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Abstract

The urban thermal environment has become a challenge to humans in consideration of rapid urbanization and global warming. Vari-
ous climate classification methods have been developed to analyze urban form and the urban heat island phenomenon. However,
there is a lack of cross-comparison studies carried out to examine the accuracy of predicting land surface temperature by different
climate classification methods (local climate zone, urban functional zone, and hybrid zone that integrates the strengths of local
climate zone and urban functional zone), as well as their performance in statistical and machine learning models (ordinary least
squares regression, geographically weighted regression, and random forest regression). Accordingly, this study focuses on compar-
ing the performance and accuracy of predicting land surface temperature via different climate classification methods. In addition,
the relative importance and marginal effect of factors on land surface temperature are discussed based on the approach with the
highest accuracy. The results show that: random forest model performs best in predicting land surface temperature (average R:
0.72); hybrid zone is the most accurate approach to predict land surface temperature (R?: 0.84); and urban functional zone (R:
0.80) performs slightly better than local climate zone (R?: 0.76). This study helps urban planners and designers to assess which
climate classification methods can more accurately predict and explain the influence of urban form on land surface temperature, and

provides some insights into urban design strategies to improve the thermal environment.

1. Introduction

Urbanization refers to the flow of people from rural to urban
areas (Chen et al., 2022). In recent years, under the process of
rapid urbanization, though it promotes social and economic de-
velopment, the natural environment of cities is gradually substi-
tuted by an artificial environment (Han et al., 2023; Lin et al.,
2024). One of the most significant environmental challenges
arising from urbanization and global warming is the urban heat
island (UHI) effect (Jia et al., 2024). The UHI effect means
that the urban areas experience higher land surface temperat-
ure (LST) or air temperature (AT) compared to the surrounding
suburban and rural areas (Oke & Voogt, 2003). Mo et al. (2024)
show that factors such as the solar radiation absorption capacity
of the urban surface, the wind-blocking effect, and the anthro-
pogenic heat have intensified the UHI effect. The increased
UHI effect leads to the deterioration of the urban thermal en-
vironment, posing a huge threat to sustainable urban develop-
ment (Zheng, Huang & Zhai, 2021; Zhang, Zhang, Chen & Su,
2022). It has been proven that the increased temperature not
only has a negative influence on thermal comfort, public health,
and vitality in outdoor space (Jia, Wang, Wang & Weng, 2025),
but also has an impact on urban energy consumption for air-
conditioning or mechanical ventilation.

Most studies show that the urban thermal environment does not
only depend on the regional climate at a larger scale but is also
associated with the urban built environment at a smaller scale
(Deng, He & Dai, 2023). It is the urban form that is a key
focus for implementing sustainable strategies to improve the
urban thermal environment (Hou et al., 2023). Hence, there
is an urgent need to understand the patterns of LST, compre-
hensively explore the correlation between urban thermal envir-
onment and urban form (e.g., building density, building height),
find the dominant urban morphological features influencing the

thermal environment and develop effective measures to mitigate
UHI effect.

At present, there are two most widely used climate classific-
ation methods to study the relationship between urban form
and the thermal environment: local climate zone (LCZ) and
urban functional zone (UFZ). On the one hand, LCZ was pro-
posed by Stewart and Oke in 2012, which is the first attempt
to standardize and compare urban climatic studies across the
world (Wang et al., 2018; Yin et al., 2022; Ng & Ren, 2015). It
is applied to classify the morphology of cities for UHI studies
in terms of land cover types and building forms (Zheng et al.,
2018). Specifically speaking, the standard LCZs consist of ten
built types describing compactness and building height (ranging
from LCZ 1 to LCZ 10), and seven land cover types mainly in-
cluding tree, rock, water, and other natural types (ranging from
LCZ A to LCZ G) (Stewart & Oke, 2012). Generally speaking,
the same type of LCZ usually displays similar thermal envir-
onmental characteristics. Recently, some studies have attemp-
ted to analyze urban morphology and the corresponding UHI
effect via LCZs. For instance, Liu et al. (2022) applied an
LCZ mapping method for urban thermal environment research,
and acquired various LCZ types that coexist in irregular states.
The results show that the AT demonstrates time-varying fea-
tures and changes dramatically with LCZ types. In addition,
the sky view factor and impervious surface fraction show a pos-
itive correlation with AT during daytime. Lin et al. (2023) used
the random forest (RF) regression model to explore the relative
importance and marginal effects of the influencing factors on
seasonal LST based on the whole study area and the LCZ built
type area of Fuzhou City. The results show that the level of LST
of different spatial morphology rank as open < compact and
high-rise < mid-rise < low-rise.

