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Abstract 

The 3DCityDB-Tools plug-in for QGIS enables users to connect to the open-source 3D City Database (3DCityDB) 4.x, load 

CityGML 1.0 and 2.0 data, and structure it as GIS layers within QGIS. The plug-in simplifies interaction with the complex structure 

of the 3DCityDB 4.x by providing a GUI-based tool and a server-side package for seamless data retrieval and management from 

QGIS. With the release of the CityGML 3.0 conceptual data model in 2021, the 3D City Database has been updated to version 5.0, 

introducing several changes to support the new characteristics of CityGML 3.0 and a significant redesign and restructuring of the 

database schema. However, the current 3DCityDB-Tools plug-in for QGIS does not support the latest CityGML and 3DCityDB 

versions. This paper presents the findings and experiences gathered to modify the plug-in’s server-side architecture to cope with the 

new 3DCityDB 5.0. Similar to what already happens with the current plug-in version, the proposed new approach enables the 

generation of GIS layers following the Simple-Feature-for-SQL model, optimising query performance and improving attribute 

management. The resulting vector-based layers can be seamlessly imported into QGIS, allowing for interaction between QGIS and 

the underlying CityGML data stored in the latest version of the 3DCityDB. 

 

1. Introduction 

Semantic 3D city models are essential for visualising, 

analysing, and managing the built environment (Biljecki et al., 

2015). The Open Geospatial Consortium (OGC) has adopted 

CityGML as an international standard for representing 3D 

spatial information. CityGML data is typically encoded in 

XML, JSON, or SQL, such as, for the last, the 3D City 

Database (3DCityDB) (Yao et al., 2018). CityGML 2.0 was 

released in 2012 and remains widely used, while CityGML 3.0, 

released in 2021, is gaining gradual adoption. The latter 

represents a major overhaul of the data model, including 

improvements such as a revised Level of Detail concept, an 

updated spatial model, and support for temporal data, 

versioning, and point clouds. Given the generally large size of 

3D city models, a database encoding offers a scalable and 

structured approach to spatial data management instead of a 

file-based approach. The 3DCityDB is an open-source project 

designed for PostgreSQL, Oracle, and PolarDB/Ganos 

relational databases and the de facto standard solution for the 

SQL encoding of CityGML. It implements the CityGML 

standard, supporting detailed semantics and multi-level 

representations of city objects. The 3DCityDB Suite1 includes a 

set of tools which enable CityGML and CityJSON data 

exchange between the database and the file encodings. 

3DCityDB 4.x supports CityGML 1.0 and 2.0, whereas the 

latest version 5.0 (released in 2025) also supports CityGML 3.0. 

 

The 3DCityDB 4.x consists of 66 tables storing the feature data 

and managing relationships between them. Attributes and 

geometries of the same city object (e.g., buildings, bridges, 

roads, etc.) are often distributed across multiple linked tables. 

For example, a LoD2 building can be represented as a solid, a 

multi-surface geometry or thematic surfaces (e.g., WallSurfaces, 

RoofSurfaces, GroundSurfaces). While the complexity of 

 
1 https://github.com/3dcitydb/3dcitydb-suite 

3DCityDB 4.x reflects the rich structure of CityGML data, it 

also represents a challenge to access the stored data for those 

GIS practitioners who may lack advanced SQL skills. To hide 

the complexity of the 3DCityDB 4.x, the “3DCityDB-Tools” 

plug-in for QGIS has been developed to simplify the database 

interactions by hiding the schema complexity and providing a 

user-friendly, GUI-based interface within QGIS. Users can 

interact with CityGML data through “standard” GIS layers 

(Agugiaro et al., 2024). The newly released 3DCityDB 5.0 (Yao 

et al., 2025) significantly simplifies the database schema, 

reducing the number of tables from 66 to 17, facilitating easier 

data access and adding support for CityGML 3.0. 

 

After a brief summary of the main changes between 3DCityDB 

4.x and 5.0 and how such changes affect the plug-in's layer 

generation mechanism, the paper examines the integration of 

the updated schema into the existing architecture of plug-in, 

focusing on server-side adaptations required to generate GIS 

layers from spatial and non-spatial data. In particular, the 

current (for 3DCityDB 4.x) and the newly proposed (for 

3DCityDB 5.0) approach for layer generation are presented, 

providing insight into the data extraction methods based on 

feature geometry and attribute types. The paper then presents 

the implementation results using test datasets and displaying the 

resulting GIS layers in QGIS. Finally, the current limitations are 

discussed, and some potential future improvements are outlined. 

