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Abstract

High-precision 3D urban applications — including emergency response simulation, microclimate analysis, and heritage conserva-
tion — demand semantically enriched 3D building representations at Level of Detail 3 (LoD3) with parametric facade components.
Current urban digital twins predominantly rely on LoD2 models (as exemplified by the nationwide 3D BAG dataset in the
Netherlands) that lack critical architectural features such as windows and doors, constraining their analytical value and their utility
for fine-grained applications. This study introduces a novel pipeline to bridge this gap, enabling the enrichment of LoD2 models with
accurate opening information using aerial oblique imagery and deep learning. The approach addresses critical challenges in 3D-2D
alignment by leveraging perspective projection for comprehensive facade extraction, least-squares registration to rectify systematic
offsets, and Mask R-CNN for robust opening detection. Unlike conventional methods, it captures both inward and outward building
faces by projecting all 3D fagades onto multi-directional images, ensuring complete coverage of visible elements. Geometric scaling
integrates detected openings into LoD2 models as watertight, semantically rich components, validated for structural consistency. By
overcoming data misalignments and occlusion limitations, this methodology provides a scalable framework for large-scale LoD3
generation, enabling efficient upgrades of existing building models to support detailed spatial analysis in smart city contexts. Our

source code and data are available at https://github.com/YitongXia/LOD3-Model.

1. Introduction

The increasing scale and complexity of urbanization intensify
the need for sustainable urban planning and smart city de-
velopment. Smart cities leverage digital technologies to op-
timize urban systems (e.g., administration, transportation) and
enhance livability (Su et al.l [2011). Central to this vision
are 3D city models, which integrate multi-source geospatial
data, including remote sensing images (Singh et al.l 2013),
point clouds (Peters et al.l [2022)), and textured meshes (Gao,
et al.l 2021} 2025)), to digitally represent urban environments
with geometric precision. These models are classified by LoD
standards: LoD1 (simplified volumetric blocks) supports city-
scale energy simulations and shadow analysis; LoD2 (roof
structures and basic fagades) enables cadastral management and
noise mapping; LoD3 (detailed fagades with windows, doors,
and balconies) is critical for emergency response planning,
heritage preservation, and microclimatic studies (Biljecki et al.}
2015). Global initiatives like 3D BAG (Netherlands) (Peters et
al., 2022) and Helsinki’s digital twin (Airaksinen et al., 2019)
exemplify the adoption of LoD1/LoD2 models. However,
LoD3’s finer granularity remains underexplored, specifically
for large areas that require an automated approach, despite its
potential for high-precision urban analytics.

Generating LoD3 models faces three key challenges: (1) Data
limitations: LiDAR offers geometric accuracy but struggles
with texture details (Leberl et al., |2010; |/Akmalia et al., 2014);
oblique imagery contains rich fagade textures but suffers from
occlusions and resolution variability (Huang et al., 2020;
Pantoja-Rosero et al,, 2022); BIM provides semantic details
but lacks broad coverage (Geiger et al.l 2015). (2) Technical
complexity: automating fagade element extraction (e.g., irregu-
larly distributed windows) requires robust algorithms to handle
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occlusions, lighting variations, and data misalignments (Zhang
et al.l [2019; |/AlHalawani et al.l [2013)). Existing photogram-
metric workflows often rely on manual corrections (Nan et
al) 2010) or assume uniform opening patterns (AlHalawani
et all [2013), limiting scalability. (3) Integration gaps: most
methods reconstruct LoD3 models independently rather than
upgrading existing LoD2 datasets (Gruen et al., [2019), leading
to redundant efforts and inconsistencies.