However, the LCZ classification does not fully take into ac-
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count human activities, such as residence, work, and entertain-
ment, which account for a large amount of heat emission. On
the other hand, the UFZ classification method extracts urban
land use types, which can be applied to depict human activit-
ies (Zhang, Du & Wang, 2017). The features of the thermal
environment in UFZs are different from those in LCZs (Yu,
Jing, Yang & Sun, 2021). UFZs can also serve as the basic
units for urban planning, which is practical for mitigating the
urban thermal environment by urban planning authorities. Re-
cently, some studies have tried to comprehensively investigate
the impact of urban morphology on LST in UFZs. For example,
Huang & Wang (2019) studied the effect of 2D/3D urban mor-
phology on summer daytime LST in different UFZs in Wuhan,
by adopting high-resolution remote sensing data and geograph-
ical information data. The results show that trees are the most
influential factor in reducing LST, and the highest LST appears
in commercial and industrial zones. Lin et al. (2024) reveal
how UHI differs across UFZs by integrating remote sensing
data with geospatial data. The results show that the 3D build-
ing form intensifies the UHI effect at a larger scale, while the
2D building morphology shows a higher intensity. Also, the
3D building distribution significantly impacts the UHI effect in
administrative, business, and resident zones.

Numerous models have been developed to predict LST. Many
studies were carried out to investigate the correlation between
urban form indicators and LST by applying the ordinary least
squares (OLS) model (Li et al., 2011; Guo et al., 2015). How-
ever, this model is unable to consider spatial heterogeneity. In
response to this limitation, some studies used geographically
weighted regression (GWR) as well as multiscale geograph-
ically weighted regression (MGWR) to better understand the
spatial heterogeneity of multiple factors impacting the urban
thermal environment. For example, Gao, Zhao & Han (2022)
qualified the relationship between UHI effect and some influen-
cing factors of block morphology using the GWR model. The
results show that compared to OLS model, the GWR model
improves the modeling fit by means of capturing spatial het-
erogeneity. Yin, Liu & Han (2022) explored the correlation
between urban morphology and LST using the MGWR model.
The results show that the MGWR model can accurately re-
flect the impact of urban green space, road, building height and
building density on LST, with a superior fitting effect over the
GWR model. Nevertheless, these models face challenges in
capturing the complicated relationship between variables. Sub-
sequently, to address these limitations, machine learning mod-
els have been applied to explore the relationship between vari-
ous influencing factors and LST. The RF model is one of the
models that has been applied to predict LST. It has the ability
to capture complicated non-linear relationships and interactions
between factors, thereby improving the accuracy of prediction
(Liu, Gou & Yuan, 2024). For instance, Shen et al. (2022) con-
ducted a prediction of surface urban heat island using the RF
model at the base of future landscape distribution. The results
show that the RF model has a better performance than a step-
wise multiple linear regression model.

Research on predicting LST is rapidly increasing, and a variety
of climate classification methods have been developed. How-
ever, there exist limited cross-comparison studies to examine
the accuracy of predicting LST by different climate classific-
ation methods, as well as their performance in statistical and
machine learning models. Given this observation, this study
aims to compare the performance of estimating LST through
different climate classification methods. The specific object-

ives of this study are: (1) To comprehensively investigate the
distribution of built-up LCZs, built-up UFZs, LST and urban
form indicators. (2) To compare the accuracy of predicting LST
by different climate classification methods in different mod-
els. (3) To analyze the relative importance and marginal ef-
fects of variables on LST in the classification method with the
highest predictive accuracy. (4) To propose some urban design
strategies that can create a comfortable thermal environment.
The study provides a comparable framework to help urban plan-
ners and designers evaluate which climate classification method
can more accurately explain the relationship between LST and
urban morphology. This systematic framework can be applied
to other areas for comparing the performance of climate classi-
fication methods in predicting LST.