 

2. The 3DCityDB 5.0 in a nutshell 

The 3DCityDB 5.0 maps the CityGML classes and their 

properties to 17 tables. Although providing a detailed overview 

of the complete database schema is beyond the scope of this 

paper, this section focuses on the tables crucial for this work. 

More details can be found in the online manual2. The starting 

point is the FEATURE table, which is the entry point of all 

 
2 https://3dcitydb.github.io/3dcitydb-mkdocs 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025 
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-193-2025 | © Author(s) 2025. CC BY 4.0 License.

 
193

https://github.com/3dcitydb/3dcitydb-suite
https://3dcitydb.github.io/3dcitydb-mkdocs


 

 
Figure 1. Example of the FEATURE table in 3DCityDB 5.0 (excerpt). 

 

 
Figure 2. Example of the PROPERTY table in 3DCityDB 5.0 (excerpt). 

 
Figure 3. Example of the GEOMETRY_DATA table in 3DCityDB 5.0 (excerpt). 

 

features within the dataset. The PROPERTY table stores all 

feature attributes and the relations between them. The feature 

geometries, including the template geometries of implicit 

representations, are stored in the GEOMETRY_DATA table, 

while table IMPLICIT_GEOMETRY contains the geometry 

roots to reference the template implicit geometries. The 

following points detail these four tables: 

• The FEATURE table registers all existing features stored in 

the 3DCityDB 5.0. Column id contains the primary key. Like 

the 3DCityDB 4.x, column objectclass_id adds semantic 

information about the different classes. The column objectid 

is used to store the feature gmlid. Column envelope stores the 

3D bounding box of each feature (Figure 1). 

• The PROPERTY table accommodates all feature attributes 

and relations following a schema-less model (Figure 2). The 

main columns are: 

- id is the primary key; 

- feature_id is a foreign key that links the attribute to the 

corresponding feature; 

- parent_id stores the relation of nested attributes, i.e., 

complex attributes that are further split into simpler parts 

and stored across multiple rows. “Parent” attributes appear 

first, followed by their “children” attributes linked via 

parent_id keys; 

- datatype_id is a foreign key to the DATATYPE table, 

which contains metadata for the data types in CityGML. 

Metadata is available for simple types such as integers, 

strings, etc., and complex types such as geometries or 

implicit geometries; 

- namespace_id specifies the namespace of the respective 

attribute. It can be linked to table NAMESPACE; 

- name stands for the property name. This can be a simple 

attribute name (e.g., “class”, “name”, or “year of 

construction”) but also a spatial property such as 

“lod1Solid”, specifying, for example, that the feature is 

represented as a solid geometry in LoD1 and providing the 

link to the table containing its geometry; 

- val_* stands for a set of columns storing the attribute 

values. Based on the attribute type, values are stored across 

different columns, starting from val_int to 

val_content_mine. There are 18 different val_* columns. 

• The GEOMETRY_DATA table stores the geometries of 

existing features. It contains the primary key id as geometry 

identifiers to be joined with val_geometry_id or 

val_implicitgeom_id from the PROPERTY table. The 

feature_id is a foreign key directly linked with the features 

(Figure 3). Unlike the 3DCityDB 4.x, type solid or multi-

surface geometries are stored as polyhedral surface or multi-

polygon objects, respectively, instead of being decomposed 

into the polygons composing them (details in section 5.2.2). 

• The IMPLICIT_GEOMETRY table is only referenced when 

features have an implicit spatial representation. Similarly to 

3DCityDB 4.x, it stores the primary key of the implicit 

geometry attributes, and the relative_geometry_id key is used 

to join with the id keys from the GEOMETRY DATA table, 

retrieving geometries for the feature implicit representations. 
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SELECT f.id AS f_id, g.geometry::geometry(MultiPolygonZ,28992) AS geom 

FROM citydb.feature AS f 

    INNER JOIN citydb.property AS p ON (f.id = p.feature_id             

       AND f.objectclass_id = 901)                                     -- choose buildings 

       AND p.name = 'boundary'                                         -- choose boundary relation properties 

    INNER JOIN citydb.feature AS f1 ON f1.id = p.val_feature_id 

       AND f1.objectclass_id = 712                                     -- choose roof surfaces  

    INNER JOIN citydb.property AS p1 ON f1.id = p1.feature_id          -- choose LoD & geometry representation 

       AND p1.name = 'lod2MultiSurface' 

    INNER JOIN citydb.geometry_data AS g ON g.id = p1.val_geometry_id; -- link to GEOMETRY_DATA table 
 

Listing 1. Example of a query to extract all roofs of buildings in LoD2 Multi-Surface from the 3DCityDB 5.0. 
 

