
The New 3D City Database 5.0 -

Advancing 3D City Data Management based on CityGML 3.0

Zhihang Yao1, Claus Nagel2, Murat Kendir3, Bruno Willenborg4, Thomas H. Kolbe3

1 Centre for Geodesy and Geoinformatics, Stuttgart University of Applied Sciences (HFT Stuttgart), Stuttgart, Germany –

zhihang.yao@hft-stuttgart.de
2 Virtual City Systems, Berlin, Germany – cnagel@vc.systems

3 Chair of Geoinformatics, Technical University of Munich, Germany – (murat.kendir, thomas.kolbe)@tum.de
4 LIST Eco GmbH & Co. KG, Germany – bruno.willenborg@list-eco.de

Keywords: Geoinformation, Relational Database Modelling, Spatial Database, 3D City Modelling, Digital Twin, CityGML

Abstract

CityGML has become an international standard for semantic 3D city models for over 15 years, and plays a central role in various

applications such as urban planning, environmental analysis, and geospatial infrastructure. The recent release of CityGML 3.0 issued

by the Open Geospatial Consortium (OGC) introduces significant enhancements to the data model, which offers higher semantic

richness and improved interoperability with IoT and BIM domains for urban digital twins. However, these advancements also

necessitate the substantial adaptations of many existing CityGML-compliant software systems. One such system is the 3D City

Database (3DCityDB), a widely used open-source geodatabase solution for managing 3D city models. This paper presents the new

major version 5.0 of 3DCityDB released in early 2025 and redesigned to provide extensive support for CityGML 3.0 while also

preserving compatibility with the earlier CityGML versions. The new 3DCityDB v5 introduces a completely reworked relational

schema based on a generic mapping principle, which reduces the structural complexity and improves the extensibility significantly.

In addition, a novel approach for geometry storage using database-native spatial types also enhances performance and enables

seamless integration with third-party GIS platforms. Moreover, a new command-line interface has been developed to support

efficient data importing, exporting, querying, and processing workflows. The paper details the underlying system architecture and

implementation strategies, and also presents application scenarios and benchmark results. Future research and development plans are

outlined as well.

1. Introduction

CityGML has played an important role in advancing the digital

representation of urban environments (Kolbe, 2009). It was

issued by the Open Geospatial Consortium (OGC) and defines a

conceptual model and exchange format for virtual 3D city

models. In the past years, its earlier versions 1.0 and 2.0 have

been widely adopted worldwide and facilitated a broad range of

applications in urban planning, facility management,

environmental simulations, and geospatial analysis. With the

release of the most recent version 3.0, CityGML now offers a

more structured and semantically rich framework to meet the

increasing demands of urban digital twins and smart city

applications (Kutzner et al., 2020). As a result, the global

interest in CityGML 3.0 is rapidly growing. Several pioneering

projects and governmental initiatives have already begun

adopting the new CityGML version. Notable examples include

Munakata City and Taito City in Japan, which released the

official CityGML 3.0 datasets under the Japan’s Digital Twin

Initiative. Other pilot activities and preliminary evaluations

were reported in Rotterdam (Netherlands), which considered

adopting CityGML 3.0 as the new data basis for its nationwide

3D cadastre system.

