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Abstract 

Advancements in lidar systems have improved the performance of 3D data acquisition. Differences arise between the point clouds 

obtained by different lidar sensors, such as variations in point density, random error, and scanning patterns. This study presents a novel 

approach for automatic cross-sensor matching of lidar point clouds using a deep neural network autoencoder (DNN-AE) and supervoxel 

signatures. A compact representation called a supervoxel signature was formed by voxelizing and reprojecting the point clouds, 

generating multiscale supervoxels, and encoding them with a DNN-AE. The proposed method demonstrated high matching accuracy 

and tolerance to point density differences and random registration, showcasing its effectiveness in addressing the challenges associated 

with varying lidar sensor data. From the simulation results, the supervoxel signature had a matching correctness of 83.78% when the 

point density was 1/256 of the original one, and the tolerance to random errors reached the submeter level. In addition, the multiscale 

supervoxel signature was more reliable than the single-scale combination. In real-world cross-sensor experiments involving consumer-

grade and surveying-grade lidar systems, the proposed method achieved a matching accuracy exceeding 90% by aggregating features 

across adjacent frames, while significantly reducing data volume. These results confirm the robustness and practicality of the proposed 

framework for reliable and efficient heterogeneous point cloud matching. 

1. Introduction

Mobile lidar systems (MLSs) have emerged as an efficient 

method for acquiring 3D point clouds in road environments. 

Advances in lidar technology have made 3D data collection faster 

and more accessible. However, different lidar sensors, such as the 

Riegl VMX250 for mapping and the Velodyne VLP16 for 

autonomous navigation, produce point clouds with varying 

densities, scanning patterns, and levels of accuracy. As a result, 

point clouds from different lidar systems often differ significantly 

in structure, making cross-sensor registration a complex and 

ongoing research challenge. Point cloud registration is crucial for 

integrating heterogeneous lidar datasets into a common spatial 

framework. This process estimates the geometric transformation 

between datasets to enable consistent analysis and mapping. 

However, variations in density, noise levels, and coverage areas 

complicate automatic alignment (Huang et al., 2021; Zhao et al., 

2025). Most existing approaches rely on a coarse-to-fine strategy, 

where an initial coarse match guides subsequent refinement 

(Yang et al., 2024; Xu et al., 2025). Despite progress, automatic 

coarse registration across different lidar systems remains difficult 

due to the lack of robust and generalizable feature representations 

(Zhao et al., 2025). Previous studies have explored various coarse 

matching strategies to address this challenge, broadly categorized 

into point-based, line-based, surface-based, and deep learning-

based methods.  

Point-based methods such as Iterative Closest Point (ICP) (Besl 

and McKay, 1992) have been widely used for point cloud 

registration. However, ICP is often sensitive to noise and point 

density variations, and it typically requires a good initial 

alignment, which limits its effectiveness in cross-sensor 

applications (Xu et al., 2025). To improve robustness, keypoint-

based strategies have been developed, using distinct features such 

*1
Corresponding author. 

as object centroids to guide alignment between different datasets 

(Nagy and Benedek, 2018). Line-based methods take advantage 

of the geometric stability of linear features, which tend to be more 

reliable than individual points. Common features include 

building outlines (Yang et al., 2015) and road edges (Javanmardi 

et al., 2017), which can be extracted using statistical models and 

matched using probabilistic alignment techniques like the 

Normal Distribution Transform (NDT) (Javanmardi et al., 2017). 

Surface-based methods extract geometric information from 

planar or curved regions, making them more robust to noise than 

point- or line-based approaches. Lidar systems can capture a wide 

range of surface features, such as ground surfaces, building roofs, 

and walls, which are particularly useful for accurate cross-sensor 

registration. These methods typically rely on surface normals and 

structural consistency to align point clouds from different sensors 

(Zhang et al., 2012; Wu et al., 2014; Teo and Huang, 2014).  

Recent advances in deep learning have significantly enhanced 3D 

point cloud registration, particularly through learned feature 

extraction using neural networks. Early approaches, such as 

Elbaz et al. (2017), divided point clouds into super points using 

a random sphere cover algorithm, projected them onto depth 

maps, and applied an autoencoder (AE) for feature compression. 