 
Figure 4. Example of the differences between 3DCityDB 4.x [top ] and 5.0 [bottom] schemas to store building data. 

 

Listing 1 shows an example of a SQL query to retrieve all 

building roofs represented as LoD2 multi-surface from the 

3DCityDB 5.0 schema “citydb”. It involves repetitively 

referencing the FEATURE table to access the feature entries, 

the PROPERTY table for querying the feature attributes and 

relations between them and providing geometry roots to link the 

corresponding geometries from the GEOMETRY_DATA table. 

 

3. Major differences between 3DCityDB 4.x and 5.0 

In 3DCityDB 4.x, standard attributes and the LoD geometry 

roots are mapped to joined tables, starting from the 

CITYOBJECT table down to a specific thematic table, such as 

the BUILDING table. The feature geometries such as solids and 

multi-surfaces are decomposed into polygons and stored in the 

SURFACE_GEOMETRY table, together with all necessary 

hierarchical information to re-aggregate them upon export. Only 

the root ID of the composite geometry is referenced via foreign 

keys from the thematic tables. Regarding CityGML generic 

attributes, they are mapped to a single table named 

CITYOBJECT_GENERICATTRIB. 

 

In contrast, the starting table in 3DCityDB 5.0 is the FEATURE 

table. All attributes and spatial properties are mapped to the 

PROPERTY table following a type-enforced EAV (Entity-

Attribute-Value) model. Figure 4 illustrates schema differences 

between 3DCityDB versions for a building (objectid 

“id_building_01”) with two functions (residential and youth 

hostel), one height value (49.21 ft) and a lod1Solid 

representation. In 3DCityDB 4.x, attributes are accessed via the 

CITYOBJECT and BUILDING tables. In 3DCityDB 5.0, 

attributes are retrieved from the PROPERTY table: the function 

values and the geometry property are attributes stored in 

separate rows, while the height is a complex attribute spread 

across multiple interconnected rows via parent_id. Finally, the 

feature geometries are not decomposed but directly stored in the 

GEOMETRY_DATA table. 

 

4. Layer generation in the 3DCityDB-Tools plug-in 

The server side of the 3DCityDB-Tool plug-in, also called the 

“QGIS Package” (for 3DCityDB 4.x), is written in PL/pgSQL. 

The main functions offered by the “QGIS Package” are targeted 

at layer creation and the management of users and their database 

privileges. The “QGIS Package” allows users to define and 

create a layer by extracting a specific geometry according to its 

LoD and to associate it with all corresponding attributes. The 

resulting layer follows the Simple Feature for SQL (SFS) 

model. The reason is that QGIS supports only SFS vector 

layers. It is therefore necessary to choose beforehand one of the 

multiple representations that a CityGML feature can have. 

 

Each layer consists of a view that links all underlying tables 

containing the feature attributes and a materialized view 

containing the feature geometries of the selected LoD. For 

example, in case of the buildings, the standard feature attributes 

of the "Building" class are stored in tables CITYOBJECT and 

BUILDING. These two tables are therefore linked. The id keys 

in the BUILDING table are then joined with the respective 

materialized view of geometries. Unlike CityGML “standard” 

feature attributes (e.g. class, function, usage, etc.), CityGML 

generic attributes are not attached to the layers. Instead, they 

are linked as a child table in the QGIS GUI, so a user can 

explore (and edit them) via a nested table. Upon layer creation, 

specific trigger functions are deployed to update each view (as 

far as the attributes are concerned). 

 

The use of materialized views for the geometries has been 

chosen as a compromise to provide a better user experience at 

the cost of (temporarily) consuming storage space and the time 

needed to generate them upon layer creation. Otherwise, 

aggregating all geometries from the component polygons every 

time or performing a 3D affine transformation on implicit 

representation geometries would negatively affect the user 

experience. Additionally, a check counts the number of existing 

features. If there are no data regarding a specific class (e.g. 

“Room”) in the database, these layers will not be generated. 

Finally, users can specify the extents of the layers to be 

generated. This is particularly useful for huge city models, 

allowing users to create materialized views for only a selected, 

smaller area. This approach reduces the (temporary) storage 

space required by the materialized views and significantly 
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decreases the time needed to refresh them. More details are 

provided in Agugiaro et al. (2024). 