Supporting this transition to CityGML 3.0 also poses new

technical and conceptual challenges for the 3D City Database

(3DCityDB), which is one of the most widely used database

solution for managing CityGML-based city models. 3DCityDB

is a free and open-source 3D geodatabase solution that has been

continuously developed and maintained for nearly 20 years. It is

designed to store, manage, and analyse CityGML-compliant

models in a standard spatial relational database (Yao et al.,

2018). It supports hierarchically structured, semantically rich

representations of urban objects across multiple Levels of Detail

(LoDs), and is capable of handling very large-scale city models

efficiently. Over the past decade, 3DCityDB has been

successfully deployed in production systems across numerous

major cities around the world such as Berlin, Potsdam,

Hamburg, Munich, Frankfurt, Dresden, Rotterdam, Vienna,

Helsinki, Singapore, and Zurich. Furthermore, the state

mapping agencies of the federal states in Germany store and

manage the nation-wide collected 3D city models, including

approximately 56 million building models and bridges in

CityGML LoD2 using 3DCityDB. However, until the end of

2024, 3DCityDB only supported the earlier CityGML versions

1.0 and 2.0 (Gröger et al. 2012) along with their counterpart

CityJSON 1.0 (Ledoux et al., 2019). Since CityGML 3.0

introduces significant modifications and improvements to the

data model, a substantial redesign of the 3DCityDB was

required to fully support the new CityGML version, as well as

to ensure backward compatibility with the earlier CityGML

versions.

This paper presents the new 3DCityDB v5 released in March

2025, which provides a full implementation of the CityGML 3.0

Conceptual Model (Kolbe et al., 2021). It introduces several

novel concepts and technical innovations to support various

encoding formats including GML and CityJSON. For instance,

the new 3DCityDB introduces a streamlined and optimized

relational schema following more generic mapping principles,

which significantly reduce the number of database tables

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-241-2025 | © Author(s) 2025. CC BY 4.0 License.

241

compared to previous versions. It also introduces a new

approach for managing CityGML geometries by utilizing

database-native spatial data types in a more efficient structure.

This enhancement simplifies spatial querying, improves

performance, and facilitates direct integration with GIS tools

such as QGIS, FME, and ArcGIS. Additionally, a new

command-line-based database client has been developed to

support the import and export of CityGML 3.0 datasets, perform

various data operations, and provide support for the OGC

Common Query Language (CQL2). Its lightweight and

extendable interface enables efficient integration into automated

workflows and complex processing pipelines. The following

sections of this paper detail the relevant design decisions,

system architecture, as well as the key implementation

highlights. We also present real-world use cases and application

tests, along with an outlook on future developments and

research directions.

2. Related Work and Design Decision

With the release of CityGML 3.0, the existing database

solutions for managing 3D city models face a range of new

challenges. These typically include the increased semantic

complexity and the need for compatibility with different

encoding formats. The solutions like CJDB (Powałka et al.,

2024) and the earlier 3DCityDB v4 (Yao et al., 2018) were

designed with a tight coupling to specific CityGML encoding

formats such as JSON and XML/GML, and are therefore not

well-suited for adaptation to the conceptual model introduced in

CityGML 3.0. In particular, their rigid database schemas usually

restrict extensibility and affect performance, especially when

handling complex geometric structures or CityGML

Application Domain Extensions (ADE) (Biljecki et al., 2018). A

notable schema-less alternative is GeoRocket, which was

designed for high-performance storage and retrieval of large

geospatial datasets using document-based indexing and

streaming (Krämer, 2020). While it enables fast data access and

processing across various encoding formats, it lacks deep

semantic integration, type enforcement, and native support for

3D geometry models. Another alternative has been explored

through a Neo4j-based graph database (Son et al., 2017). This

solution supports multiple versions of CityGML as well as

CityJSON. However, Neo4j does not provide native 3D spatial

indexing or spatial query functions. To overcome these

limitations, a custom 3D R-tree extension was implemented.

While this graph-based approach offers a novel perspective, it

remains limited for productive use in terms of spatial

performance and native support for complex geometries

compared to the modern relational spatial databases such as

PostGIS or Oracle.

Unlike the earlier 3DCityDB v4, which followed the traditional

GIS data modeling paradigm, where each feature type is

mapped to a feature-specific table with predefined attributes, we

chose to completely redesign the relational schema for the new

3DCityDB v5. The first motivation for this redesign was that

the legacy 3DCityDB schema was tightly coupled to specific

CityGML encodings and lacked native support for conceptual

extensibility. Extending the legacy schema would have

significantly increased its complexity and compromised long-

term maintainability. In particular, the number of database

tables would have at least doubled, resulting in more complex

and slower data queries due to a higher number of performance-

critical table joins (Agugiaro et al., 2024). Moreover,

integrating the legacy schema with standard GIS tools like FME

and QGIS would still have required expert knowledge, mainly

due to its fragmented and complex geometry structure (Powałka

et al., 2024).

