In the final SELECT clause, the first extracted value

column adopts the original attribute name, while the remaining

value columns receive suffixes derived from the target attribute

name. The flattened result of the “function” of buildings can be

seen in Figure 8. The QGIS Package functions apply this

pivoting and column renaming approach to generate SQL

queries for attribute flattening dynamically, using attribute

category information and value column definitions based on the

four established attribute categories.

The approach to handling feature attributes differs significantly

from the one used in the “QGIS Package” for 3DCityDB 4.x, in

which all CityGML standard attributes are already stored in

tables, while generic attributes are managed through sub-tables.

In the current approach, all attributes (both standard and

generic) require flattening due to the PROPERTY table

structure. However, this method gives users greater flexibility in

selecting which attributes to join with geometry views.

5.2.4 Creating GIS layers: Once the metadata tables for

geometries and attributes are updated, users must choose which

type of geometrical representation to use and which attributes to

associate with that representation. At database level, this means

linking the feature geometries in the (materialized) views with

the selected attributes to generate the resulting SFS-compliant

layer. Given the potentially large size of the PROPERTY table,

the complexity of attribute-flattening queries and the number of

SQL joins involved, several tests have been conducted to

explore the best way to join geometries and attributes.

Figure 9 provides an overview of the evaluated approaches.

Materialised views are generally preferable as they offer faster

query time performance, especially when dealing with large-

scale datasets. For this reason, the chosen approach is the last

one at the bottom of Figure 9, where a single SQL statement is

automatically generated and executed to have all selected

attributes gathered in a unique materialized view. The resulting

materialized view is then joined once with the (materialized)

view containing the feature geometries. This approach allows

for avoiding multiple joins and therefore reduces the

computation overhead when interacting with the data. More

details can be found in (Tsai, 2024).

Figure 9. Different GIS layer creation approaches tested with

the 3DCityDB 5.0.

In Listing 7, a user can create a layer containing the building

function and height with buildings represented in LoD1 solid

geometry by specifying the objectclass_id 901 for the Building

class, the “lod1Solid” and 1 for geometry type, LoD number

and the selected attribute names in an array. The resulting SQL

scripts are generated and run automatically by providing such

parameters to the function create_layer. Creating all layers for a

specific CityGML class or creating the layers with all its

existing attributes is also possible using the create_class_layers

and create_all_layer functions, as exemplified in Listing 8.

Layers are created and stored within the selected “usr_schema”,

and they can then be visualised directly in QGIS.

SELECT qgis_pkg.create_layer('usr_schema', 'cdb_schema',
 -- (Parent) objectclass_id (0 for space features)
 0, 901,
 -- Geometry type, LoD

'lod1Solid', 1,
 -- Selected attributes

ARRAY['function', 'height'],
 -- True to save the result in a materialized view

TRUE);

Listing 7. Query example to create a single GIS layer.

-- Create all layers for class Building
SELECT qgis_pkg.create_class_layers(
 'usr_schema', 'cdb_schema', 0, 901);
-- Create layers for class (Building) WallSurfaces
SELECT qgis_pkg.create_class_layers(
 'usr_schema', 'cdb_schema', 901, 709);
-- Create layers for all existing CityGML classes with all
existing attributes
SELECT qgis_pkg.create_all_layer(
 'usr_schema', 'cdb_schema');

Listing 8. Query examples to batch-create GIS layers.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-193-2025 | © Author(s) 2025. CC BY 4.0 License.

198

Figure 10. Generated layers loaded in QGIS and visualized in

2D: [top] Amsterdam, [bottom] Tokyo.

Figure 11. Generated layers loaded in QGIS and visualized in

3D: [top] Amsterdam, [bottom] Tokyo.

5.3 Part 3: Interacting with 3DCityDB 5.0 data from QGIS

The generated layers can be loaded into QGIS via drag-and-

drop after establishing a PostGIS connection. As the feature

attributes are flattened into column headers, their values can be

directly queried, providing an intuitive interaction with the

CityGML data stored in 3DCityDB 5.0. For instance, in Figure

10 (top), buildings in Amsterdam are selected based on their

heights below 15 metres. A more advanced example is shown in

Figure 10 (bottom), where buildings in Tokyo are selected

based on their heights below 15 metres, their location within the

Kyo Bashi District Plan (京橋地区計画), and categorisation

under the flooding scale (規模) "L2" for the Arakawa River

flood inundation risk area (荒川洪水浸水想定区域(想定最大

規模)). These layers enable interaction with 3DCityDB data

from QGIS, both in 2D (Figure 10) and in 3D (Figure 11).