 

5. Methodology 

This section describes the methodology defined and 

implemented for the server-side part of the QGIS plug-in for the 

3DCityDB 5.0. This results from the changes in CityGML 3.0, 

the 3DCityDB 5.0 schema differences, and the server-side 

implementation of the 3DCityDB-Tools plug-in. The 

methodology consists of three parts: 

1) Database preparation: This paper takes this step for granted, 

i.e., that the 3DCityDB 5.0 has already been installed. 

Successively, the “QGIS Package for 3DCityDB 5.0” can 

be installed on top of the 3DCityDB instance. 

2) QGIS Package: The new “QGIS package for 3DCityDB 

5.0” installs upon the 3DCityDB 5.0 instance a set of tables 

and functions that follow a similar logic as in the previous 

version, however with slightly different steps, such as: 

a) Users can specify the geographical extents of the to-be-

generated layers; 

b) An improved scan is performed to check for the 

existence of the feature geometries stored in the 

database, compatible with how geometries and LoDs are 

dealt with in CityGML 3.0 and 3DCityDB 5.0; 

c) A new scan has been added to check the existing feature 

attributes. Attributes are classified into four different 

classes (details will be given later on) 

d) Information collected about geometries and attributes is 

stored in the corresponding metadata tables. Such 

metadata is later needed to convert the 3DCityDB 5.0 

data into layers supported by QGIS. 

3) Data interaction: After collecting information on existing 

feature geometries and attributes, users can select the 

desired geometry representation of a feature class and 

choose which attribute to add to the respective layer for 

QGIS. Unlike the previous “QGIS package” for 3DCityDB 

4.x, editing attribute data via specific forms in QGIS has 

not been implemented yet, and is left for future 

improvements. The following sections provide more details 

about each part of the methodology. 

 

5.1 Part 1: Database preparation 

Once 3DCityDB 5.0 is successfully set up, users can download 

the “QGIS Package for 3DCityDB 5.0” from the GitHub 3 . 

Detailed instructions for the setup are provided in Tsai (2024). 

This process creates a new schema named "qgis_pkg" in the 

3DCityDB 5.0 database instance. In short, the QGIS Package 

provides functions to generate SQL queries dynamically to 

create GIS layers from data stored in 3DCityDB 5.0. Users must 

first create a custom schema to store the generated layer views 

using the script in Listing 2. The newly created schema follows 

the naming convention "qgis_{user_name}", referred to as 

"usr_schema" throughout this paper. Within “usr_schema”, four 

auxiliary tables are generated: (1) EXTENTS (2) 

FEATURE_GEOMETRY_METADATA (3) 

FEATURE_ATTRIBUTE_METADATA (4) 

LAYER_METADATA. These tables correspond to the four 

main steps required for GIS layer creation. 

 
-- create user schema for QGIS Package 
SELECT qgis_pkg.create_qgis_usr_schema('user_name') 
 

Listing 2. Query example to create a user schema. 

 
3 https://github.com/tudelft3d/3DCityDB-Tools-for-

QGIS/tree/thesis_bingshiuan 

5.2  Part 2: The QGIS package for 3DCityDB 5.0 

5.2.1 Extents selection: Once the CityGML/CityJSON data 

are imported into the 3DCityDB schema, the bounding box 

extents for GIS layer generation can be set by the user, similar 

to the current QGIS plug-in implementation. The example in 

Listing 3 shows how to use the SQL function to set default or, 

alternatively, user-specified extents using the PostGIS 

ST_MakeEnvelope function. The extents specified are stored 

and used in all successive steps. The target data schema is called 

“cdb_schema”, i.e. the schema that contains the 17 tables. 

 
-- full-schema extents (default) 
SELECT qgis_pkg.upsert_extents('usr_schema’, ‘cdb_schema'); 
-- user-defined extents 
SELECT qgis_pkg.upsert_extents('usr_schema’, ‘cdb_schema', 
   'm_view', ST_MakeEnvelope(Xmin, Ymin, Xmax, Ymax, SRID)); 
 

Listing 3. Query example to define the extents of the layers to 

be generated. 

 

5.2.2 Feature geometries: Once the geographical extents are 

set, a schema-wise scan is performed to check the existence of 

feature geometries within the chosen “cdb_schema”. This 

operation is carried out by function 

update_feature_geometry_metadata, which takes objectclass_id 

as input. For instance, the objectclass_id 901 stands for 

buildings, while 709 represents WallSurfaces. The results of 

this scan are stored in the 

FEATURE_GEOMETRY_METADATA table. The function 

shown in Listing 4 must be executed whenever users specify a 

new extent. Figure 5 shows an example of the results stored in 

the FEATURE_GEOMETRY_METADATA table. 