To overcome these challenges, this research contributes three
key advancements in LoD3 generation: (1) Misalignment
correction for city-scale oblique imagery: We introduce a
least-square regression method to resolve systematic offsets
between 3D LoD2 models and oblique aerial images, enabling
precise facade texture extraction without manual alignment
— a critical innovation for scaling LoD3 workflows. (2)
Deep learning-based fagade parsing with layout regularization:
By employing Mask R-CNN for opening detection, followed
by a regularization algorithm to optimize irregular opening
layouts in 2D space, our method achieves robust fagade element
extraction even under occlusion/perspective distortions. (3) 2D-
to-3D integration via geometric repurposing: Instead of recon-
structing full 3D models, we project optimized 2D openings
into 3D space using similar-triangle principles and integrate
them into LoD2 models as intrusion elements. This BIM-
agnostic strategy uniquely leverages existing open datasets to
bypass redundant reconstruction, enabling large-scale LoD3
generation.

2. Related work

3D building model reconstruction methodologies are broadly
categorized by automation level (fully/semi-automatic), data
sources (LiDAR, imagery, topographic data), and approaches
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(model-driven vs. data-driven) (Oniga et al., 2022). Model-
driven (top-down) methods leverage prior knowledge from
predefined libraries to assemble building components, ensuring
robustness, but are limited by library diversity. In contrast, data-
driven (bottom-up) techniques reconstruct models directly from
geometric primitives (e.g., point clouds, planes) without prior
assumptions, facing challenges in handling complex structures
and ensuring robustness.

2.1 3D Building model reconstruction

LoD2 and LoD3 reconstruction rely on diverse data sources.
For LoD2, satellite imagery combined with DSM and OSM
data enables cost-effective urban-scale reconstruction but
struggles with complex geometries (He et al., 2023} |Bullinger,
et al., 2021). Street View Imagery (SVI) offers fagade details
for single-view or two-view reconstructions, though accuracy
depends on image quality (Pang and Biljecki, 2022). Oblique
aerial imagery, capturing facades at angles, enhances detail
when fused with terrestrial images (Wu et al., 2018). LiDAR
data, including Aerial Laser Scanning (ALS), Terrestrial Laser
Scanning (TLS), and Mobile Laser Scanning (MLS), supports
automated roof detection via Hough transforms (Overby et
all 2004; (Chen et al., [2018) and deep learning-based voxel
classification (Pirotti et al| [2019), while photogrammetric
point clouds from SfM/MVS enable mesh generation (Nan
and Wonka, 2017} [Pantoja-Rosero et al.|, 2022). Transitioning
to LoD3 requires integrating facade elements (e.g., windows,
doors) into the LoD2 models.

Hybrid methods combine LoD2 models with multi-source data:
Huang et al. fused aerial/terrestrial imagery using predefined
primitives (Huang et al.}2020), while Pantoja-Rosero et al. en-
riched LoD2 meshes via semantic segmentation and SIFT-based
3D keypoint triangulation (Pantoja-Rosero et al., [2022). Zhang
et al.| (2019) augmented LoD2 CityGML models by projecting
Mask R-CNN-detected openings from facade textures, demon-
strating scalability. Challenges persist in automation, irregular
pattern handling, and multi-source registration (Wen et al.,
2019). In this study, we address these limitations by automating
LoD3 generation through oblique imagery and pre-existing
LoD2 models, eliminating manual intervention and leveraging
geometric optimization for irregular opening integration.

2.2 Facade parsing

Facade element detection employs pixel-based (Yang et al.,
2015) and deep learning methods (Liu et al.| [2020). YOLOv3
enables real-time detection using Darknet-53 and FPN (Red-
mon and Farhadi, [2018)), whereas Mask R-CNN improves
pixel-level accuracy via RolAlign (He et al.l 2017). Layout
regularization addresses aesthetic and structural consistency.
Hensel et al.| (2019) aligned openings using MILP, while [Hu
et al.| (2020) optimized bounding boxes via BIP clustering. |[Liu
et al.| (2020) integrated symmetric regularization into CNNs
to penalize irregular shapes, and Jiang et al.| (2016) enforced
alignment, size, and spacing constraints through energy minim-
ization. These methods balance automation with precision but
face limitations in handling highly irregular facades (Pantoja-
Rosero et al., [2022)). Our approach resolves these challenges
by combining Mask R-CNN with a regularization algorithm to
optimize irregular layouts in 2D space before 3D projection, en-
suring both structural consistency and adaptability to complex
facade patterns.