The key research question arising from the redesign is whether a

relational database schema based on the Entity-Attribute-Value

(EAV) paradigm can effectively support the CityGML 3.0

Conceptual Model, while maintaining performance for real-

world 3D city models. The EAV model is known for its open

schema design, which allows the system to support arbitrarily

extensible feature and attribute definitions without requiring

changes to the physical schema. Its generic table structure also

makes it adaptable to other data formats such as IndoorGML or

ALKIS, and more accessible to standard GIS tools. However,

the EAV model has historically been criticized for its potential

performance issues in large-scale production systems due to the

large size of the central tables and the high complexity of

queries. To tackle this challenge, we hypothesized that a hybrid

approach, which combines a core EAV structure with a minimal

set of dedicated columns or tables for storing certain complex

properties such as geometries and appearances, could offer a

good balance between semantic richness, extensibility, and

efficient processing. To mitigate concerns about performance

limitations commonly associated with EAV implementations,

we conducted an early test using the large-scale LOD2 city

model of Hamburg. The test data were migrated from a

3DCityDB v4 instance to the new database schema using a

dedicated SQL migration script. The results showed that, with

modern database engines such as PostgreSQL/PostGIS and

optimized indexing strategies, the hybrid EAV-based approach

preserved the performance of the previous version even for

complex queries.

Another key aspect of our research work is that the new

database design does not fully adopt the open-schema

characteristics of a pure EAV model. Instead, we employed a

type-enforced and extensible variation. In this design, all core

object types, such as features and data types, are explicitly

defined and registered in dedicated catalog tables. Each feature

instance and its associated properties reference these type

definitions, which allow for consistent type enforcement and

schema validation. In addition, this approach also supports

flexible extension and reuse of the predefined types, which are

particularly effective for supporting CityGML ADEs by

registering additional schema definitions aligning with the core

schemas.

3. Overview of the New Database Schema

Based on the new EAV-based approach, the database schema

has been simplified into 17 tables, which are organized into five

logical modules. The relationships between these modules are

shown in Figure 1 and described in more detail in the following

subsections.

Figure 1. Module Structure of the new 3DCityDB schema.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-241-2025 | © Author(s) 2025. CC BY 4.0 License.

242

3.1 Core EAV-Structure

All modules except the Metadata module are mainly responsible

for storing city objects along with their attributes, geometries,

appearances, and relationships to other features. The EAV-

based approach employs a minimal structure consisting of two

main tables, namely, Feature and Property (see Figure 2),

which store almost all features and their associated property

information without the need for mapping each feature class to a

dedicated database table with predefined columns. The

FEATURE table is the central table serving as the primary

storage for all objects such as buildings, roads, or vegetation.

Each feature has a unique id as its primary key, and an objectid

string identifier for referencing within databases and datasets.

An optional identifier column accompanied by an

identifier_codespace allows distinguishing features across

different systems and feature versions globally. The

objectclass_id indicates the feature type and references the

OBJECTCLASS table. The bitemporal lifespan information are

managed through the creation_date and termination_date, and

valid_from and valid_to columns. Additional fields like

last_modification_date, updating_person, reasons_for_update,

and lineage provide insights into the origin and update history.

Moreover, the spatial envelope column stores the minimal 3D

bounding box of every feature and can be used for fast spatial

querying.

Figure 2. Feature module of the new 3DCityDB schema.