Using SFS-compliant layers has the additional advantage that

“standard” QGIS tools and plug-ins can be used, therefore

further enhancing the utility of QGIS for different applications.

Several input datasets, varying in terms of standard (CityGML

2.0 and 3.0), extents and geographical location (e.g.

Amsterdam, portions of New York, Munich, and Tokyo), and

feature classes (e.g. Building, Vegetation, Transportation,

Relief, etc.) have been tested. Only few screenshots are shown

here. More details are provided in Tsai (2024).

6. Current limitations

Some limitations remain in the current implementation of the

“QGIS Package for 3DCityDB 5.0”. For example, data editing

via the GIS layers is not yet supported. The layers are generated

by joining feature geometries and attributes into materialized

views, which do not support automatic updates to the

underlying 3DCityDB 5.0 tables. To overcome this limitation,

two potential approaches have been considered so far:

(1) Intermediate Tables with Trigger Functions: This method

involves creating an intermediate temporary table that

duplicates the flattened data of generated GIS layers

instead of resorting to materialized views. User

modifications made in QGIS are stored in this intermediate

table, and trigger functions propagate these changes back to

the original tables within the “cdb_schema”. Although

trigger functions could be created and associated directly

with the materialized views, the approach using tables

seems preferable as it is similar in terms of (temporary)

storage consumption for the duplicated data, but it does not

require any joins between geometries and attributes.

(2) Incremental View Maintenance (IVM): Inspired by the

IVM extension for PostgreSQL 4 , Incrementally

Maintainable Materialized Views (IMMVs) could be

explored. IMMVs use database triggers to detect and apply

only incremental changes rather than recomputing entire

views, offering improved efficiency over typical

materialized view refresh methods. As a matter of fact, this

seems to be the most promising solution, however, at the

time of writing (spring 2025), there are still limitations

regarding definitions of supported views. For example,

inner joins are supported, but outer joins are not. The latter,

however, are extensively used in our approach.

Although it is already possible to edit the feature attributes from

QGIS if the PROPERTY table is attached to the geometries as a

sub-table via adding relations, this only enables attribute editing

on a single-feature basis.

4 https://github.com/sraoss/pg_ivm

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-193-2025 | © Author(s) 2025. CC BY 4.0 License.

199

https://github.com/sraoss/pg_ivm

Another limitation is that features without direct geometry

representations (e.g., traffic spaces in transportation data)

cannot be visualized via GIS layers. Two potential approaches

are being considered for future development:

(1) Feature bounding box envelopes: Using the feature

bounding boxes stored in the FEATURE table provides a

fast and straightforward approach to create layers without

joining the GEOMETRY_DATA table. However,

bounding-box envelopes only offer coarse geometries,

limiting spatial analyses.

(2) Aggregation of geometries of child classes: Aggregating

child feature geometries offers another way to create layers

by representing parent features through their child

geometries (e.g., aggregating traffic areas for traffic

spaces), which however requires additional processing via

SQL queries.

A final limitation is due to the column name length.

PostgreSQL has a limitation of 63 bytes for table column

names. Names exceeding this length are automatically

truncated, potentially causing ambiguity errors. For example,

the attribute "Arakawa River flood inundation risk area” (荒川

洪水浸水想定区域(想定最大規模))". In such a case, users

must manually define abbreviations for these long names using

the function in Listing 9, which stores the abbreviations in the

FEATURE_ATTRIBUTE_METADATA table. The

abbreviations are used when the name length exceeds the limit.

In the previous example, its abbreviation is used as shown in

Figure 10. Currently, attribute abbreviations must still be set

manually, but automating this process remains a task for future

development.

SELECT qgis_pkg.update_nested_attri_abbr(
 'usr_schema', 'cdb_schema', oc_id, -- objectclass_id
 'nested_parent_attribute', -- original attribute name
 'abbreviation'); -- user-defined abbreviation

Listing 9. Query example to manually assign an abbreviation

for a nested parent attribute.

7. Conclusion and Outlook

This paper has presented the methodology and the

implementation of a SQL-based server-side “QGIS package”

that allows to interact with CityGML data stored in the recently

released 3DCityDB 5.0: after scanning the contents of the

whole database (or only within a specific user-defined bounding

box) in terms of available geometrical representations and

attributes, the users only need to choose the feature class(es)

(e.g. Buildings), the geometrical representation (e.g. LoD1

solid), and the attributes (e.g. name, class, year of construction).