3. Methodology

We developed a pipeline to enrich LoD2 building models with
opening details. It begins by pre-processing solid building
models modelled as LoD2 models, merging co-planar surfaces,
and extracting camera parameters (Sec. [3.1). Then, 3D facade
corners are projected to 2D space, with (LSR) rectifying offsets
for aligned images (Sec. [3.2). The Mask R-CNN frame-
work (He et al., 2017), trained on a combined dataset, detects
and segments openings, validated by IoU and accuracy metrics
(Sec. @I) After normalization, 2D coordinates are converted
to 3D and integrated into the models, adding precise openings.

3.1 Pre-processing

The pre-processing stage focuses on preparing two types of
data to support accurate facade extraction. The input data
are oblique aerial images and LoD2 building models, and the
goal is to make these data suitable for subsequent analysis by
adjusting camera parameters and refining co-planar surfaces.

Adjusting camera parameters: The inputs for this step are
oblique aerial images and their corresponding camera coordin-
ates. The aim is to define the valid extraction regions for
building models to be processed. We use Pix4D S.A.| (2025)
to derive camera parameters. The process involves feature
extraction, image matching, and bundle adjustment to reduce
re-projection errors, enabling accurate mapping of 2D image
points to 3D world coordinates. Given the common absence of
Ground Control Points (GCPs) in oblique datasets, we apply
back-projection to calculate the 3D coverage of each image.
Only buildings fully within the image are selected for facade
extraction, bridging the gap between the image space and 3D
city models.

Merge co-planar surfaces: Using the 3D BAG LoD2
model (Peters et al.l[2022) as input (which consisted of triangu-
lar faces at the time of this research), we aim to extract planar
facade surfaces. A region-growing algorithm is employed to
merge co-planar faces. Starting with random seed faces, ad-
jacent faces meeting the geometric similarity threshold (based
on normal vector consistency) are added iteratively. The result
is unified, complete fagade surfaces, color-coded for validation
(see Fig.[I). By calculating surface normal vectors, we retain
only vertical wall surfaces, filtering out horizontal roofs and
footprints, thus streamlining the dataset for efficient facade
analysis.

Figure 1. Example of coplanar surface merging. From left to
right: 3D BAG LoD2 model, region-growing results (different
colors indicate distinct regions), and facade extraction results.

3.2 Facade extraction

Given the challenge of establishing 3D-2D correspondence
due to the lack of location information in oblique images,
our goal is to develop a reliable method for extracting 2D
facade images that accurately match their 3D counterparts (3D
facade of the building models). To achieve this, we designed
a three-step pipeline involving 3D facade projection, projection
optimization, and image rectification (see Fig. [2).
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Figure 2. Workflow for automatic facade image extraction.

(1) 3D facade projection. To bridge the gap between 3D
building models and 2D oblique images, the aim of 3D fagade
projection is to create an initial mapping of 3D facades onto
the image plane. Using the intrinsic and extrinsic camera
parameters, we project the corner points of 3D facades from
the 3D building model into 2D space via perspective projection

(Equation|[T):
£
Ty _ v Cy
(xu>_ sy’ +<cy> S
Z/

where (z.,y.) are pixel coordinates, (cz, cy) is the principal
point, and (X',Y’, Z") are 3D points in camera coordinates.
This projection forms rectangular constraints in the 2D image
(see Fig.@, providing a preliminary 3D-2D correspondence.
By projecting all 3D facades initially, we can filter out non-
visible ones during the subsequent opening detection, simplify-
ing the overall process.