The PROPERTY table serves as the central storage location for

feature properties. Each property is basically defined by its

name, namespace, data type, and value based on a key-value

pair design pattern. Based on a type-forced approach, property

values are stored in one or more predefined columns that

correspond to specific data types allowing for efficient storage

and query performance. The data type is determined by the

datatype_id column pointing to a dedicated metadata table in

the metadata module (see Section 3.4). For example, simple

primitive types are stored in the columns such as val_int,

val_double, val_string, and val_timestamp. For non-primitive

attributes, array values are stored as JSON structures in the

val_array column, while arbitrary binary content is stored in

val_content with its corresponding MIME type specified in the

val_content_mime_type column. Complex attributes with nested

structures are not stored in a single JSON column. Instead, they

are either stored within a single row or represented in a

hierarchical manner across multiple rows linked via the

parent_id column. This design typically enables fine-grained

semantic referencing of the individual components within the

nested structure.

In addition to storing attribute values, the PROPERTY table also

represents the semantic relationships between features and other

entities. These relationships are maintained in separate rows to

ensure clear differentiation between properties and associations.

References to other features are stored in the val_feature_id

column, while geometric associations are represented via the

val_geometry_id column, which links to the

GEOMETRY_DATA table (see Section 3.2) and may optionally

be qualified by a level of detail via the val_lod column.

Similarly, implicit geometries are referenced through the

val_implicitgeom_id column combined with the transformation

data stored in the val_array and val_implicitgeom_refpoint

columns. Additional associations include references to

appearances and addresses through the val_appearance_id and

val_address_id columns, which link to corresponding entries in

the APPEARANCE (see Section 3.2) and ADDRESS tables

respectively. Although address is modelled as a feature type in

CityGML conceptual model, it is exceptionally stored in a

dedicated ADDRESS table rather than in the FEATURE table,

since this design decision allows for more efficient data

querying, indexing, and updates in support of e.g., location-

based services.

3.2 Management of Geometry and Appearance

The Geometry module (see Figure 3) includes the tables for

storing feature geometries, as well as implicit geometries, which

can be reused as templates for multiple features according to the

CityGML implicit geometry concept. The GEOMETRY_DATA

table serves as the central location for storing both explicit and

implicit geometry data of the features stored in the database. It

supports various geometry types, including points, lines,

surfaces, and volume geometries. Explicit feature geometries,

which are geometries with real-world coordinates, are stored in

the geometry column. This column uses a predefined spatial

data type from the database system to represent the geometry

data. All explicit geometries must be stored using 3D

coordinates in the coordinate reference system defined for the

3DCityDB instance.

Figure 3. Geometry module of the new 3DCityDB schema.

The use of predefined spatial database types for storing both

explicit and implicit geometries present two main challenges.

First, CityGML features support a wide variety of geometry

types, including primitives such as points, lines, surfaces, and

volumes, as well as composite and aggregate geometries, all

based on the ISO 19107 spatial schema standard. However, the

predefined spatial database types typically cover only a subset

of these, and therefore limit the ability to fully represent all

CityGML geometries. Second, CityGML allows geometries to

be reused by reference and assigned textures or colors. For this,

each geometry and its components require unique identifiers.

However, spatial database types typically store only raw

coordinates and lack the ability to assign unique identifiers,

which limits effective referencing and reuse. The previous

versions of 3DCityDB addressed these challenges by

decomposing surface geometries into individual polygons, each

of which is stored in a separate row with a unique identifier. A

hierarchical table structure was used to group the polygons

according to their original geometry type. While this approach

enabled efficient referencing, it required geometries to be

recomposed on-the-fly during spatial queries, which made such

queries slower and less efficient. Moreover, it increased storage

requirements and was limited to surface-based geometries, not

points and lines.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-241-2025 | © Author(s) 2025. CC BY 4.0 License.

