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Abstract 
 
Accurate semantic modelling of urban road infrastructure is critical for digital twins, traffic simulations, and smart city planning. This 
study presents a structured methodology to transform road elements segmented from urban point clouds into CityGML 3.0-compliant 
representations. Leveraging CityGML’s hierarchical Transportation module, the approach introduces a multi-level granularity 
framework—area, way, and lane—for representing road components like sidewalks, driving lanes, and parking areas. Following 
geometric pre-processing, segmented surfaces are semantically mapped into appropriate CityGML classes using a rule-based mapping 
strategy, enriched with descriptive attributes and hierarchical identifiers. The resulting XML-based datasets were validated and 
visualized using industry-standard tools such as FME, QGIS, and 3DCityDB, demonstrating successful integration into city-scale 
digital environments. 
 
 

1. Introduction 

Accurate and semantically rich representations of road 
infrastructure are fundamental for a wide range of applications, 
including smart mobility, transportation planning, digital twin 
development, and autonomous vehicle navigation. As cities 
continue to embrace digitalization, there is an increasing demand 
for structured, semantically enriched and high-resolution 3D 
models of the urban environment. In this context, the integration 
of road elements into 3D city models is a crucial step in 
facilitating intelligent systems to interact with the urban space in 
meaningful ways. Such integration supports not only static 
visualization and mapping but also dynamic analysis, simulation, 
and monitoring of traffic flow, accessibility, and infrastructure 
condition. Thus, enhancing the semantic and spatial quality of 
road representations is essential for building more efficient urban 
systems. 
 
Recent advancements in mobile laser scanning (MLS) and point 
cloud processing have enabled the automated segmentation of 
urban road networks into detailed functional spaces. These 
include sidewalks, driving lanes, and parking areas captured with 
high accuracy and classified based on geometric and semantic 
properties. The high spatial resolution and coverage of MLS 
systems make them particularly well-suited for capturing the 
complexity of urban street environments, including variations in 
surface material, and elevation changes. However, while 
advances have been made in the detection and segmentation of 
urban features from MLS data, fewer efforts have focused on 
integrating this information into standardized urban data models. 
Consequently, the full potential of point cloud data is not yet 
much explored in applications that rely on semantic 
interoperability, such as traffic simulations, urban planning tools, 
or city-scale digital twins. 
 
To ensure the effective use of 3D urban data, semantic modelling 
standards such as CityGML have been introduced. CityGML is 
an open standard developed by the Open Geospatial Consortium 
(OGC) for the representation and exchange of 3D virtual city 
models. It provides a consistent framework for encoding 
geometric, topological, and semantic information about the built 
environment, enabling the structured representation of urban 

features such as buildings, terrain, vegetation, and transportation 
infrastructure. The currently most widely used version is 
CityGML 2.0, released in 2012 (Gröger & Plümer, 2012), 
whereas significant revisions and extensions to the standard have 
been made with the release of CityGML 3.0 (Kolbe et al., 2021), 
particularly in its Transportation module, as the new version 
introduces a revised structure for representing transportation 
infrastructure (Beil et al., 2020). 
 
Despite these improvements, the transformation of segmented 
point clouds into valid CityGML objects remains a challenging 
task. While point cloud data provides highly accurate geometric 
information, it lacks inherent structure and semantic meaning. 
Therefore, a major challenge lies in converting this raw 
geometric data into a semantically rich format that aligns with the 
hierarchical structure and class definitions of CityGML 3.0. This 
process requires to automate not only the accurate delineation of 
individual road components, but also the assignment of 
appropriate semantic attributes and spatial hierarchies between 
objects. To this end, it is essential to translate segmented road 
elements from point clouds into a structured, rule-based format 
that respects the structure and constraints of the CityGML 
schema. This includes the correct mapping to CityGML classes 
and attributes, and the modelling of the same feature according 
to different levels of detail. 
 
This study focuses on the semantic integration of automatically 
extracted polygons from point clouds into CityGML 3.0. The 
proposed methodology involves the integration of already 
segmented urban road components—such as sections, 
intersections, sidewalks, parking areas, and driving lanes—
across three levels of granularity. These elements are transformed 
into valid CityGML objects, compliant with the CityGML 3.0 
transportation module and ready for integration into city models 
and digital twin environments. 
 