(2) Projection optimization. Due to the absence of GCPs
in camera parameter estimation, the initial projection results
contain systematic offsets that affect the accuracy of 3D-2D
correspondence. The objective here is to correct these offsets
to improve the reliability of the extracted facade images. We
observe that the offsets exhibit a linear translational relationship
for images taken from the same direction. Thus, we employ
least-squares registration (LSR) with the linear regression func-
tion y = mx + ¢ to minimize the squared residuals between the
projected coordinates (z) and the ground truth coordinates (y):

m,Z(l’i—i)X(yz‘—ﬂ)
= s @
c=y—mXZ 3)

Here, z; represents the projected coordinate (e.g., from initial
3D-to-2D projection), and y; represents the corresponding
manually annotated ground truth coordinate. The terms z
and y denote the mean values of all projected and ground
truth coordinates, respectively. Parameter m quantifies the
slope of the linear relationship (how ground truth coordinates
change with projected coordinates), while c is the y-intercept,
representing the ground truth coordinate when the projected
coordinate is zero. Applying LSR to 10 manually annotated
facades, we achieve an R-squared value of 0.999, indicating
an excellent fit. The derived regression model is then used to
optimize all projected points, enhancing the accuracy of 3D-
2D correspondence without the complexity of repeated deep
learning. This model can be reused for images from the same
perspective, balancing efficiency and precision.

(3) Image rectification. After correcting the offsets, the ex-
tracted facade images still need to be adjusted to accurately
represent the real-world proportions of the facades. The goal
of image rectification is to transform the oblique perspective

Ground truth fagade outl

Ground truth fagade outline

(a) Before optimization (b) After optimization

Figure 3. Comparison of projection optimization results.

of the extracted images into a frontal view, which is essen-
tial for downstream opening detection. Using the optimized
rectangular constraints (see Fig. B(b)), we apply perspective
transformation with the homography matrix H (Equations ]3]

T u
y| =Hx |v “4)
w 1

(@)= (. ) 5)

where (u,v) are original coordinates, (z,y) are projected
coordinates, (z,y’) are normalized coordinates in the target
image, and w is the normalization factor. This transformation
ensures that the rectified images maintain accurate geometric
proportions, providing standardized facade representations that
are well-aligned with their 3D counterparts.

3.3 Openings detection and optimization

To address irregularities in the detected opening positions
and sizes from oblique images and align them with typical
architectural layouts, we implement a two-step pipeline: precise
detection/segmentation followed by geometric regularization.
This ensures that extracted openings not only match their 2D
facade representations but also adhere to the regular patterns
expected in 3D building models, facilitating accurate integra-
tion into LoD2 structures.

Detection: To accurately identify and segment window and
door openings in rectified facade images, we employ the Mask
R-CNN framework, which excels in simultaneous object detec-
tion and instance segmentation. The ResNet-101 architecture
serves as the backbone for feature extraction, leveraging re-
sidual connections to mitigate the vanishing gradient problem
and enable training of deep networks [2016). This
choice ensures robust feature representation for complex facade
structures. Our training dataset combines 820 images from the
public Amsterdam fagade dataset|(Ams, 2020) and 30 manually
annotated images, totaling 850 samples labeled for windows,
doors, and sky in MS COCO format (820 for training, 90
for validation). This augmented dataset enhances the model’s
generalization ability for the diverse opening configurations
encountered in 3D BAG building models. After training, the
Mask R-CNN model processes each rectified fagcade image to
generate pixel-level segmentation masks and bounding boxes
for individual openings, providing precise 2D locations and
shapes essential for subsequent layout optimization.