Similarity was then evaluated using Euclidean distance, and the 

top transformation candidates were refined via RANSAC. Huang 

(2017) proposed a method based on deep convolutional neural 

networks (CNNs), using structured 3D data transformed through 

the truncated distance function to produce high-dimensional 

descriptors for cross-sensor matching. Beyond these foundational 

works, newer architectures have leveraged Transformer models 

for more expressive 3D representations. For instance, Point-

BERT (Yu et al., 2022) adapted the BERT framework to point 

clouds using a masked point modeling strategy and discrete 

variational autoencoders (dVAE) for semantic tokenization. Fu 
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et al. (2023) improved this design by introducing multi-choice 

tokens to better handle ambiguity in point cloud encoding, 

thereby enhancing performance in classification and registration 

tasks. 

 

With the increasing variety of sensors, recent studies have 

emphasized registration methods for heterogeneous point clouds 

to effectively handle discrepancies arising from diverse sensor 

sources in large-scale outdoor environments. Jia et al. (2024) 

introduced an incremental registration method using hierarchical 

graph matching, which constructs multiscale graphs of source 

and target scans and performs coarse-to-fine registration by 

matching them with refined structural and feature constraints. Xu 

et al. (2025) proposed a multi-source fine-registration strategy 

combining fully-connected feature graphs, heat conduction–

based correspondence selection, and weighted least-squares 

optimization, achieving high-precision alignment even with 

inconsistent hardware and noisy data. Zhao et al. (2025) proposed 

Cross-PCR, a framework for heterogeneous point cloud 

registration that combines local geometry descriptors, overlap 

prediction, and confidence-guided matching to enhance 

correspondence reliability and transformation accuracy. 

 

Place recognition is particularly essential in heterogeneous point 

cloud scenarios, where differences in point density, scanning 

patterns, and accuracy complicate accurate localization. It 

facilitates coarse localization by identifying whether a current 

scan corresponds to a previously observed location, significantly 

simplifying subsequent point cloud matching. Traditional place 

recognition methods often employ global descriptors designed to 

handle significant viewpoint variations and environmental 

changes. For example, Scan Context (Kim and Kim, 2018) 

leverages a polar-coordinate-based descriptor to represent spatial 

distributions of points, enabling rapid and robust recognition. 

More recent approaches incorporate deep learning to enhance 

discriminative power and invariance to environmental conditions. 

PointNetVLAD (Uy and Lee, 2018) and its successor, LPD-Net 

(Liu et al., 2019), integrate point cloud feature extraction via 

neural networks with VLAD-based aggregation, demonstrating 

superior performance under varied sensor setups and challenging 

environmental scenarios. Zou et al. (2023) proposed 

PatchAugNet, introducing a patch-wise feature augmentation 

strategy that injects randomness at the feature level to simulate 

variations across heterogeneous point clouds and enhance local 

feature robustness. Xu et al. (2022) proposed a lightweight 

framework for heterogeneous place recognition, using a virtual 

LiDAR simulation module to bridge domain gaps and polar grid 

height coding to provide compact, rotation-invariant 

representations.  

 

Simplifying raw point clouds while preserving geometric 

semantics is also critical for robust cross-source matching (Jia et 

al., 2024). Moreover, directly processing unordered points with 

models like PointNet often leads to increased model complexity 

and high computational costs, limiting deployment in practical 

applications (Komorowski, 2021; Hui et al., 2022). To address 

challenges such as irregular point distribution and computational 

inefficiency, voxel-based representations have become 

increasingly popular for point cloud processing. Voxels enhance 

computational efficiency and feature extraction by organizing 

raw 3D points into structured grids. Xu et al. (2021) leveraged 

voxel-based surface constraints for automated coarse registration, 

while Li et al. (2022a) used adaptive region growing to extract 

planar features within voxel grids. Xiong et al. (2021) introduced 

density gradient simplification to accelerate keypoint detection, 

and Li et al. (2022b) demonstrated that voxelized data supports 

fast, parallel registration through their lightweight VPRNet 

framework. 