2. Methodology

2.1 Study Area

Singapore, as the economic, scientific, and cultural center of
Southeast Asia, is a typical high-density city. It is located at
the southern tip of the Malay Peninsula (Figure 1). The urban
area was about 735.2 square kilometers and the population was
about 5.9 million in 2023. Singapore’s proximity to the equator
gives it a typically tropical rainforest climate (Koppen climate
classification Af) (Kottek et al., 2006), with abundant rainfall,
high and uniform temperatures, and high humidity all year round.
Singapore has been warming up twice as fast compared to the
rest of the world because of the global warming effects and
densely built environment. 2023 was the hottest recorded year
in Singapore, which significantly had an impact on the physical
and mental well-being of the local residents. All in all, in light
of Acero, Koh, Ruefenacht & Norford (2021), the increase of
population density with limited land for further urban develop-
ment will increase the UHI effect and reduce the thermal com-
fort of outdoor open space. Singapore Government’s (2021)
Singapore Green Plan 2030 aims to achieve the goal of island-
wide sustainable climate resilient development. Thus, optimiz-
ing the urban thermal environment is of particular importance.

Figure 1. Location of the study area: (a) Map of Singapore; (b)
Map of planning region; (c) Satellite image of Singapore.
(Source: Google Maps, 2024)
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2.2 Research Data

This study utilized multi-source data (Figure 2). The Master
Plan 2019 of Singapore from the Urban Redevelopment Au-
thority (URA) was chosen as land use data. Building data con-
taining information on footprints and heights was obtained from
National University of Singapore (NUS). Urban form indicat-
ors were calculated through QGIS from both land use data and
building data. LST was retrieved from Landsat 8§ remote sens-
ing image data in 2016 with a resolution of 30m (downloaded
from the official website of the United States Geological Sur-
vey (USGS)). There was little cloud cover over the study area,
with high atmospheric visibility. The images were dealt with
in ENVI via the fast line-of-sight atmospheric analysis of hy-
percubes (FLAASH) module to reduce the impact of the atmo-
sphere and get the accurate LST in Singapore.
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Figure 2. Multisource data.

2.3 Research Methods

2.3.1 Research Framework Figure 3 shows the framework
of this study. This framework comprises three key modules: (1)
Setting up built-up UFZs and built-up LCZs from urban func-
tion and urban form data, respectively, with a spatial scale of
200m, and analyzing the spatial distribution of LST and urban
form indicators; (2) Applying multiple models, including OLS,
GWR, and RF to identify the best-performing climate classi-
fication method for LST prediction, including no-zone, UFZ,
LCZ, and hybrid zone; (3) Identifying major contributing factors
to LST prediction and discussing the marginal effect of the in-
dicators on LST for the zone classification with the highest pre-
dicting performance.
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Figure 3. Research framework.

study area was divided into grid cells of 200m by 200m. Con-
sidering that LST data is available at a resolution of 30m, on the
one hand, it may cause large errors if the size of the grid cells
is similar to the size of the image pixels. On the other hand, if
the size of the grid cells is too large, the number of grid cells
will be too small and overfitting will easily happen in a model
such as RF. Consequently, a 200m grid cell was chosen as the
analytical unit in this study.

Secondly, for built-up UFZ, this study utilized land use data
to identify the urban functional types. Based on the Long-
Term Plan of Singapore, nine land use types, i.e., Residential,
Commercial, Industry, Open Space/Recreation/Agriculture, In-
frastructure, Institution, Special Use, Reserve Site, and Water-
body, were selected to characterize the urban functions. Af-
terwards, these land use types were classified into five urban
functional types based on the similarity of the functions, such
as residential, commercial, industry, service, and open space.
Subsequently, the ratio of each urban functional type area in
each grid cell was calculated. If an urban functional type is the
largest ratio in a grid cell, the grid cell is defined as the cor-
responding UFZ. Finally, this resulted in four types of built-up
UFZ, i.e., residential, commercial, industry, and service.

Thirdly, for built-up LCZ, building data were used to develop a
building surface fraction (BSF) map and building height (BH)
map. BSF is the fraction of land surface covered by the build-
ings and BSF is one of the key parameters for classifying built-
up LCZ, distinguishing between compact (BSF > 0.4) and
open (BSF < 0.4). BH is defined as the mean building height
of a grid cell. BH is also one of the key indicators for LCZ clas-
sification in built-up areas, identifying high-rise (BH > 25m),
mid-rise (BH = 15 — 25m) or low-rise (BH < 15m). Finally,
two urban morphology analysis maps were spatially merged to
create six types of built-up LCZ, including Compact High-rise,
Compact Mid-rise, Compact Low-rise, Open High-rise, Open
Mid-rise and Open Low-rise.