Layout optimization: Architectural openings typically fol-
low regular positional and dimensional patterns for aesthetic
and functional consistency, but Mask R-CNN outputs may
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contain variations due to detection noise or perspective effects.
The goal of layout optimization is to align detected openings
with typical architectural layouts by regularizing their positions
and sizes, ensuring geometric coherence and visual plausibility.

e Position regularization. To enforce horizontal and ver-
tical alignment of openings, we regularize their centroid
coordinates to match common architectural patterns
(see Fig.[). First, centroids (c;z, ciy) of detected openings
are sorted by their vertical coordinates c;,. Openings
with vertical differences within a predefined threshold
(allowing for detection errors) are grouped into the same
horizontal row, and their vertical coordinates are replaced
with the row’s average c¢,. A similar process is applied
horizontally: centroids are sorted by c;., and horizontal
groups (columns) are formed using the same threshold,
with ¢, values updated to the column average. This two-
step adjustment aligns openings into grid-like structures,
where dotted lines represent original positions and solid
lines denote regularized positions, enhancing visual order
and structural consistency.

s S

=
L

]
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=

(a) Step 1: horizontal adjustment (b) Step 2: vertical adjustment

Figure 4. Two-step position adjustment: vertical and horizontal
alignments.

e Size Regularization. To standardize opening dimensions
while preserving their centroid positions, we use the
density-based DBSCAN clustering algorithm (Ester et
all [1996) to group openings with similar initial sizes
(see Fig. f). DBSCAN’s ability to handle arbitrary
cluster shapes and automatically determine cluster num-
bers makes it suitable for unsupervised size classification,
with parameters set as eps = 5 and min_samples = 1 to
accommodate single-instance sizes. For each cluster, the
average width and height are calculated and applied to all
members. Given a centroid (ciz,ciy) and target dimen-
sions w (width), h (height), the four corner coordinates
of each opening are adjusted symmetrically around the
centroid. Specifically, the coordinates for the upper left,
lower left, lower right, and upper right corners are: (c;z-

%, Ciy‘%)’ (Ciﬂ?_%v Ciy+g)v (Ciz"'%’ Ciy+g)a and (Ciz"’%y

ciy-g). This ensures uniform sizes within clusters while

maintaining geometric consistency with the underlying 3D
facade structure, improving both the accuracy and visual
appeal of the optimized openings.

3.4 Integration with 3D LoD2 building models to obtain
LoD3 models

To ensure geometric consistency and structural integrity
between 2D openings and 3D building models, we introduce
a two-step methodology to convert 2D opening coordinates to
3D space and integrate them into LoD2 models, addressing the
challenge of mapping planar features to volumetric structures
for seamless incorporation of detailed opening information.

st clustering 2nd clustering,

Figure 5. Opening size clustering and regularization.

2D to 3D conversion: To achieve precise alignment between
extracted 2D openings and 3D fagades while avoiding system-
atic errors inherent in traditional photogrammetry-based back
projection methods, we developed a novel approach rooted
in the similar triangle principle. This method ensures the
converted 3D openings remain coplanar with facades, crucial
for high quality fagade and opening extraction. The process
unfolds in two key steps as illustrated in Fig.[6]

First, leveraging the guaranteed same aspect ratio between rec-
tified 2D images and 3D fagades (due to prior rectification using
facade length and width), we calculate the 3D space offsets
Azsp and Aysp from 2D pixel offsets Aximg and Ayimg.

Using the proportionality AAyy# = Hap we obtain Aysp =
img ng

im

H. .
ﬁ X AYimg, then determine the z-value z; = z0 — Aysp,

where Hsp and Hj,g4 are the heights of the 3D fagade and 2D
image, and z¢ is the initial z-coordinate. Similarly, Azsp is

. . Az H. .o . H
derived via —32- = 3D ojving Axsp = =22 X AZimg.
AZimg Himg’ g g 3D Himg vmg

Next, for calculating (x;,y;), since the facade’s footprint is
not parallel to XOY - plane axes, we project onto the XOY
plane. Using the known 3D distance Fy Fy (with length Wsp)
and pixel distance F(; Fll , we apply scaling relationships. From

T4 j— 3D — 3D
e = Ael.wegetm = AP (1 — o), and from
Yi j— 3D 1 J— 3D
= H. -, we obtain y; = Ao X (y1 — yo). After

Y1—Y0 Az i .

acquiring all four corner coordinates of an opening, we re-
evaluate the spatial relationship between the 3D fagade and
opening to ensure coplanarity, thus maintaining the correct rel-
ative positional relationship critical for subsequent integration.