 
-- full-schema extents (default) 
SELECT qgis_pkg.update_feature_geometry_metadata( 
'usr_schema', 'cdb_schema'); 
-- user-defined extents 
SELECT qgis_pkg.update_feature_geometry_metadata( 
'usr_schema', 'cdb_schema', 'm_view'); 
 

Listing 4. Example of query to check the existence of feature 

geometries. 
 

Once the FEATURE_GEOMETRY_METADATA table is 

updated, users can choose which feature LoD geometry 

representation they want. The QGIS Package functions will then 

dynamically create and run SQL scripts to generate views (or 

materialized views) of the geometries. This process involves 

joining the FEATURE, the PROPERTY, and the 

GEOMETRY_DATA tables. In the case of implicit geometries, 

the table IMPLICIT_GEOMETRY is also used. 

 

Although 3DCityDB 5.0 directly stores surface geometries 

without disaggregating them, which in theory should reduce 

query times compared to previous 3DCityDB version, the 

PROPERTY table could be huge for large datasets, affecting the 

query time efficiency. Tests comparing views versus 

materialized views show that, while views are sufficient for 

space features (e.g., buildings), materialized views still offer 

better time performance for boundary features (e.g., building 

roofs) and space features with implicit representation (e.g., 

trees), where queries involve intensive cross-referencing 

between FEATURE and PROPERTY tables (Tsai, 2024). 

Despite materialized views (temporarily) consuming storage 

space and taking longer to create and refresh, they are used by 

default in the QGIS Package for 3DCityDB 5.0 to enhance the 

user experience. 
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Figure 5. Example of FEATURE_GEOMETRY_METADATA table (excerpt). 

 

 
Figure 6. Examples of “inline” and “nested” attribute. 

 

5.2.3 Feature attributes: In 3DCityDB 5.0, CityGML 

standard and generic attributes are all stored in the PROPERTY 

table. To comply with the SFS model when generating GIS 

layers, they must be joined with the (materialized) views 

containing the geometries. This operation is generally done by 

pivoting the query results on the attributes and joining them to 

the respective geometry (materialized) views using attribute 

names as column headers. Particular care is required in case of 

nested attributes. The “QGIS Package for 3DCityDB 5.0” first 

classifies all attributes in the PROPERTY table into two main 

types: 

• "Inline" attributes are single-row records directly associated 

with a feature via the feature_id. Their data types are 

indicated by datatype_id, and the corresponding values are 

stored in specific columns based on these types. An example 

is provided in Figure 6 for the attribute “description”. 

• "Nested" attributes are stored across multiple rows connected 

through the parent_id. The first row represents the parent 

attribute name and multiple "inline" child attributes. An 

example is provided in Figure 6 for the attribute "height". 

 

The first step of the attribute process is checking the existence 

of feature attributes within the selected “cdb_schema”. This 

operation is performed by function 

update_feature_attribute_metadata, which iterates through the 

objectclass_id of the existing classes scanning their existing 

attributes and determining their type (Listing 5). The results of 

the attributes scan are stored in the 

FEATURE_ATTRIBUTE_METADATA table, providing a 

summary of the existing attributes and their properties. This 

function should be executed whenever users specify a new 

extent. Figure 7 shows an example of the result. 

 

The multiplicity and attribute value columns are two additional 

factors to be checked before performing (if required) the pivot 

operation on the attribute query with the PostgreSQL crosstab 

function. When an attribute is selected, these two factors are 

checked and updated in the attribute metadata table. Multiplicity 

is the minimal and maximal number of attribute occurrences per 

object, determined using the max and count functions on the 

target attribute by referencing the FEATURE and PROPERTY 

tables. Once the attribute data types and multiplicity are 

determined, all feature attributes can be categorised as “inline-

single,” “inline-multiple,” “nested-single,” and “nested-

multiple.” These four attribute categories require distinct 

flattening strategies based on their storage structure. In 

particular, the crosstab function in PostgreSQL is used for 

flattening feature nested attributes and attributes with 

multiplicity greater than 1. Listing 6 provides an example query 

for pivoting buildings' "function" attribute. This attribute is 

classified as an "inline-multiple" attribute type with two 

associated value columns: val_string and val_codespace. In this 

case, the crosstab function is required to pivot the query result 

 
-- full-schema extents (default) 
SELECT qgis_pkg.update_feature_attribute_metadata( 
'usr_schema', 'cdb_schema'); 
-- user-defined extents 
SELECT qgis_pkg.update_feature_attribute_metadata( 
'usr_schema', 'cdb_schema', 'm_view'); 
 

Listing 5. Example of query to check the existence of feature 

attributes. 