The main contributions of this work are: 

• A semantic integration framework for transforming 
road polygons, derived from MLS point cloud data, 
into valid CityGML 3.0 objects. The framework 
ensures compliance with the Transportation module’s 
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structure and supports its hierarchical representation of 
road spaces. 

• Support for multi-level granularity, enabling the 
representation of transportation objects at the area, 
way, and lane levels in accordance with CityGML 3.0 
specifications and levels of detail. 

• The generation of semantically rich, interoperable 
CityGML datasets that can be eventually applied in 
urban planning tools, traffic simulations, and digital 
twin environments. 
 

This paper is organized as follows: Section 2 provides a 
comprehensive review of point cloud processing methods and the 
integration of road features into standardized 3D city models. 
Section 3 describes the proposed methodology, while Section 4 
shows the experiments and results obtained from applying the 
method to a real case study. Finally, Section 5 is devoted to 
concluding this work.  
 

2. Related work 

In recent years, the growing importance of digital twins and smart 
cities has driven significant advances in the modelling of 3D 
urban environments. The semantic and geometric modelling of 
road infrastructure has seen substantial advancements through 
the integration of point cloud data and standardized city models. 
 
Various standards have been introduced for the 3D modelling of 
road networks, from linear-based representations such as 
OpenDrive and RoadXML, to surface-based approaches like 
LandInfra and CityGML. The introduction of CityGML 3.0 
brought major conceptual and structural updates—including, 
among others, the space concept, improved LoD representation, 
and a revised Transportation module (Kutzner et al., 2020). 
 
Tan et al., 2023 conducted a systematic literature review to 
evaluate the role of CityGML in BIM/GIS integration. Their 
analysis found that IFC-to-CityGML conversion remains 
challenging, mainly due to mismatches in geometry 
representations and semantic models. However, the space 
concept introduced in CityGML 3.0 offers a promising solution 
to maintain semantic consistency, while its new LoD structure 
improves the adaptability of features across levels.  
 
While the above standards provide a robust semantic framework, 
the actual creation of geometric digital twins—particularly for 
roads— still demands significant manual effort. Addressing this, 
Davletshina et al., 2024 proposed a novel fully automated method 
that leverages LiDAR point clouds for segmenting and meshing 
road features. Their approach combines context-aware and 
location-aware segmentation using PointNet++ to classify road 
elements (e.g., lamps, guardrails, traffic signs) and builds 
semantically labelled polygonal mesh models. These 3D models 
are geometry-focused and platform-neutral, lacking structured 
semantic hierarchies like those in CityGML. A key advance lies 
in the integration of asset-specific GPS data, allowing for 
enhanced segmentation precision through localized bounding 
box extraction. Evaluated on large-scale datasets such as 
KITTI360 and the Digital Roads dataset, the method achieved up 
to 91.7% mean Intersection over Union (mIoU) for road 
furniture, significantly outperforming existing benchmarks. 
 
Among recent applications of the CityGML 3.0 Transportation 
module, Beil & Kolbe, 2020 presented a framework for 
modelling road space elements. Their approach supports the 
semantic decomposition of road spaced into TrafficSpace and 
AuxiliaryTrafficSpace entities. A significant advantage of the 

model is its hierarchical structure, which enables the integration 
of traffic semantics and spatial analysis into simulation and 
decision-making processes. In their study, Schwab et al., 2020, 
proposed a spatio-semantic modelling approach targeted at 
vehicle-pedestrian simulations. Utilising georeferenced point 
clouds, they generated a CityGML dataset, which represents both 
physical and functional characteristics of urban environment.  
 
Building on recent efforts to generate detailed semantic models 
from point clouds, González-Collazo et al., 2025 introduced a 
method that transforms MLS and HMLS data into CityGML 3.0-
compliant models. Their approach emphasizes curbside-specific 
semantics, classifying urban spaces into parking for different 
users, parking by time, parking entrances, garbage bin spaces, 
and terrace areas. The processed point clouds are translated into 
CityGML’s Transportation module at LoD3 with the ‘way’ 
semantic granularity, in which individual objects (e.g. driving 
lanes, sidewalks) are modelled per surface function. Validation 
against OpenDRIVE models and visualization using 3DCityDB 
and Google Earth Pro yielded F1-scores above 0.8 and IoU above 
0.78, demonstrating strong alignment with real-world geometry. 
 