2.3.3 Retrieval of Land Surface Temperature In this study,
LST was retrieved using the atmospheric correction method.

This process includes evaluating the influence of the atmosphere

on the surface thermal radiation, reducing this atmospheric in-

fluence from the total thermal radiation observed by the satel-

lite sensor, acquiring the surface thermal radiation intensity, and

then transforming this thermal radiation into the corresponding

LST. Then, the mean LST for each grid cell was determined.

2.3.4 UrbanForm Indicators Urban form describes the shape
and distribution of urban spaces. It can significantly influence
the urban thermal environment. Therefore, based on the prin-
ciples of theoretical and practical importance, and being easily
understood and calculated, the following urban form indicat-
ors were selected to analyze the effect of the urban morphology
on LST: gross plot ratio (GPR), height variance (HV), building
height to street width ratio (BH / SW), percentage of water-
body (P_Waterbody), and percentage of park (P_Park)) (Yang
et al., 2021). These indicators mainly include 2D/3D building
morphology indicators and land cover, and they have been con-
firmed to be related to LST (Xu et al., 2017). From a 2D per-
spective, waterbody and park are the main factors reducing LST
via evaporation and shading, while building is the main factor
raising LST because of low albedo, low evaporation, and high
heat capacity. From a 3D perspective, the building form factors

2.3.2 Mapping Built-up Urban Functional Zones and Built-up may have a complicated relationship with LST, since they can

Local Climate Zones Firstly, according to the analytical units
used in the previous studies (Lu, Yue, Liu & Huang, 2021), the

determine the absorption of solar radiation, the formation of
wind flow and the generation of anthropogenic heat.
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2.3.5 Statistical Analysis OLS, GWR, and RF models were
utilized in this study to compare the performance of predict-
ing LST by different climate classification methods (no-zone,
LCZ, UFZ, and hybrid zone integrating LCZ and UFZ). The
root-mean-square error (RMSE) and R-squared (R?) were used
to evaluate and compare the accuracy of the models. R? in-
dicates the squared correlation between observed and estimated
values. RMSE presents the average difference between the ob-
served values and the predicted values. A higher R? and a lower
RMSE indicate a more accurate model.

For the climate classification methods, five basic factors were

used as continuous variables, including GPR, HV, BH/SW, P_Park,

and P_Waterbody, while LCZ label, UFZ label, and hybrid zone
label were used as categorical variables to distinguish them
(Table 1).

Table 1. Methods for predicting LST.

Methods Models

No zone LST ~ GPR+HV+BH/SW+P_Waterbody+P_Park

LCZ LST ~ GPR+HV+BH/SW+P_Waterbody+P_Park+LCZ label

UFZ LST ~ GPR+HV+BH/SW+P_Waterbody+P_Park+UFZ label
Hybrid zone  LST ~ GPR+HV+BH/SW+P_Waterbody+P_Park+Hybrid zone label

The OLS model is a traditional linear regression model, which
is usually used to fit the correlation model between the urban
form indicators (independent variables) and LST (dependent
variable) from a global perspective, widely used in urban plan-
ning and design.

The GWR model is a local regression model. It assumes that
a non-stationary relationship exists between the response vari-
able and the explanatory variables. The regression parameters
were estimated in each location separately to reflect the spatial
heterogeneity of the influence of urban morphology parameters
on the LST.

The RF algorithm is a common machine learning model that is
used in regression and classification (Breiman, 2001). A variety
of machine learning models were compared, and the RF model
proved to be the most accurate one (Logan, Zaitchik, Guikema
& Nisbet, 2020). It has been widely used since it can accom-
modate nonlinearities. This model integrates multiple decision
trees through an ensemble learning method, and obtains the
results through randomly selecting features from each decision
tree, finally adopting majority voting or averages. The number
of decision trees in this study was 1000.

The RF model was also applied to analyze the relative import-
ance and marginal effect of urban morphology indicators on
LST. On the one hand, it can calculate a quantitative weight for
each variable without considering the interaction of the vari-
ables. That is, it can illustrate which component can best estim-
ate LST change. On the other hand, partial dependency plots
were applied to analyze the correlation between urban form in-
dicators and LST.