 
-- Define a composite type to hold values in tuples 
DROP TYPE IF EXISTS "citydb_901_function"; 
CREATE TYPE "citydb_901_function"  AS 
  (val_string text, val_codespace text); 
-- Flatten attributes using composite type 
SELECT f_id AS f_id, 
  -- Extract values from composite-type tuples 
  (function_1).val_string    AS "function_1", 
  (function_1).val_codespace AS "function_codespace_1", 
  (function_2).val_string    AS "function_2",  
  (function_2).val_codespace AS "function_codespace_2" 
FROM CROSSTAB($BODY$ 
  SELECT -- 1: row id, 2: category, 
    f.id AS f_id, p.name, 
    -- 3: values 
    (p.val_string, p.val_codespace)::"citydb_901_function" 
  FROM citydb.feature AS f 
    INNER JOIN citydb.property AS p ON 
      (f.id = p.feature_id AND f.objectclass_id = 901) 
  WHERE p.name = 'function' 
  ORDER BY f_id, p.id ASC $BODY$) 
  -- Max multiplicity defines number of value columns 
  -- Source value columns cast to composite type 
  AS ct(f_id bigint, 
    function_1 "citydb_901_function", 
    function_2 "citydb_901_function"); 

Listing 6. Query example to collect and flatten the “function” of 

buildings from 3DCityDB 5.0. 

 

 
Figure 7. Example of FEATURE_ATTRIBUTE_METADATA table (excerpt).
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Figure 8. Example of flattening the inline-multiple attribute “function” of class Building. 

 

The value columns are collected and cast into a composite type 

with its definition header added dynamically at the beginning, 

as the crosstab function only accepts one value column from the 

source table. The FROM clause includes the attribute retrieval 

source query enclosed within $BODY$ tags passed into the 

crosstab function, reflecting the multiplicity (in this case, two). 

The resulting table columns are named according to the target 

attribute ("function"), prefixed with their multiplicity numbers 

and explicitly cast as composite types. After pivoting the query 

results, the individual values are extracted from their composite-

type tuples. In the final SELECT clause, the first extracted value 

column adopts the original attribute name, while the remaining 

value columns receive suffixes derived from the target attribute 

name. The flattened result of the “function” of buildings can be 

seen in Figure 8. The QGIS Package functions apply this 

pivoting and column renaming approach to generate SQL 

queries for attribute flattening dynamically, using attribute 

category information and value column definitions based on the 

four established attribute categories. 

 

The approach to handling feature attributes differs significantly 

from the one used in the “QGIS Package” for 3DCityDB 4.x, in 

which all CityGML standard attributes are already stored in 

tables, while generic attributes are managed through sub-tables. 

In the current approach, all attributes (both standard and 

generic) require flattening due to the PROPERTY table 

structure. However, this method gives users greater flexibility in 

selecting which attributes to join with geometry views. 

 

5.2.4 Creating GIS layers: Once the metadata tables for 

geometries and attributes are updated, users must choose which 

type of geometrical representation to use and which attributes to 

associate with that representation. At database level, this means 

linking the feature geometries in the (materialized) views with 

the selected attributes to generate the resulting SFS-compliant 

layer. Given the potentially large size of the PROPERTY table, 

the complexity of attribute-flattening queries and the number of 

SQL joins involved, several tests have been conducted to 

explore the best way to join geometries and attributes. 

 

Figure 9 provides an overview of the evaluated approaches. 

Materialised views are generally preferable as they offer faster 

query time performance, especially when dealing with large-

scale datasets. For this reason, the chosen approach is the last 

one at the bottom of Figure 9, where a single SQL statement is 

automatically generated and executed to have all selected 

attributes gathered in a unique materialized view. The resulting 

materialized view is then joined once with the (materialized) 

view containing the feature geometries. This approach allows 

for avoiding multiple joins and therefore reduces the 

computation overhead when interacting with the data. More 

details can be found in (Tsai, 2024). 

 

 
Figure 9. Different GIS layer creation approaches tested with 

the 3DCityDB 5.0. 