 

Building on these concepts, this study proposes a streamlined and 

effective alternative with a local descriptor design for 

heterogeneous point cloud matching: Supervoxel Signatures, a 

compact multiscale feature representation learned via deep neural 

network autoencoders (DNN-AE). The features of the proposed 

supervoxel signature are simple. Specifically, we focused on low-

density lidar (LDLidar) and high-density lidar (HDLidar) point 

clouds acquired from different lidar systems. In this study, 

LDLidar refers to a consumer-grade advanced driver assistance 

system lidar sensor (i.e., Velodyne), while HDLidar refers to a 

surveying-grade lidar sensor (i.e., Riegl) for high-density 

mapping purposes. In practical operations, surveying-grade 

HDLidar point clouds are geocoded into the world coordinate 

system. To register an automotive-grade LDLidar as an HDLidar, 

it needs to be transformed into the world coordinate system. It 

can be used to improve the positioning accuracy of the 

automotive-grade LDLidar. Both point clouds were first 

voxelized to support effective feature extraction, and a DNN-AE 

was then applied for feature learning. The resulting features, 

called supervoxels, were compressed and stacked to form a 

supervoxel signature for cross-sensor matching. This approach 

proved to be an effective data compression method, significantly 

reducing the volume of 3D data and improving the efficiency of 

place recognition for coarse matching.  

 

The main contribution of this study lies in structurally addressing 

three core challenges in heterogeneous point cloud matching—

density variation, noise, and rotation—while simultaneously 

achieving efficient compression and reliable matching, all 

without relying on complex network architectures. 

 

2. Methodology 

This study proposes a feature extraction framework for 

heterogeneous lidar point clouds to generate consistent codes 

across different systems. The method extracts reliable supervoxel 

signatures from large sets of 3D points, serving as the basic unit 

for coarse matching between HDLidar and LDLidar systems. The 

workflow consists of three modules: (1) the Structuralization 

module, (2) the Encoder module, and (3) the Matching module. 

As illustrated in Figure 1, the target points refer to georeferenced 

HDLidar data, while the sensed points denote LDLidar data 

requiring alignment. 

 

 

Figure 1. Workflow of the proposed scheme. 
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2.1 Structuralization Module 

Irregular point clouds are unordered sets of 3D vectors, making 

point-wise processing computationally intensive, particularly at 

large scales. This unstructured nature limits the efficiency of 

direct analysis. Voxelization addresses the issue by grouping 

nearby points into regular grids, reducing redundancy and 

enabling more efficient, segmentation-like processing. In this 

study, we partitioned the area of interest into a voxel grid using a 

maximum voxel size (Vmax=10 m). Each point was assigned to a 

voxel based on its spatial index, as defined in Equation (1). To 

capture multiscale features, the grid was subdivided into finer 

levels (e.g., V2=5 m, V3=2.5 m). Since our data primarily consists 

of MLS scans in road environments, voxelization was restricted 

to the XY plane to reduce the computational cost, effectively 

treating the process as 2D rasterization of 3D point clouds. Figure 

2 illustrates the multiscale voxelization concept. After voxelizing 

each scale, we calculated the normal vector for each voxel using 

all points within the Vmax voxel. This normal was then used to 

reproject the point cloud, minimizing the effects of varying scan 

angles. Principal Component Analysis (PCA) was applied to the 

covariance matrix of each point set to derive eigenvalues and 

eigenvectors. The eigenvector corresponding to the largest 

eigenvalue is defined as the principal axis. Using the three 

eigenvectors as basis vectors, we rotated the point cloud to align 

with the principal axis. 

 

{
 
 

 
 𝑖𝑝 = 𝑖𝑛𝑡 (

𝑥𝑝−𝑥0

∆𝑥
)

𝑗𝑝 = 𝑖𝑛𝑡 (
𝑦𝑝−𝑦0

∆𝑦
)

𝑘𝑝 = 𝑖𝑛𝑡 (
𝑧𝑝−𝑧0

∆𝑧
)

,   (1) 

 

where (𝑖𝑝, 𝑗𝑝, 𝑘𝑝) is the node index of voxel; (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) is the 3D 

lidar point; (𝑥0, 𝑦0, 𝑧0 ) is the origin of the coordinates; and 

(∆𝑥, ∆𝑦 , ∆𝑧) is the voxel size. 

 

 

Figure 2. Illustration of multiscale voxelization. 

 

2.2 Encoder Module 

A voxel stores lidar points within a predefined 3D space, while a 

supervoxel is a cluster of features derived from those points. In 

this study, we transformed each voxel into a supervoxel by 

extracting intensity and geometric properties from its constituent 

points. Intensity features were calculated as the mean and 

standard deviation of the lidar intensity values, while geometric 

features were derived from the eigenvalues of the covariance 

matrix of the points within the voxel. As shown in Table 1, these 

geometric features were computed using various combinations of 

the eigenvalues ( λ1 ≥ λ2 ≥ λ3 ). In total, ten features were 

extracted per supervoxel and used as input to the DNN-AE. To 

capture multiscale characteristics, we applied voxelization at 

multiple resolutions. Figure 3 shows one of the ten features 

across different voxel sizes within the same region, where (a) 

represents the largest voxel size (Vmax), and V2, V3, and V4 are 

recursively half the size of the preceding scale.  