3. Results

3.1 Spatial Distribution of Built-up Urban Functional Zones
and Built-up Local Climate Zones

Figure 4 describes the distribution of built-up UFZs and built-
up LCZs. As for UFZ, large residential areas are located along
the Central Water Catchment, Western Water Catchment, and
Paya Lebar. These zones consist of HDB flats, condos, and

landed properties, providing homes for the population. Indus-
trial areas are mainly distributed in the West Region. This re-
gion is home to several industrial parks, including Jurong Indus-
trial Estate, Jurong Innovation District, and International Busi-
ness Park, which supports a wide range of economic activit-
ies like research & development and manufacturing. Commer-
cial areas are primarily located in the Central Area where lead-
ing international businesses, financial institutions, and corpor-
ate headquarters are located. Service areas are primarily distrib-
uted in the East Region and West Region including Changi Air-
port and Tuas Port, which are important for supporting Singa-
pore’s transportation and logistics.

As to LCZ, Open Low-rise and Open Mid-rise mainly appear
in residential areas with landed properties, and old HDB flats,
and industrial areas. Open High-rise and Compact High-rise
are primarily distributed in the Central Business District and
some new towns, such as Punggol, where high-rise commercial
buildings and new residential buildings are covered, respect-
ively. The numbers of Compact Mid-rise are relatively limited
in Singapore, while Compact Low-rise is mainly distributed in
industrial areas.

A

(b)

Figure 4. Built-up UFZ (a) and Built-up LCZ (b).

3.2 Spatial Distribution of Land Surface Temperature and
Urban Form Indicators

Figure 5 shows the spatial distribution of LST. From the per-
spective of UFZ, the low-value areas of LST are mainly con-
centrated in residential areas close to the Central Water Catch-
ment, by virtue of the cooling effects of vegetation and water-
body. The Central Water Catchment is an important cool island
within the city. In contrast, the high-value areas of LST are
mainly located in the industrial areas such as Jurong Industrial
Estate, where industrial activities consume a lot of energy and
release a large amount of waste heat.

From the point of LCZ, it shows that Open High-rise has low
LST, reflecting that tall buildings can create shaded space while
open space between them allows for better natural ventilation
and heat dispersion. By contrast, Compact Low-rise has high
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LST, meaning that less shade and reduced airflow can result in
a higher temperature.
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Figure 5. LST in a grid.

The spatial distribution of urban form indicators is shown in
Figure 6. The values of building surface fraction are relatively
low in the study area, with the exception of some industrial and
service areas in the West and East Regions. These areas exhibit
higher building surface fraction values, indicating the concen-
tration of large-scale industrial or public buildings. High values
of building height, gross plot ratio, height variance, and build-
ing height to street width ratio are mainly concentrated in the
Central Area and some new towns such as Punggol. The high
values of waterbody and park are scattered without any high
concentrated areas. This spatial pattern reflects the integration
of the natural environment with the built environment, contrib-
uting to the livability of the study area.

HY BHISW P_Waterbody

P_Park

Figure 6. Urban form indicators.

3.3 Statistical Analysis Results

3.3.1 Model Performance in Land Surface Temperature
Prediction The model performances are shown in Table 2.
In general, RF model accuracy is highest (average R? value is
0.72), indicating a strong predicting ability by right of captur-
ing the nonlinear relationship between various factors and LST.
And the R? value of GWR model (average: 0.48) is higher than
that of OLS model (average: 0.26), suggesting that it can cap-
ture the spatial heterogeneity of variables impacting the urban
thermal environment and improve the estimation accuracy.

Table 2. Overall model performance of OLS, GWR and RE.

OLS GWR RF
Zone type R> RMSE R? RMSE R? RMSE
No zone 0.10 294 044 232 046 240
LCZ 023 272 051 216 076  1.66
UFZ 031 258 049 222 080 146
Hybrid zone 0.39 242 047 225 084 130
Average 026 267 048 224 072 171