 

In Listing 7, a user can create a layer containing the building 

function and height with buildings represented in LoD1 solid 

geometry by specifying the objectclass_id 901 for the Building 

class, the “lod1Solid” and 1 for geometry type, LoD number 

and the selected attribute names in an array. The resulting SQL 

scripts are generated and run automatically by providing such 

parameters to the function create_layer. Creating all layers for a 

specific CityGML class or creating the layers with all its 

existing attributes is also possible using the create_class_layers 

and create_all_layer functions, as exemplified in Listing 8. 

Layers are created and stored within the selected “usr_schema”, 

and they can then be visualised directly in QGIS. 

 
SELECT qgis_pkg.create_layer('usr_schema', 'cdb_schema', 
    -- (Parent) objectclass_id (0 for space features) 
    0, 901, 
   -- Geometry type, LoD 

'lod1Solid', 1, 
    -- Selected attributes 

ARRAY['function', 'height'], 
    -- True to save the result in a materialized view 

TRUE); 
 

Listing 7. Query example to create a single GIS layer. 

 
-- Create all layers for class Building 
SELECT qgis_pkg.create_class_layers( 
    'usr_schema', 'cdb_schema', 0, 901); 
-- Create layers for class (Building) WallSurfaces 
SELECT qgis_pkg.create_class_layers( 
    'usr_schema', 'cdb_schema', 901, 709); 
-- Create layers for all existing CityGML classes with all 
existing attributes 
SELECT qgis_pkg.create_all_layer( 
    'usr_schema', 'cdb_schema'); 
 

Listing 8. Query examples to batch-create GIS layers. 
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Figure 10. Generated layers loaded in QGIS and visualized in 

2D: [top] Amsterdam, [bottom] Tokyo. 

 

 

 
Figure 11. Generated layers loaded in QGIS and visualized in 

3D: [top] Amsterdam, [bottom] Tokyo. 

5.3 Part 3: Interacting with 3DCityDB 5.0 data from QGIS 

The generated layers can be loaded into QGIS via drag-and-

drop after establishing a PostGIS connection. As the feature 

attributes are flattened into column headers, their values can be 

directly queried, providing an intuitive interaction with the 

CityGML data stored in 3DCityDB 5.0. For instance, in Figure 

10 (top), buildings in Amsterdam are selected based on their 

heights below 15 metres. A more advanced example is shown in 

Figure 10 (bottom), where buildings in Tokyo are selected 

based on their heights below 15 metres, their location within the 

Kyo Bashi District Plan (京橋地区計画), and categorisation 

under the flooding scale (規模) "L2" for the Arakawa River 

flood inundation risk area (荒川洪水浸水想定区域(想定最大

規模)). These layers enable interaction with 3DCityDB data 

from QGIS, both in 2D (Figure 10) and in 3D (Figure 11). 

Using SFS-compliant layers has the additional advantage that 

“standard” QGIS tools and plug-ins can be used, therefore 

further enhancing the utility of QGIS for different applications. 

 

Several input datasets, varying in terms of standard (CityGML 

2.0 and 3.0), extents and geographical location (e.g. 

Amsterdam, portions of New York, Munich, and Tokyo), and 

feature classes (e.g. Building, Vegetation, Transportation, 

Relief, etc.) have been tested. Only few screenshots are shown 

here. More details are provided in Tsai (2024). 

 

6. Current limitations 

Some limitations remain in the current implementation of the 

“QGIS Package for 3DCityDB 5.0”. For example, data editing 

via the GIS layers is not yet supported. The layers are generated 

by joining feature geometries and attributes into materialized 

views, which do not support automatic updates to the 

underlying 3DCityDB 5.0 tables. To overcome this limitation, 

two potential approaches have been considered so far: 

(1) Intermediate Tables with Trigger Functions: This method 

involves creating an intermediate temporary table that 

duplicates the flattened data of generated GIS layers 

instead of resorting to materialized views. User 

modifications made in QGIS are stored in this intermediate 

table, and trigger functions propagate these changes back to 

the original tables within the “cdb_schema”. Although 

trigger functions could be created and associated directly 

with the materialized views, the approach using tables 

seems preferable as it is similar in terms of (temporary) 

storage consumption for the duplicated data, but it does not 

require any joins between geometries and attributes. 

(2) Incremental View Maintenance (IVM): Inspired by the 

IVM extension for PostgreSQL 4 , Incrementally 

Maintainable Materialized Views (IMMVs) could be 

explored. IMMVs use database triggers to detect and apply 

only incremental changes rather than recomputing entire 

views, offering improved efficiency over typical 

materialized view refresh methods. As a matter of fact, this 

seems to be the most promising solution, however, at the 

time of writing (spring 2025), there are still limitations 

regarding definitions of supported views. For example, 

inner joins are supported, but outer joins are not. The latter, 

however, are extensively used in our approach. 