Integration: To maintain the watertightness of the final 3D
model, we extrude the converted 3D openings inward from
the fagcade at a uniform depth, creating seamless connections
between the original facade and the new opening structure.
This process leverages the counterclockwise vertex ordering of
3D building models (with outward-facing normals) to define
the spatial orientation of the facade’s inner and outer surfaces.
As depicted in Fig. 7| the in-
tegration workflow involves:
1) generating a new opening
plane parallel to the facade
at the specified depth, 2) cal-
culating 3D coordinates for
both the original and intruded
openings, and 3) constructing
connecting walls by preserving the counterclockwise vertex
sequence. This approach ensures topological consistency and
structural coherence, allowing the detailed opening features to
be seamlessly integrated into the LoD2 model while meeting
the geometric requirements for downstream applications.

Openings

]
Intrusion distance Wall surface
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Figure 6. 2D-to-3D coordinate conversion.

Figure 7. Examples of 3D fagade opening integration.
4. Experiments
4.1 Implementation details

Dataset: Our study area is in the northern part of Almere
Centrum, a small community with 18 buildings (see Fig. [8).
Two primary datasets are employed: the automatically recon-
structed nationwide dataset 3D BAG LoD2 building models
and oblique aerial images from the municip-
ality of Almere, captured by CityMapper-2 sensors across four
perspectives (forward, back, left, right-looking). After filtering
15 images covering the study area, Pix4D was used to estimate
camera parameters (intrinsic matrix, rotation/translation vec-
tors), which are essential for subsequent perspective projection.

Figure 8. Our study area is in the northern part of Almere
centrum.

Tools: Key libraries include CGAL (Oesau et al., [2023)) for
3D surface region growing, Detectron2 2019) (built

on PyTorch (Paszke et all [2019)) for Mask R-CNN imple-
mentation, OpenCV (Bradski} [2000) for image processing, and

Scikit-learn (Pedregosa et al. 2011) for DBSCAN clustering
and least-squares regression. Software tools comprise COCO-
annotator for dataset labeling, Pix4D for pho-
togrammetric parameter extraction, Azul (Arroyo Ohoril, [2020)

for 3D model visualization, and Val3dity [2018) for
validating the resulting LoD3 models.

Parameter settings: Key parameters were optimized through
empirical experiments to balance accuracy and efficiency. For
the region-growing algorithm resolving co-planar surfaces, the
optimal parameters after iterative testing are set as a maximum
vertex-to-plane distance of 10, a maximum normal angle dif-
ference of 10 degrees, and a minimum region size of 2 faces,
ensuring effective surface merging without misclassification.
For Mask R-CNN, extensive hyperparameter tuning was con-
ducted using the Amsterdam facade dataset. After evaluating
backbone networks (ResNet-50 vs. ResNet-101) and iteration
counts, the best performance was achieved with ResNet-101
(101-layer depth), a learning rate of 0.00025, and 5,000 training
iterations. This configuration outperformed ResNet-50 and
Faster R-CNN in segmenting windows and doors, as validated
by average precision (AP) metrics. In the DBSCAN clustering
for opening size regularization, parameters were optimized to
handle detection errors and size variations. An eps value
of 50 was selected to tolerate minor size discrepancies while
distinguishing distinct opening groups, with min_samples set to
1 to accommodate unique-sized openings commonly found in
architectural facades.