 

Regarding data compression performance, a DNN-AE 

outperforms traditional PCA, particularly when appropriate 

compact dimensions are utilized. This is because a DNN-AE 

employs multiple hidden layers, which enhance its compression 

capability, surpassing that of PCA. The architecture of a DNN-

AE comprises an encoder and a decoder section. The encoder 

section involves dimensionality reduction, beginning with the 

input layer and concluding with the bottleneck layer, via several 

fully connected hidden layers. The decoder section is the opposite 

of the encoder section, starting with the compact representation 

from the bottleneck layer and ending with the output layer. 

Additionally, the output dimensions should match the input 

dimensions based on the AE architecture, enabling the loss 

function to be defined effortlessly between the input and output 

layers. The key feature of a DNN-AE is its ability to utilize a deep 

neural network for learning processes within both the encoder 

and decoder sections while optimizing the network by 

minimizing the loss function. 

 

In this study, we created multiscale supervoxels by combining 

different voxels of varying sizes. We then trained the compressed 

representation of the supervoxels, called the supervoxel code, 

using a DNN-AE approach. Each supervoxel scale required 

DNN-AE training in the proposed network's design. After 

extensive empirical testing and adjustments, we introduced a 

flexible and compact dimension network (see Figure 4), 

comprising eight fully connected hidden layers, with some layers 

that used ReLU as activation functions. We applied batch 

normalization before the activation function to reduce the 

training time and mitigate the vanishing gradients problem. The 

symbol Cs denotes the adjustable compact dimension, the 

supervoxel code size, while Is and Os represent the input and 

output sizes, respectively. In order to train the autoencoder model, 

we employed mean square error as the loss function and opted 

for the Adam optimizer. After completing the training of the 

DNN-AE, we could use the encoder section for data compression. 

We utilized the supervoxel code as the compressed feature, which 

was generated by the supervoxels through the DNN-AE encoder. 

 

Feature Formula 

Curvature 𝐶λ = λ3/(λ1 + λ2 + λ3) 
Linearity 𝐿λ = (λ1 − λ2)/λ1 

Planarity 𝑃λ = (λ2 − λ3)/λ1 

Scattering 𝑆λ = λ3/λ1 

Omnivariance 𝑂λ = (λ3 ∗ λ2 ∗ λ1)
1/3 

Anisotropy 𝐴λ = (λ1 − λ3)/λ1 

Eigenentropy 𝐸λ = λ1 ln(λ1) + λ2 ln(λ2) + λ3 ln(λ3) 
Eigensum Σλ = λ1 + λ2 + λ3 

Table 1. Geometric features based on the eigenvalues 

 

 

Figure 3. Illustration of a multiscale supervoxel. 
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Figure 4. Proposed DNN-AE architecture. 

 

2.3 Matching Module 

To obtain multiscale supervoxels, we structuralized the point 

clouds in the same region with different voxel sizes. Then, we 

performed DNN-AE encoding on each supervoxel separately to 

acquire the supervoxel code at their corresponding scales. This 

code was the compressed representation of the supervoxel itself 

and could be used as the basic unit for the matching process. We 

stacked each scale's supervoxel code to produce a deeper code 

called a supervoxel signature. The supervoxel signatures were 

built up from the supervoxel code at different scales. The 

multiscale combination of the supervoxel signatures enabled us 

to describe the characteristics of the point clouds at different 

scales, leading to better classification accuracy under challenging 

conditions. The idea of the supervoxel signature was similar to 

the keypoint descriptor for 2D image matching. To gain 

multiscale features, we designed three types of supervoxel 

signatures based on scale combination: (1) single-scale, (2) dual-

scale, and (3) multiscale (see Table 2). 