Although it is already possible to edit the feature attributes from 

QGIS if the PROPERTY table is attached to the geometries as a 

sub-table via adding relations, this only enables attribute editing 

on a single-feature basis. 

 

 
4 https://github.com/sraoss/pg_ivm 
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Another limitation is that features without direct geometry 

representations (e.g., traffic spaces in transportation data) 

cannot be visualized via GIS layers. Two potential approaches 

are being considered for future development: 

(1) Feature bounding box envelopes: Using the feature 

bounding boxes stored in the FEATURE table provides a 

fast and straightforward approach to create layers without 

joining the GEOMETRY_DATA table. However, 

bounding-box envelopes only offer coarse geometries, 

limiting spatial analyses. 

(2) Aggregation of geometries of child classes: Aggregating 

child feature geometries offers another way to create layers 

by representing parent features through their child 

geometries (e.g., aggregating traffic areas for traffic 

spaces), which however requires additional processing via 

SQL queries. 

 

A final limitation is due to the column name length. 

PostgreSQL has a limitation of 63 bytes for table column 

names. Names exceeding this length are automatically 

truncated, potentially causing ambiguity errors. For example, 

the attribute "Arakawa River flood inundation risk area” (荒川

洪水浸水想定区域(想定最大規模))". In such a case, users 

must manually define abbreviations for these long names using 

the function in Listing 9, which stores the abbreviations in the 

FEATURE_ATTRIBUTE_METADATA table. The 

abbreviations are used when the name length exceeds the limit. 

In the previous example, its abbreviation is used as shown in 

Figure 10. Currently, attribute abbreviations must still be set 

manually, but automating this process remains a task for future 

development. 

 
SELECT qgis_pkg.update_nested_attri_abbr( 
    'usr_schema', 'cdb_schema', oc_id, -- objectclass_id 
    'nested_parent_attribute', -- original attribute name 
    'abbreviation');           -- user-defined abbreviation 
 

Listing 9. Query example to manually assign an abbreviation 

for a nested parent attribute. 

 

7. Conclusion and Outlook 

This paper has presented the methodology and the 

implementation of a SQL-based server-side “QGIS package” 

that allows to interact with CityGML data stored in the recently 

released 3DCityDB 5.0: after scanning the contents of the 

whole database (or only within a specific user-defined bounding 

box) in terms of available geometrical representations and 

attributes, the users only need to choose the feature class(es) 

(e.g. Buildings), the geometrical representation (e.g. LoD1 

solid), and the attributes (e.g. name, class, year of construction). 

A single SQL function then takes the users’ input and 

automatically generates and executes the necessary scripts to 

create SFS-compliant layers, which can be them easily loaded 

into QGIS. The main challenge of this work has been 

converting CityGML attribute data that can use complex types 

into a simple, flattened format compatible with the SFS model 

used by QGIS for vector data. Attributes with multiplicity 

bigger than 1 (e.g., building function) or nested (e.g., building 

height) have required particular care. 

 

The presented approach bridges the gap between complex data 

models and simplified GIS layers that users can intuitively 

view, query, and potentially edit, e.g. in QGIS. Web Feature 

Service (WFS) providers have struggled to fully support 

complex data structures in QGIS, limiting their functionality to 

simple GML features. Solutions such as the QGIS GML 

Application Schema Toolbox (GMLAS5) have been employed 

to manage complex features, but they introduce limitations in 

user experience, data navigation, and editing capabilities. 

Recent enhancements proposed by the QGIS-DE user group 

attempt to handle complex features by converting XML 

structures into JSON-formatted strings6, however, this approach 

is still in development and has some limitations, such as single-

geometry constraints per WFS layer and restricted editing and 

filtering capabilities. 

 

In contrast, the approach presented in this paper provides a 

complementary, server-side solution by linearising complex 

features within the 3DCityDB 5.0 database. Flattening “nested” 

attributes into standard GIS layers simplifies the sometimes 

complex structure of CityGML data, offering direct and 

intuitive interaction within QGIS attribute tables. This 

significantly improves data accessibility and query efficiency, 

however, at the cost of some (temporary) storage space for the 

materialized views and the preprocessing time to generate them. 

 

Finally, enabling editing capabilities for the layers could further 

enhance the user experience within QGIS. Changes would 

propagate to the 3DCityDB tables and could be then, for 

example, exported to CityGML files for broader data sharing. 
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