An example of a city-scale semantic modelling initiative is 
presented by Lehner et al., 2024 through the development of 
Vienna’s Digital geoTwin. Based on CityGML 2.0, the authors 
defined a tailored profile and implemented an Application 
Domain Extension (ADE) to accommodate Vienna’s urban data 
requirements. The project integrated various datasets, such as 
terrain, buildings, vegetation, and city furniture, into a coherent 
semantic environment, forming Vienna’s digital twin. To 
maintain geometric continuity when extracting features like 
buildings or bridges from the terrain model, they introduce a new 
ADE class, LandUseClosureSurface, conceptually extending 
CityGML’s ClosureSurface which is however only available for 
Building, Tunnel, Bridge and WaterBody classes. The digital 
twin supports multiple Levels of Detail (LoD), with special 
emphasis on building decomposability and modular reuse 
through template geometries and xLinks. 
 
In addition to surface-based representations, CityGML 3.0 
introduces enhanced support for linear geometries, such as 
LoDXMultiCurve, enabling the representation of road networks 
with navigable, graph-based semantics. Beil & Kolbe, 2024 
provided a comprehensive review of applications of semantic 3D 
streetspace models, highlighting the potential of CityGML 3.0 to 
support linear representations for modelling traffic direction and 
network topology. They emphasized the benefits of these 
representations for applications that require fine-grained 
navigation data, such as real-time routing, multimodal transport 
simulations, and simulation platforms for autonomous driving. 
 
Yarroudh et al., 2023 presented a systematic approach for 
generating standardized 3D road infrastructure models using 
CityGML 3.0 and its CityJSON encoding. Their methodology 
relies on semi-automatic extraction of linear features—such as 
curbs and road boundaries—from mobile mapping LiDAR point 
clouds, which are then used to create semantically segmented 
surfaces (e.g., sidewalk, roadway, green space) through a 
codification and classification system. The final models are 
textured and exported to CityJSON, stored in a MongoDB 
database via the Measur3D platform, and visualized in a web-
based application that was extended to support inspection of 
semantic surfaces. 
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3. Method 

Building upon recent approaches, this study presents a structured 
methodology to transform urban road elements, derived from 
urban point clouds, into CityGML 3.0-compliant representations. 
The proposed method addresses both the geometric and semantic 
modelling of previously segmented road features, including 
driving lanes, sidewalks, carriageways, and parking areas, in 
accordance with the hierarchical structure and object classes 
defined by the CityGML 3.0 Transportation module. The 
proposed methodology follows a stepwise process: polygon pre-
processing, semantic mapping to CityGML 3.0 classes, and 
generation of XML-based CityGML 3.0 output files. 
 
In our method, data is organized into three distinct levels of 
granularity. It takes inspiration from the revised Transportation 
module of CityGML 3.0 (Beil et al., 2023). A multi-level 
granularity system is proposed to support hierarchical 
representations or transportation infrastructure. We define our 
three granularity levels as “area”, “way”, and “lane”, respectively 
(Figure 1). 
 

 
Figure 1. Conceptual representation of the 3 levels of 

granularity: 1st level (area), 2nd level (way), 3rd level (lane). 
 
 In particular, the area level consists of a set of objects, classified 
into sections or intersections and having each only one polygon-
based geometry. Section and intersection objects can be then 
grouped to represent a whole road. In the 2nd level of granularity, 
way, individual objects are modelled per surface function 
including carriageway, sidewalk, and parking areas. Each object 
has its own polygon-based geometry and is obtained by splitting 
(wherever possible or necessary) the corresponding polygons of 
the previous level. Finally, in the 3rd level, lane, each individual 
lane is modelled separately, by further splitting the geometries of 
the previous level, wherever applicable. A graphical example is 
provided in Figure 2. 
 

 
Figure 2. Three levels of granularity in surface and linear-based 
representations. a) area, b) way, c) lane, d) area, e) way, f) lane. 
 
3.1 Geometrical pre-processing 

This study builds upon a detailed segmentation methodology that 
transforms point cloud data into structured geometries of urban 
road space (Tsiranidou et al., 2025). This process begins with 
already classified point clouds (González-Collazo et al., 2024), 
in which the classes road, sidewalk, and curb are used to 
delineate functional urban areas. By detecting road markings, 
which serve as spatial subdivisions of road space, and using as 
inputs the road centrelines and the width of the road, surfaces 
such as driving lanes, parking areas, and zebra crossings are 
segmented into distinct functional areas (Tsiranidou et al., 2024) 
(Figure 3). 
 