A single SQL function then takes the users’ input and

automatically generates and executes the necessary scripts to

create SFS-compliant layers, which can be them easily loaded

into QGIS. The main challenge of this work has been

converting CityGML attribute data that can use complex types

into a simple, flattened format compatible with the SFS model

used by QGIS for vector data. Attributes with multiplicity

bigger than 1 (e.g., building function) or nested (e.g., building

height) have required particular care.

The presented approach bridges the gap between complex data

models and simplified GIS layers that users can intuitively

view, query, and potentially edit, e.g. in QGIS. Web Feature

Service (WFS) providers have struggled to fully support

complex data structures in QGIS, limiting their functionality to

simple GML features. Solutions such as the QGIS GML

Application Schema Toolbox (GMLAS5) have been employed

to manage complex features, but they introduce limitations in

user experience, data navigation, and editing capabilities.

Recent enhancements proposed by the QGIS-DE user group

attempt to handle complex features by converting XML

structures into JSON-formatted strings6, however, this approach

is still in development and has some limitations, such as single-

geometry constraints per WFS layer and restricted editing and

filtering capabilities.

In contrast, the approach presented in this paper provides a

complementary, server-side solution by linearising complex

features within the 3DCityDB 5.0 database. Flattening “nested”

attributes into standard GIS layers simplifies the sometimes

complex structure of CityGML data, offering direct and

intuitive interaction within QGIS attribute tables. This

significantly improves data accessibility and query efficiency,

however, at the cost of some (temporary) storage space for the

materialized views and the preprocessing time to generate them.

Finally, enabling editing capabilities for the layers could further

enhance the user experience within QGIS. Changes would

propagate to the 3DCityDB tables and could be then, for

example, exported to CityGML files for broader data sharing.

References

Agugiaro, G., Pantelios, K., León-Sánchez, C., Yao, Z., Nagel,

C., 2024. Introducing the 3DCityDB-Tools plug-in for QGIS.

Recent Advances in 3D Geoinformation Science - Proceedings

of the 18th 3D GeoInfo Conference, Springer, pp. 797–821.

https://doi.org/10.1007/978-3-031-43699-4_48

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., Çöltekin, A.,

2015. Applications of 3D City Models: State of the Art Review.

ISPRS International Journal of Geo-Information, 4(4), 2842-

2889. https://doi.org/10.3390/ijgi4042842

Ledoux, H., Arroyo Ohori, K., Kumar, K., Dukai, B., Labetski,

A., Vitalis, S., 2019. CityJSON: a compact and easy-to-use

encoding of the CityGML data model. Open Geospatial Data

Software and Standards, 4(1), pp. 1–12.

https://doi.org/10.1186/s40965-019-0064-0

Tsai, B.-S., 2024. 3DCityDB-Tools plug-in for QGIS: Adding

server-side support to 3DCityDB v.5.0. MSc thesis. Delft

University of Technology.

https://resolver.tudelft.nl/uuid:5992ba24-8618-48d7-9e24-

28839b5da16b

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P.,

Donaubauer, A., Adolphi, T., Kolbe, T.H., 2018. 3DCityDB –

A 3D geodatabase solution for the management, analysis, and

visualization of semantic 3D city models based on CityGML.

Open Geospatial Data Softw Stand, 3(5):1–26.

https://doi.org/10.1186/s40965-018-0046-7

Yao, Z., Nagel, C., Kendir, M., Willenborg, B., Kolbe, T.H.,

2025. The new 3D City Database 5.0 – Advancing 3D city data

management based on CityGML 3.0. ISPRS Ann. Photogramm.

Remote Sens. Spatial Inf. Sci. Proc. of the 20th 3DGeoInfo and

9th Smart Data Smart Cities conference (same volume as this

paper).

5 https://brgm.github.io/gml_application_schema_toolbox
6 https://github.com/qgis/QGIS-Enhancement-

Proposals/issues/277

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-193-2025 | © Author(s) 2025. CC BY 4.0 License.

200

https://doi.org/10.1007/978-3-031-43699-4_48
https://doi.org/10.3390/ijgi4042842
https://doi.org/10.1186/s40965-019-0064-0
https://resolver.tudelft.nl/uuid:5992ba24-8618-48d7-9e24-28839b5da16b
https://resolver.tudelft.nl/uuid:5992ba24-8618-48d7-9e24-28839b5da16b
https://doi.org/10.1186/s40965-018-0046-7
https://brgm.github.io/gml_application_schema_toolbox/
https://github.com/qgis/QGIS-Enhancement-Proposals/issues/277
https://github.com/qgis/QGIS-Enhancement-Proposals/issues/277