 

Single 𝑉𝑚𝑎𝑥 = 10𝑚 𝑉2 = 5𝑚 𝑉3 = 2.5𝑚 𝑉4 = 1.25𝑚 

Dual 𝑉𝑚𝑎𝑥 + 𝑉2 𝑉2 + 𝑉3 𝑉3 + 𝑉4 

Multi- 𝑉𝑚𝑎𝑥 + 𝑉2 + 𝑉3 𝑉2 + 𝑉3 + 𝑉4 𝑉𝑚𝑎𝑥 + 𝑉2 + 𝑉3 + 𝑉4 

Table 2. Scale combination of the supervoxel signatures 

 

The supervoxel signature served as a similarity index to 

determine the similarity between two sets of point clouds. Each 

point cloud data in the datasets was encoded separately through 

the aforementioned procedures. Therefore, the matching based 

on similar supervoxel signatures could be extended to the 

application of coarse matching. The two sets of overlapped lidar 

point clouds were divided into many segments, and each segment 

was processed into a supervoxel through voxelization and feature 

extraction. Next, the supervoxel code was encoded using the 

encoder of a DNN-AE and concatenated as a supervoxel 

signature. Similar supervoxel signatures in the two datasets were 

clustered to fulfill the need for cross-sensor matching.  

 

A supervoxel signature should exhibit scale-invariant, 

independent, and reliable properties to facilitate matching. 

Consequently, different lidar systems that scan the same area 

should yield similar encoded features. This study defined cross-

sensor coarse matching as the similarity assessment between the 

supervoxel signatures obtained from LDLidar and HDLidar. As 

indicated in Equations (2), the Euclidean distance was employed 

to evaluate the similarity. 

 

Euclidean distance = |𝑢 − 𝑣|  (2) 

 

where, u and v are flattened supervoxel signature vectors from 

LDLidar and HDLidar, respectively. 

 

To enhance the robustness of signature-based matching, we 

further developed a sequence-to-sequence matching and 

geometric verification pipeline. Each sequence of supervoxel 

signatures from the sensed point cloud was compared against the 

target sequence using a sliding-window strategy similar to 

SeqSLAM (Milford and Wyeth, 2012). For each windowed 

tracklet, we computed the mean Euclidean distance over time-

aligned segments and selected the best-matching offset with the 

minimal average distance. This approach exploits local spatial 

continuity to improve matching reliability for practical 

applications. 

 

Following sequence matching, one possible extension is to 

extract the centroid coordinates of the matched segments and 

apply RANSAC-based rigid transformation estimation to 

eliminate outliers. This geometric verification step estimates the 

optimal rotation and translation using inlier pairs, typically 

defined based on spatial proximity within a threshold. Such 

integration of appearance-based and geometry-based constraints 

can further improve the accuracy and robustness of 

heterogeneous point cloud matching. However, this aspect is 

beyond the scope of the present study and is not further explored 

here. 

3. Experimental Results 

This study presents a lightweight and practical deep learning 

framework for heterogeneous point cloud matching. The 

utilization of the supervoxel signature, encoded via a DNN-AE, 

mainly facilitated cross-sensor matching. Each supervoxel 

signature encapsulated features extracted from the point clouds. 

Simulation experiments were conducted to better understand the 

function of supervoxel signatures in distinguishing point clouds 

captured by different lidar sensors. After confirming the efficacy 

of the supervoxel signatures for matching, subsequent analysis 

was conducted using real datasets obtained from Velodyne and 

Rigel lidars. 

 

3.1 Simulation Analysis 

To ensure effective cross-sensor registration, a supervoxel 

signature must satisfy three key properties: scale-invariance, 

which ensures consistent feature representation across varying 

point densities; independence, which enables robust encoding 

even in repetitive environments like urban road networks; and 

reliability, which maintains stable performance under noise and 

sensor-related variation. To validate these properties, we 

conducted simulation experiments using two overlapping 

HDLidar datasets acquired along different trajectories on an 

expressway in Taipei City, captured by a Riegl VMX250 MLS 

system. The original HDLidar data served as the target, while the 

sensed data (LDLidar) were simulated by resampling, rotating, 

applying drift, and adding random noise. Both datasets were 

divided into 37 frames of 130 m × 130 m with 50% overlap (see 

Figure 5). A series of four tests were performed to evaluate the 

robustness of the supervoxel signatures: (1) density, (2) rotation, 

(3) drift, and (4) noise test.  

 

In this simulation-based evaluation, matching accuracy was 

assessed by calculating the Euclidean distance between 

supervoxel signatures on a per-frame basis. Specifically, for each 

sensed frame, its supervoxel signature was compared with that of 

all target frames in the feature space, and the one with the 

minimum distance was considered the best match. This frame-
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level signature comparison approach allowed us to quantify the 

robustness and discriminative power of the supervoxel signature. 