 
Figure 3. a) Input data (road width: w1, w2, centreline, road 
markings) to delineate road space. b) driving lane with blue 

colour, parking area with pink colour. 
 
The resulting surface geometries derived from point cloud 
segmentation often contain noise, and topological 
inconsistencies, which complicate their direct use in semantically 
structured city models. Therefore, the initial step of this work 
involves geometric cleaning where small-scale noise and 
redundant vertices are removed (Tsiranidou et al., 2025). 
 
At this stage, it should be noted that the geometries lack any of 
the semantic descriptors necessary for their integration into 
structured urban models. Thus, after geometric refinement, the 
dataset is prepared for semantic enrichment by ensuring 
compatibility with surface-based representations used in 
CityGML. 
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3.2 Semantic mapping to CityGML 3.0 classes 

Once the geometries are pre-processed as described in the 
previous section, the next step involves their mapping to the 
structure defined by CityGML 3.0. In other words, the focus of 
this step is to interpret the geometric data by assigning it to 
appropriate classes within the Transportation module of the 
CityGML schema. 
 
The hierarchical and semantical representation adopted in our 
method coincides very well with the one used by CityGML 3.0, 
in which class Road is used for both vehicles and pedestrians and 
is composed by Sections and Intersections. Each of these classes 
are specializations of class AbstractTransportationSpace, which 
can be further composed of TrafficSpace. In terms of geometry, 
a TrafficSpace object is meant to represent the volumetric 
characteristics of the space it models. However, TrafficSpace 
objects can be represented also by means of surface-based objects 
using class TrafficArea (Figure 4). Please note that, for the sake 
of readability, we only refer here to classes TrafficSpace and 
TrafficArea, but we actually mean also to the conceptually 
similar and structurally equivalent classes AuxiliaryTrafficSpace 
and AuxiliaryTrafficArea. 

 
In general, the mapping between our levels of granularity and 
CityGML 3.0 works as follows: 

• For each road, geometry-less objects from class Road 
are instantiated. They contain each geometry-less 
Section and Intersection objects, derived from the 
respective classes. 

• For each Section/Intersection, we further create 
geometry-less TrafficSpace objects. Since the 
geometries resulting from our method belong to the 
boundary representation paradigm, we use then 
TrafficArea objects, as children of the respective 
TrafficSpace objects to store the geometries using 
multi-surfaces in different LoDs, depending on the 
level of granularity. 
In particular, we choose: 

o LoD1 for level area,  
o LoD2 for level way, and  
o LoD3 for level lane. 

 
 
 
 
 

 
Figure 4. a) Road space in 1st level of granularity, b) TrafficAreas in 2nd level of granularity (blue colour for sidewalks, orange for 

carriageways and pink for parking areas), c) TrafficAreas in 3rd level of granularity (blue colour for sidewalks, pink for parking areas 
and driving lanes with distinct colour each one). 

 
More in detail, a number of operations are still needed in order to 
enrich the geometrical data with the amount of additional 
information which is required for a proper mapping to CityGML. 
First, a globally unique identifier (gml:id) is assigned to each 
object in each level of granularity to ensure referential integrity 
and allow linking between components. In addition, each 
geometry is further annotated with descriptive attributes, 
including its segmentation origin, geometric classification and 
relevant contextual descriptors. These attributes are then used for 
semantic mapping, where each object is mapped to a specific 
class within the CityGML Transportation module. 
 
For the 1st level of granularity, fields such as name (name of the 
street for sections and names of the intersected streets for 
intersections), class (indicating the object’s type), and 
object_class (section or intersection) are defined for each section 
and intersection. Currently, data from the 1st level of granularity 
contains also attributes needed for mandatory top-level container 
objects in CityGML (i.e. Roads), such as the road gml_id, class 
and function attributes.  
 
For the 2nd and 3rd level of granularity each object contains all 
attributes to extract both a TrafficSpace and the associated 
TrafficArea objects at once. In particular, attributes such as class, 
function, usage, granularity (indicating which modes of 
transportation can use it) and traffic direction are mapped to 
TrafficSpace attributes. At the same time, by using a prefix to 

avoid homonymous names in the input data, attributes such as 
class, function, usage and surface material are defined for 
TrafficSpace. 
 