In the RF model, LCZ, UFZ, and hybrid zone all show a bet-
ter performance of predicting LST when compared to no-zone,
(Figure 7). The R? value is the highest and the RMSE value
is the lowest when applying hybrid zone to predict LST. 84%
of LST can be estimated by those selected influencing factors.
This is because hybrid zone integrates the strengths of both
LCZ (urban form) and UFZ (urban function), allowing the RF
model to better understand the correlation between a variety of
factors and LST. In addition, the performance of UFZ is slightly
higher than that of LCZ. That is because UFZ mainly describes
urban functional characteristics, which are less collinear with
other urban form indicators in the model, providing more inde-
pendent variables for estimating LST. Reversely, LCZ primar-
ily shows urban morphological features, such as building sur-
face fraction and building height, which may overlap with other
factors in the model and thereby reducing prediction accuracy.
UFZ not only reflects urban functional layout, but also reflects
dynamic human activities, which have a direct and significant
influence on the urban thermal environment. Human activities
are often closely related to other variables like energy consump-
tion, heat emission, and traffic flow, which are also important
drivers of LST and are less correlated with urban form indicat-
ors. Instead, LCZ only reflects on urban form, which may not
fully capture the temporal factors influencing LST.
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Figure 7. The RF model accuracy among different climate
classification methods for predicting LST: (a) no-zone; (b) LCZ;
(c) UFZ; (d) hybrid zone.

3.3.2 Relative Importance and Marginal Effect of Urban
Form Indicators on Land Surface Temperature Figure 8§
shows the relative importance of urban form indicators to LST
for hybrid zone classification. Overall, the gross plot ratio shows
the strongest influence on LST (over 30%). The reason is that
a higher value for gross plot ratio indicates a denser building
layout, which can lead to heat accumulation and reduced vent-
ilation. Both contribute to a rise in LST. Height variance also
shows a strong impact on LST (over 20%). The reason is that
varying building heights can create complex urban canyons that
affect solar radiation absorption and wind flow, contributing
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to temperature variations. Other urban morphology indicators,
such as building height to street width ratio, percentage of wa-
terbody, and percentage of park, have a lower importance of
influencing LST in this context.

F_Park

Variable

P_Waterbody
02
Importance:

Figure 8. The relative importance of urban form indicators to
LST in hybrid zone.

To further explore the nonlinear association between urban form
indicators and LST for hybrid zone classification, partial de-
pendency plots are applied to examine their marginal effects
(Figure 9). That is, partial dependency plots can explain how

the predicted variable changes when a predictor variable is changed

while others remain constant. The percentage of waterbody,
percentage of park, height variance, and building height to street
width ratio are all negatively correlated with LST, while the
gross plot ratio is positively correlated with LST. To be specific,
a strong positive impact of gross plot ratio on LST occurs when
its value reaches 1.2, while a strong negative impact of height
variance on LST occurs when its value reaches 30. On the one
hand, a compact building layout prevents the loss of heat so
that building materials with high heat absorption can capture
more heat to lower the quality of the urban thermal environ-
ment. On the other hand, a high value of height variance means
that the area has higher buildings, creating larger shadow areas
when compared to buildings with the same height. Also, the
height variance of building groups has an impact on the wind
speed and direction, forming mechanical turbulence and redu-
cing heat. Hence, an appropriate gross plot ratio and height
variance can create mutual shading effects between buildings
and promote ventilation. The marginal effect of building height
to street width ratio implies a complicated relationship with
LST. The response curve of it to LST initially rapidly increases
and then sharply decreases, followed by a moderate increase
and a significant decrease. The effect of building height to street
width ratio on LST increases gradually when the value exceeds
4. When the ratio is small, although it can help to enhance air-
flow, the streets receive more solar radiation, leading to a rise
in temperature. When the ratio is large, the urban canyon en-
hances shading, resulting in a fall in temperature. Thus, both
positive and negative relationships can be observed in building
height to street width ratio.

For green & blue, the relationship between waterbody, park,
and LST is almost linear. Although waterbody and park con-
tribute to cooling, the cooling effect of waterbody is not as
strong as that of park, with a maximum temperature range of
only 1.58°C. This is because the thermal capacity of water is
higher than that of vegetation.
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5 5
GPR P_Waterbody

2 2,

3

Y P_Park
5
Z
BH/SW

Figure 9. Marginal effects of urban form indicators on LST in
hybrid zone.