 

 

Figure 5. Simulated sensed point clouds (LDLidar). 

 

3.1.1 Density Test: HDLidar and LDLidar datasets typically 

differ in point density. To evaluate the robustness of supervoxel 

signatures under varying densities, we simulated different 

density levels by randomly subsampling the original sensed point 

cloud (347.96 pts/m²), while the target point cloud remained at 

its original density (712.91 pts/m²). Eight density levels, from 1/2 

to 1/256, were generated in powers of two (2−1~2−8 ). Each 

subsampled dataset was encoded using the same pre-trained 

encoder from the target data, and the resulting supervoxel 

signatures were used for matching based on Euclidean distance. 

In this analysis, the supervoxel code size was fixed at 16 to 

maintain consistent compression performance, while the voxel 

size was varied to assess feature extraction at different spatial 

resolutions. As shown in Figure 6, multiscale combinations 

generally outperformed single-scale configurations. The dual-

scale combination Vmax+V2 achieved the highest accuracy, 

maintaining 83.78% even at 1/256 of the original density. In 

contrast, combinations involving only finer voxel sizes (e.g., V3, 

V4) were more sensitive to reduced point density and resulted in 

lower accuracy. These results demonstrate the effectiveness of 

multiscale supervoxel signatures, particularly those anchored by 

Vmax, in handling large variations in point cloud density. 

 

 

Figure 6. Matching accuracy of the density test. 

 

3.1.2 Rotation Test: Most MLSs are equipped with 

positioning and orientation systems (POSs), such as GNSS, INS, 

and distance measuring instruments, to record location and 

attitude information during scanning. However, the accuracy of 

heading information varies across POS technologies. To evaluate 

the rotational sensitivity of supervoxel signatures, we simulated 

heading rotations ranging from −15° to 15°, using subsampled 

sensed point clouds at 1/32 of the original density to increase the 

challenge of the test. The target point cloud remained fixed, while 

the sensed point cloud was rotated around the center of each 

supervoxel, generating 31 rotated datasets, which were then 

encoded for matching. Figure 7 shows that single-scale 

signatures using small voxel sizes (e.g., V3, V4) and their 

combinations (e.g., V3+V4) were highly sensitive to rotation, 

resulting in low matching accuracy. In contrast, larger voxel sizes 

(Vmax, V2) and multiscale combinations (Vmax+V2+V3, 

Vmax+V2+V3+V4) exhibited greater rotation tolerance, 

maintaining over 80% accuracy within ±8°  of rotation. This 

level of robustness aligns with typical POS heading accuracy 

(3°~4°), indicating that supervoxel signatures are well-suited for 

MLS applications involving real-world orientation variations. 

 

 

Figure 7. Matching accuracy of the rotation test. 

 

3.1.3 Drift Test: Following the rotation test, a drift sensitivity 

test was conducted using sensed point clouds subsampled to 1/32 

of the original density. This simulation aimed to assess the 

robustness of supervoxel signatures against trajectory drift, 

modeled as horizontal displacement ranging from 1 m to 10 m. 

The target point cloud remained fixed, while the sensed data were 

shifted horizontally to simulate positional drift in MLS systems. 

As shown in Figure 8, multiscale combinations such as Vmax+V2 

and Vmax+V2+V3 exhibited strong tolerance to drift, maintaining 

over 80% matching accuracy even with 4 m of displacement, 

approximately the width of a traffic lane. In contrast, single-scale 

signatures using small voxel sizes (e.g., V3, V4) and their 

combinations (e.g., V3+V4) were more sensitive to drift, showing 

a noticeable drop in accuracy. These results indicate that 

multiscale supervoxel signatures are more resilient to horizontal 

shifts and suitable for MLS scenarios with moderate positioning 

uncertainty. 