For all objects in all levels, information about their hierarchical 
order is provided by means of a gml_parent_id attribute. This 
field is later used, together with the gml_id attribute, to model the 
objects according to the CityGML 3.0 data model. 
 
3.3 Generation of CityGML 3.0 output  

The mapping defined in the previous step has been implemented 
in FME Form 2024 in order to write an XML-based CityGML 
3.0 file. As at the time of writing (spring 2025) FME Form 
provides a specific CityGML 3.0 Reader but does not provide a 
specific CityGML 3.0 Writer (unlike for CityGML 2.0), a generic 
GML Writer must be used instead. The XSD files of CityGML 
3.0 are used by the GML Writer to generate the corresponding 
writer transformers (one for each feature class), following a 
similar logic to the CityGML 2.0 approach. There are however 
some minor differences in the way data is prepared before being 
sent to the corresponding feature writer. For example, for 
CityGML 2.0, attributes such as citygml_feature_role, together 
with gml_id and gml_parent_id, are used for features to define in 
FME their hierarchy within the resulting output CityGML file. In 
the case of CityGML 3.0 and the GML writer, the procedure is 
similar, but the attribute gml_parent_property is used instead of 
the citygml_feature_role. At geometry level, similar differences 
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apply, too. In CityGML 2.0, the attribute as citygml_lod_name 
must be “injected” as geometry property/trait into the 
corresponding geometry. In the case of CityGML 3.0 and the 
GML writer, this is not the case anymore. The FME “standard” 
attribute geometry_name is injected instead, i.e. via a 
GeometryPropertySetter transformer. 
 
In order to test the validity of the resulting file, the FME option 
to validate the file has been used throughout the process. Once 
the XML file has been written, additional tests have been carried 
out to test its usability in other software tools. For example, 
visualisation tests have been successfully carried out using both 
the FME Data Inspector 2024 and the KIT ModelViewer. 
Additionally, data has been successfully imported into the 
recently released 3DCityDB 5.0 (Yao et al., 2025), which 
supports CityGML 3.0, and successfully visualised in QGIS 
using a newly developed server-side part of the QGIS plugin for 
the 3DCityDB (Tsai et al., 2025). 
 

4. Experiments and results 

4.1 Case study 

To validate the proposed methodology, a real-world case study 
was conducted using MLS point cloud data from a 2-kilometer 
urban street network, as described in (González-Collazo et al., 
2024). Data acquisition was performed using a hybrid approach, 
combining handheld and vehicle-mounted Mobile Laser 
Scanners in a 2-kilometer urban street network. The captured 
point clouds underwent a semi-automated semantic labelling 
process, leveraging both heuristic-based rules and Deep Learning 
classifiers, resulting in eight distinct classes: road, sidewalk, 
curb, buildings, vehicles, vegetation, poles, and others. For this 
work, only the road, sidewalk and curb classes were used (Figure 
5). 
 

 
Figure 5. a) Point cloud data, b) Classes (road, sidewalk, curb) 

used in this work. 
 

4.2 Geometrical pre-processing 

In the initial phase of our workflow, raw MLS point cloud data 
was processed to extract polygonal geometries corresponding to 
urban elements. The input dataset covered approximately 2 km 
of a dense urban network (Figure 6). 
 

 
Figure 6. The input point cloud data (roads, curbs and sidewalk 

classes).  
 
From the raw point clouds, a total of 19 polygons were 
automatically extracted for the 1st level of granularity, 
corresponding to sections and intersections. At the 2nd level, 
representing individual carriageways, sidewalks, and parking 
areas, 84 polygons were extracted, and the 3rd level yielded a total 
of 123 polygons corresponding to driving lanes, sidewalks, and 
parking areas (Figure 7). 
 