4. Discussion

4.1 Hotspot Map and Mitigation Strategies

Industry Compact Low-rise, Industry Compact Mid-rise, Ser-
vice Compact Low-rise, Residential Compact Low-rise, Industry
Compact High-rise, and Industry Open Low-rise are the top six
zones that demonstrate high LST. The mean LST values of these
zones are higher than 43°C, indicating significant heat stress.
Hotspot areas are observed in various locations, including in-
dustry zones mainly in the West and North Region, and resid-
ential zones mainly in the East and North-East Region (Figure
10). These can be attributed to several factors. Firstly, as for
anthropogenic heat, heat emissions from machines and vehicles
in the industry zone contribute to high LST. Similarly, high
population density and associated activities in the residential
zone generate waste heat, resulting in high LST. Secondly, as to
urban form, the compact building layout reduces natural vent-
ilation and prevents heat dispersion. And mid-rise and low-rise
buildings limit shading opportunities and exacerbate heat accu-
mulation. In summary, industry zones in the West Region and
residential zones in the East Region need to be paid special at-
tention.

0 5 10km

Figure 10. Hotspot area.
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To further explore the influence of variables on LST, the relative
importance of the factors to LST among the top six hybrid zones
is shown in Figure 11. The following urban design strategies
are proposed from the perspective of the hybrid zone classifica-
tion: (1) The results of Industry Compact Low-rise and Industry
Compact Mid-rise indicate that reducing gross plot ratio, es-
pecially reducing building density, can allow more wind flow
and lower heat accumulation. (2) The results of Industry Com-
pact High-rise and Industry Open Low-rise indicate that natural
landscapes such as waterbodies and parks can be integrated into
the built-up area to provide a cooling effect to decrease LST and
enhance the outdoor thermal comfort. (3) The results of Service
Compact Low-rise and Residential Compact Low-rise indicate
that improving height variance and optimizing gross plot ra-
tio can enhance airflow and mitigate UHI. These urban design
strategies can help the local government address the UHI effect
in different locations by considering urban function and form.

Industry Compact Low-rise Industry Compact Mid-rise

Service Compact Low-rise Residential Compact Low-rise

Industry Open Low-rise

Figure 11. The relative importance of urban form indicators to
LST among top 6 hybrid zones.

4.2 Limitations and Future Work

There are still some limitations to this study. Firstly, the re-
search is carried out in Singapore, a high-density tropical city,
which may limit the application of the findings to other cities
with different climate conditions, latitude, urban morphology,
population density, and urban planning policy. Urban design
strategies to improve the thermal environment may also vary by
location. Secondly, additional variables may have an influence
on LST (e.g. population density, latitude, longitude, elevation,
building orientation, distance to waterbody, distance to park,
etc.), which will further improve the prediction accuracy. Fu-
ture research can address these limitations by including more
diverse case studies and a broader range of indicators.

5. Conclusion

This study compared the performance of predicting LST through
different climate classification methods, including no-zone, LCZ,
UFZ and hybrid zone. Three different models for estimating
LST were also used and compared, including OLS, GWR and
RF models. The high-density tropical city of Singapore was

selected as a study area, and the analysis unit was at the res-
olution of 200m. One important contribution of this research
is the development of a new climate classification method: hy-
brid zone that integrates the strengths of LCZ and UFZ. Spe-
cifically, hybrid zone classification can not only describe urban
morphology, but can also reflect the intensity of human activ-
ities. It is scientifically proven that this method provides the
best performance in estimating LST in Singapore, providing
urban planners and designers with a deeper understanding of
how urban form and human behavior interact with local cli-
mate. The main findings are: (1) The highest LST appears in
the industrial zone (from the perspective of UFZ) and Compact
Low-rise zone (from the point of LCZ). (2) The RF model per-
forms better than the OLS and GWR models in predicting LST,
with the average R? equal to 0.72. (3) Different climate clas-
sification methods show better performance to no-zone. Hy-
brid zone that combines the advantages of LCZ and UFZ is
the most accurate approach to predict LST (R*: 0.84). UFZ
(R?: 0.80) performs slightly better than LCZ (R?: 0.76). (4)
Urban morphology plays an important role in the urban thermal
environment, with the gross plot ratio showing the most signi-
ficant impact on LST for hybrid zone classification. The gross
plot ratio is positively correlated with LST, while height vari-
ance, building height to street width ratio, percentage of wa-
terbody, and percentage of park are negatively correlated with
LST for hybrid zone. This study contributes to the field of urban
planning and design by providing a comparable framework for
urban planners and designers to evaluate which climate classi-
fication methods can perform well in explaining the relation-
ship between LST and urban form. The findings can support
decision-making and effective measures to improve the urban
thermal environment.
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