4.2 Results

Extracted facades: The projection, registration, and recti-
fication pipeline effectively bridges 3D building models and
2D oblique images to extract accurate facade representations.
Using camera parameters from Pix4D, initial perspective pro-
jection of 3D BAG fagades onto four-oriented images revealed
systematic offsets, particularly in left-looking orientations.
These were resolved via least-squares registration, as shown
in Fig. 9] where optimized projections (blue lines) align tightly
with true facade boundaries, eliminating initial misalignments
(red lines). Rectification based on 3D dimensions ensured
correct aspect ratios, enabling extraction of all visible facades
from corresponding image orientations. Statistical analysis
confirmed 100% completeness in capturing visible facades
across all four directions, leveraging oblique imagery’s unique
ability to access both exterior and interior building faces—an
advantage over traditional street-view methods.

Detected openings: Openings detection using the optimized
Mask R-CNN (ResNet-101 backbone, 5,000 iterations) yielded
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Figure 9. Least-squares projection optimization results for an
entire building.

robust results, achieving 75.49% average precision (AP) for
openings, including 67.93% for windows and 61.71% for
doors. Successful detections (see Fig. [T0(@)) clearly identified
windows and doors, while failure cases (see Fig. ﬂW_BSI) were
mostly due to occlusions or complex window structures. Sub-
sequent layout optimization via DBSCAN clustered openings
by size, regularizing their positions and dimensions to align
with architectural norms. Fig. demonstrates improved
geometric consistency, with color-coded clusters representing
homogeneous size groups, enhancing the plausibility of detec-

-

(b) Failure cases

0Oo oo|[oo oo
00 Oo||loo oo
00 00O ||00 00
0 1o 1 [0

(c) Layout regularization

Figure 10. Mask R-CNN facade opening detection results.

Reconstructed LoD3 buidling models: The final LoD3
model reconstruction successfully integrated detailed openings

into 3D BAG building models, validated via val3dity
and visualized in Azul (Arroyo Ohori, 2020)
(see Fig. [[I). The pipeline upgraded 18 Almere building
blocks from LoD2 to LoD3, maintaining watertightness and
semantic information (e.g., WallSurface) by recessing openings
inward and ensuring connected polygons between windows
and walls. Unlike traditional methods limited to outward-

facing facades, this approach captures both interior and exterior
features without complete model rebuilds. Testing on a larger
dataset (see Fig. @ confirmed robustness, with results adher-
ing to LoD3 standards, highlighting the approach’s scalability
for large-scale 3D city model enrichment with detailed, se-

Figure 11. LoD3 building model reconstruction results.
5. Conclusion

We introduce a novel pipeline to upgrade LoD2 building models
to semantically enriched LoD3 models, leveraging oblique
aerial imagery and deep learning. The approach innovatively
bridges 3D-2D spaces through perspective projection and least-
squares registration, enabling comprehensive extraction of both
inward and outward building facades—an advancement over
traditional methods limited to external views. By projecting
all 3D facades onto multi-directional images and applying data
registration, the pipeline ensures complete capture of visible
facades, while Mask R-CNN-based detection accurately iden-
tifies openings. A similarity-scaling method integrates 2D de-
tections into 3D models, generating watertight LoD3 structures
validated for semantic consistency. Key contributions include
a robust framework for large-scale facade extraction, scalable
registration across data sources, and the first systematic method
to enrich LoD2 models with detailed opening information from
multi-view aerial imagery, paving the way for nationwide 3D
city model upgrades.

Limitations: Despite these advancements, the pipeline has
limitations: it does not handle complex occlusions from
trees/balconies in oblique images; it relies on region-specific
training data for Mask R-CNN; and it requires manual in-
tervention in data registration. Detection optimization does
not account for potential missed openings, and image quality
remains a critical factor affecting accuracy.

Future work: Future work will focus on integrating oblique
and street-view imagery to mitigate occlusions, incorporating
additional LoD3 elements (e.g., balconies, dormers) into a
unified pipeline, developing algorithms to pre-select camera-
visible facades for efficiency, and automating the registration
process to eliminate manual steps. These enhancements aim to
improve model completeness, scalability, and automation, en-
abling more detailed and realistic 3D city model reconstruction
for urban planning and analysis.
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