4.3 Semantic mapping to CityGML 3.0 classes 

The mapping process followed the granularity-driven strategy, as 
defined before, which aligns with the hierarchical structure of 
CityGML 3.0. Specifically, 7 Road objects were created 
composed of 11 Sections and 8 Intersections, each one modelled 
as instance of the AbstractTransportationSpace class. XLinks 
were used to model those intersections belonging to different 
roads. Each Section and Intersection were further enriched by 
instantiating TrafficSpace objects and surface geometries were 
stored using TrafficArea objects, for the LoD1, LoD2 and LoD3. 
In the 2nd level of detail, a total of 84 TrafficArea objects were 
created, including 51 sidewalks, 19 carriageways, and 14 parking 
areas. In the 3rd level of detail, a total of 123 TrafficArea objects 
were created, consisting of 58 driving lanes, 51 sidewalks, and 
14 parking areas. 
 
All geometries in each level of granularity were assigned a 
unique gml_id attribute. For the 1st level of granularity, the name 
of the street was provided for each section and intersection (via 
the name field), and a class attribute was added to indicate the 
type of section or intersection. All sections in the dataset were 
labelled as road corridor, while intersections were classified 
based on how many roads intersect: 4-way intersection (4 roads 
intersect), or T-type intersection (3 roads intersect). Also, in the 
field object_class each object was characterized as section or 
intersection. Finally, to represent hierarchical relationships, the 
gml_parent_id field (storing an array of ids, in the case of 
intersections) was completed for the sections according to which 
Road they belong, and for the intersections based on which Roads 
intersect for each one. The road_class was specified as road 
traffic for all the objects and the road_function as municipal road 
for the sections and junction for the intersections, in accordance 
with their respective roles in the transportation network. 
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Figure 7. a) 1st level of granularity. b) 2nd level of granularity. c) 

3rd level of granularity. 
 

For the 2nd level of granularity, the class attribute was assigned 
based on the type of each object, with values including 
carriageway, sidewalk, and parking. The function attribute was 

then derived accordingly: objects classified as carriageway were 
assigned the function driving_lane, sidewalk objects were 
assigned footpath, and parking objects were assigned car_park. 
For the usage attribute, carriageway and parking objects were 
labelled with car, and sidewalk objects with pedestrian. The 
surfaceMaterial attribute was also defined as asphalt for 
carriageway and parking areas, and as pavement for sidewalks. 
Additionally, in the field object_class each object was 
characterized as parking, carriageway, or sidewalk. For the 
granularity, we assigned the label way, corresponding to its 
representation at LoD2. Following the same approach as in the 
1st level, the gml_parent_id attribute was filled with numerical 
values showing hierarchical order with the 1st level of granularity. 
 
In the 3rd level of granularity, the same values used in the 2nd level 
were assigned to the attributes class, function, usage, 
surfaceMaterial, and object_class. The granularity attribute was 
set to lane corresponding to its representation at LoD3. Lastly, 
hierarchical consistency was maintained through the 
gml_parent_id, which links each object to its corresponding 
parents in the 1st level. Figure 8 shows the resulting street model, 
written as a unique XML file containing each level of granularity, 
and visualized in the KIT ModelViewer. In particular, Figure 8c 
depicts the third level of granularity, where each driving lane, 
sidewalk, and parking area is represented as an individual 
polygon. The visual distinction between Figure 8b and Figure 8c 
may appear limited at first glance because the same colours are 
used across levels to represent consistent surface functions—for 
example, both carriageways and individual driving lanes are 
shown in pink. 
 
A closer analysis of the results at the 3rd level of granularity 
(Figure 8c) shows that the method can effectively distinguish and 
generate individual surface functions, such as driving lanes, 
sidewalk, and parking areas as separate CityGML objects. In 
most road segments, the subdivision is consistent with the 
available spatial cues (e.g., road markings and centrelines), 
producing well-defined geometries that support downstream 
applications like routing or simulation. However, the method’s 
accuracy is reduced in cases where the road markings are 
missing, worn, or occluded—common issues in dense urban 
environments. In such situations, the subdivision may become 
less reliable or produce ambiguous boundaries between 
functional areas. Nonetheless, with supplementary geometric 
cues such as road width and centrelines, the subdivision can still 
achieve satisfactory accuracy. These cues help guide the 
delineation of driving lanes and parking areas even in the absence 
of explicit markings, contributing to more stable results across 
varying data quality. 
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Figure 8. Visualization in KIT ModelViewer. a) 1st level. b) 2nd 

level. c) 3rd level. 