 

 

Figure 8. Matching accuracy of the drift test. 
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3.1.4 Tolerance of Noise: Laser ranging precision, 

observation direction, and beam divergence can affect lidar 

measurements' accuracy. In particular, differences between near 

and far scanning ranges and variations in the laser footprint may 

introduce random errors. To evaluate the robustness of 

supervoxel signatures to such noise, we added random errors to 

each point's x, y, and z coordinates in a subsampled sensed point 

cloud. A predefined standard deviation controlled the magnitude 

of the noise. For example, if the standard deviation was 1 m, each 

point was shifted by a random error drawn from a normal 

distribution, with equal offsets applied to all three coordinate 

axes. Figure 9 presents the results of the noise sensitivity analysis, 

in which random error levels ranged from 0.2 m to 4 m. Most 

multiscale combinations maintained high accuracy, exceeding 

90% when the noise level was around 1 m. In contrast, single-

scale combinations using smaller voxel sizes showed higher 

sensitivity to noise. These results indicate that voxel-based 

aggregation helps suppress the influence of random errors on 

individual points, enhancing the reliability of supervoxel 

signatures under noisy conditions. 

 

 

Figure 9. Matching accuracy of the noise test. 

 

3.2 Real Case Study 

We conducted a real cross-sensor matching experiment to 

validate the effectiveness of the proposed supervoxel signature 

method. The target point clouds were acquired using a Riegl 

VMX-250 mobile laser scanner for mapping purposes, while the 

sensed point clouds were obtained from a Velodyne's Puck lidar 

sensor mounted on a self-driving bus. These two datasets, 

representing cross-sensor data, partially overlapped in spatial 

coverage. We divided both datasets into 67 frames, each covering 

an area of 80 × 80 meters with a 25% overlap between adjacent 

frames. Notably, the cross-sensor point clouds were not subjected 

to any prior precise registration. As a result, the extracted patch 

pairs do not correspond exactly to the same spatial extent and are 

affected by slight rotational and translational discrepancies. 

Furthermore, the selected road segments were straight and 

homogeneous in structure, making the scenario particularly 

challenging due to the low geometric variability. Figure 10 shows 

an example frame pair, while Figure 11 illustrates part of the 

selected route segments. The data was collected in the Shuinan 

Trade and Economic Park, in Taichung City. The average point 

density for Riegl and Velodyne was 12986.63 pts/m2 and 870.08 

pts/m2, respectively. 

 

It is important to note that there were significant differences 

between these two datasets, not only in terms of point density but 

also in terms of random errors introduced by the sensors. We 

selected the same planar road surface to quantify the differences 

in random errors and calculated the standard deviation in the 

vertical direction. The target point cloud, which was scanned for 

mapping purposes (i.e., Riegl), exhibited a random error of only 

0.04 m on the road surface. However, for the sensed point cloud 

(i.e., Velodyne) aimed at collecting real-time 3D information, the 

random error increased rapidly with an increase in distance from 

the sensor. This resulted in specific patterns in the point cloud, 

such as the ring pattern characteristic of the Velodyne sensor. The 

road surface of the sensed point cloud displayed a ring pattern, 

and the random error in that road surface was approximately 0.36 

m due to the lack of a POS system.  

 

In this real case study, we designed the matching evaluation 

procedure to reflect a practical application scenario. The 

centerlines of road segments were used as spatial references for 

voxelizing the point clouds, ensuring spatial continuity across 

adjacent scans. A trained DNN-AE was then applied to extract 

features and construct multiscale supervoxel signatures. For each 

segment, a search sequence was pre-constructed using 

supervoxel signature tracklets derived from the target point 

clouds. To evaluate the matching accuracy, each tracklet 

generated from the sensed point clouds was matched to the search 

sequence through a sliding window strategy. 

 

Based on the simulation analysis, we selected the two most stable 

scale combinations— 𝑉𝑚𝑎𝑥 + 𝑉2  and 𝑉𝑚𝑎𝑥 + 𝑉2 + 𝑉3 —for the 

sequence matching experiments. Different window sizes were 

defined to construct the supervoxel signature tracklets. When the 

window size was set to 1, the original per-frame supervoxel 

signature was used for matching. A window size of 3 indicates 

that a tracklet was formed by concatenating the current frame 

with its preceding and following frames. As shown in Table 3, 

the dual-scale combination Vmax+V2 consistently outperformed 

the multiscale combination Vmax+V2+V3. Specifically, when 

the window size was increased to 5, the matching accuracy 

exceeded 80%, and when extended to a window size of 9, the 

accuracy surpassed 90%. These results demonstrate that the 

proposed multiscale supervoxel signatures are capable of 

supporting reliable cross-sensor point cloud matching, even 

under challenging real-world conditions. However, it is 

important to note that supervoxel codes derived from smaller 

voxel scales may lead to over-segmentation of the point cloud, 

potentially amplifying noise and degrading feature stability. 