 

5. Conclusions 

This paper presents a structured methodology for integrating 
segmented road surface elements, derived from urban point 
clouds, into semantically rich and CityGML 3.0-compliant 
representations. By leveraging the structure of the CityGML 3.0 
Transportation module, our approach systematically transforms 
geometric representations of road infrastructure, such as driving 
lanes, sidewalks, and parking areas, into valid XML-based 
outputs ready for integration into urban digital twins, planning 
tools, and simulation platforms. 
 
In our work point clouds are used as the primary data source. 
These datasets provide a high-resolution representation of real-
world environments, capturing fine-grained details such as road 
markings, curbs and changes in elevation. Their dense spatial 
coverage and precise geometric information allow for the 
accurate segmentation of complex urban road networks, 
including sidewalks, parking areas, and driving lanes. It is 
important to note that point clouds enable data-driven modelling 
that reflects the actual physical conditions of road infrastructure, 
enhancing the realism and utility of resulting 3D models. 
 
Our methodology pre-processes these geometries to remove 
noise but also maps them to CityGML 3.0 schema using a 
granularity-driven classification approach. The resulting data can 
be used or visualised in tools such as 3DCityDB, FME Data 
Inspector, KIT ModelViewer and QGIS. The hierarchical 
mapping between road elements—using attributes such as gml:id 
and gml_parent_id—ensures structural integrity and supports 
interoperability with existing GIS systems. 
 
While this work focuses primarily on surface-based 
representations, a key approach for future research is the 
integration of linear representations through the 

LoDXMultiCurve geometry type introduced in CityGML 3.0. 
Linear representations are especially relevant for applications 
requiring a clear understanding of network topology, such as 
route planning, modelling of traffic direction, and simulation of 
multimodal transport networks. Their integration would allow 
the development of semantically enriched road graphs that 
complement the surface-based geometries currently used. 
 
In summary, this work provides a framework for bridging the gap 
between raw point cloud data and semantically structured city 
models. It shows that, through a well-defined process of 
geometric refinement and semantic mapping, it is possible to 
produce interoperable, CityGML 3.0-compliant datasets that 
contribute to the development of smart cities and urban digital 
twins.  
 

6. Discussion 

This study presents a structured and semantically aligned pipeline 
for transforming segmented point clouds into CityGML 3.0-
compliant models. The experiments confirm that our method can 
effectively generate LoD1, LoD2, and LoD3 representations, 
which can be imported and visualized in existing CityGML-
compatible platforms such as 3DCityDB, KIT ModelViewer, and 
QGIS. However, several aspects warrant further discussion 
regarding generalisation, limitations, and real-world 
applicability. 
 
Although the current case study covers a 2-kilometer urban street 
segment, the modular nature of our pipeline suggests it is scalable 
to larger datasets. In practice, extending the workflow to larger 
urban areas would primarily require higher computational 
resources during the semantic segmentation and polygon pre-
processing stages. However, future experiments on full-city 
datasets are required to quantitatively assess runtime, storage, 
and processing bottlenecks in high-density urban scenarios. 
 
In terms of robustness, the pipeline assumes a reliable input 
segmentation, but practical cases often involve noise, occlusions, 
or ambiguous features. The workflow includes geometric 
cleaning and consistency checks, yet certain edge cases may still 
benefit from user supervision or interactive validation steps. 
Future improvements could integrate uncertainty estimation or 
confidence levels in the segmentation stage, helping to identify 
and address ambiguous areas more effectively. 
 
The detailed output produced by the method is particularly 
relevant for applications that require fine-grained spatial logic, 
such as routing, accessibility analysis, and traffic simulation. 
Nonetheless, a critical step in the process is the subdivision of 
carriageways into individual driving lanes and parking areas. 
This relies on the accurate detection of road markings and 
geometric features in the point cloud. When such features are 
missing, occluded, or worn, the segmentation may be less 
complete or ambiguous, which can affect the semantic detail and 
structural correctness of the final model. Enhancing this stage 
with complementary information—such as curb lines, prior road 
layouts, or HD maps—could further improve the robustness and 
completeness of the results. 
 
Finally, the structured, hierarchical output aligns with CityGML 
3.0’s Transportation module and is suitable for integration into 
GIS platforms, digital twins, and urban analysis workflows. By 
supporting multiple levels of detail, the method enables different 
applications to access road infrastructure data at the appropriate 
resolution, balancing semantic richness with practical usability. 
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