 

Combination Window Size Accuracy(%) 

𝑉𝑚𝑎𝑥 + 𝑉2 

1 49.25 

3 73.85 

5 82.54 

7 86.89 

9 91.53 

11 94.74 

𝑉𝑚𝑎𝑥 + 𝑉2 + 𝑉3 

1 35.82 

3 61.54 

5 71.43 

7 85.25 

9 91.53 

11 92.98 

Table 3. Matching accuracy of the real-case datasets. 

 

 

Figure 10. Real case datasets (S05&T05) 
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Figure 11. Real case datasets 

 

3.3 Efficiency Discussion 

The DNN-AE utilized in this study comprised two stages: the 

training and prediction stages. The training stage is time-

consuming, making it challenging to achieve real-time 

processing. However, the prediction stage offers faster 

processing times compared to the training stage, allowing for 

near real-time implementation. Considering that the target point 

cloud was pre-scanned using Riegl HDLidar, the proposed 

matching method shows potential for initial alignment with VLP 

LDLidar. Furthermore, the data volume required for the 

supervoxel signatures was significantly smaller than that of the 

original lidar points. The compact representation of the 

supervoxel signature and the pre-trained encoder for HDLidar 

points only necessitated a minimal data volume for matching. 

This advantage underscores the effectiveness of utilizing 

supervoxel signatures for matching. This section highlights the 

proposed method's effectiveness for data compression using the 

real-case dataset. We used a personal computer with an i5-

9600KF @3.70 GHz CPU for computation. Table 4 summarizes 

key metrics across all 10 frames, including the average number 

of points, point density, data capacity, and the data volume of 

multiscale supervoxel signatures.  

 

This study aimed to significantly reduce the volume of 3D point 

cloud data while still achieving cross-sensor matching. Data 

compression was performed through a DNN-AE, and the 

compression ratio was the data volume between the supervoxel 

signature and the original point cloud (see Figure 12). Figure 13 

shows one of the decompression results, which the DNN-AE 

predicted. The input features were supervoxels with voxel 

extraction features, which were compressed into supervoxel 

codes through the trained encoder. The advantage of using a 

DNN-AE is that the trained encoder can decompress the 

supervoxel codes back to the voxel’s features. Therefore, 

supervoxel codes can be used for lidar matching and voxelized 

lidar data compression. 

 

 

 Sensed Target 

Number of points 4.79 × 107 8.16 × 108 

Capacity (GB) 1.76 26.30 

Density (pts/m2) 870.08 12986.63 

Compressed 

volume (KB) 

One Scale 0.41 

Two Scales 0.81 

Three Scales 1.22 

Four Scales 1.62 

Table 4. Summary of point cloud statistics and compressed data 

volume for supervoxel signatures. 

 

 

Figure 12. The compression ratio of multiscale supervoxel 

signatures. 

 

 

Figure 13. Illustration of compression and decompression by the 

proposed DNN-AE. 

 

4. Conclusions and Future Work 

This study presents an automatic framework for cross-sensor 

point cloud matching using a DNN-AE. The framework involves 

pre-processing the point clouds through voxelization and 

reprojection, extracting multiscale supervoxels from each point 

cloud, encoding the supervoxels using a DNN-AE, establishing 

supervoxel signatures by stacking multiscale supervoxel codes, 

and assessing the similarity of supervoxel signatures for cross-

sensor lidar matching. The framework assumes that the point 

clouds acquired by different lidar systems have already been 

transformed into a common mapping system using POS 

information. The proposed supervoxel signature, a compressed 

representation set generated by a DNN-AE, exhibited tolerance 

for random errors and differences in point density between the 

lidar systems. The evaluation of the multiscale supervoxel 

signature demonstrates that combinations of dual-scale and 

multiscale configurations achieved higher matching accuracy 

under various simulation conditions. This finding was also 

supported by a real case study, where the supervoxel signature 

reduced the data volume while achieving an 80% matching 

accuracy. However, there are certain areas for improvement in 

the current framework. For a more comprehensive 3D description, 

voxelization along all three axes is necessary. Additionally, the 

proposed methods rely on specific conditions, such as similar 

intensity. Developing a more general framework would be a 

crucial direction for future work, which would include 

incorporating 3D voxelization and designing a method for testing 

the significance of each feature in supervoxels. Furthermore, an 
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important goal for future research would be to enhance the design 

of supervoxel signatures to make it a more robust registration 

method, independent of initial conditions. 
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