243

The new design of 3DCityDB utilizes a novel approach, which

allows using spatial database types to store the entire geometries

without decomposition, and can therefore improve spatial query

performance and storage efficiency. To preserve the ability to

reuse and reference geometries and their parts, and to maintain

the expressivity of CityGML geometry types, a JSON-based

metadata is stored alongside the geometry in the

geometry_properties column. To illustrate the structure and use

of this JSON metadata, a simple cube solid geometry consisting

of six surfaces is used as an example (see Figure 4) to

demonstrate, how the approach works in a PostgreSQL/PostGIS

database using its specific POLYHEDRALSURFACE spatial

data type. Unlike the PostGIS polyhedral surface consisting of

only a simple array of polygons, the CityGML Solid geometry

has an additional level to represent the outer shell formed by the

polygons. Besides, the solid, the composite surface, and each

polygon have an identifier, that allows the reuse of the

component and the assignment of appearance information like

textures or colors. The JSON object shown in Figure 4 encodes

this extra metadata and links it to the POLYHEDRALSURFACE

representation.

Figure 4. Example of storing a 3D solid in geometry data table.

The Appearance module (see Figure 5) enables the storage and

assignment of textures and colors to surface geometries. It

implements the CityGML appearance concept, where

appearances act as containers for surface data, which is mapped

to the surface geometries of city objects to define their visual

and observable properties. The APPEARANCE table is the

central component of the appearance module. Each record in the

table represents a distinct appearance. Although Appearance is

also a feature type in CityGML, appearances are not stored in

the FEATURE table. This is because appearances define the

visual and observable properties of surfaces, which are

conceptually separate from the spatial features stored in the

FEATURE table. Each appearance is associated with a specific

theme for its surface data, which are used to define the visual

appearance of city object geometries, such as textures and

material properties, and are managed in a dedicated

SURFACE_DATA table, that supports different types of surface

representations. These include, for instance, surface materials

for defining basic properties like color, shininess, and

transparency. Texture-related representation can be realized

through the so-called parameterized textures, which use texture

coordinates or transformations for mapping to the target surface

geometries. Georeferenced textures are also supported, which

typically rely on real-world spatial references for the surface

alignment.

Figure 5. Appearance module of the 3DCityDB schema.

Each surface data is assigned to geometries through a dedicated

mapping mechanism that links visual properties such as

materials and textures to specific surface elements. These

mappings rely on the JSON metadata stored within the

GEOMETRY_DATA table and are managed via the

SURFACE_DATA_MAPPING table, which connects surface

data entries to their corresponding geometry records. Depending

on the type of surface data, a specific mapping is used to for the

assignment. For example, materials are assigned by listing the

identifiers of the surfaces to which they apply, while textures

can be mapped using detailed texture coordinates (see Figure 6)

or transformation matrices, that convert real-world positions to

texture space. These mappings offer a very flexible way to

precisely apply visual properties for complex surface-based

geometries.

Figure 6. Example of texture mappings for surface geometries.

3.3 Management of Codelists

The Codelist module (see Figure 7) adds support for storing

codelists, which are tables of values with the corresponding

descriptions or definitions. Many CityGML properties are

designed to take values from codelists according to the

CityGML 3.0 conceptual model. In practice, codelists may be

required, recommended, or suggested by an authority within an

organization or community, or more informally defined and

used within an application domain.

Figure 7. Codelist module of the 3DCityDB schema.

The CODELIST table is used to register codelists, each of which

is assigned an URL as a unique identifier in database. The

CODELIST_ENTRY table stores the values of the registered

codelists. Each value along with its definition or description is

stored in a single table row linked to a codelist. This setup

allows for easy lookup of the definition for a code, which is

stored as a property value in the PROPERTY table, and vice

versa. A typical use case is to use the codelist tables to look up

or validate property values associated with a codelist during

data import and export. Moreover, they can also be used to

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-241-2025 | © Author(s) 2025. CC BY 4.0 License.

244

build a web service, that provides stored codelists as files or

serves as a lookup and validation service for individual codelist

values.

3.4 Management of Metadata

The Metadata module (see Figure 8) comprises five tables

designed to store the meta-information about a 3DCityDB

instance and its city model data. First, the DATABASE_SRS

table stores information about the coordinate reference system

defined at setup, which applies to all geometries except implicit

geometries. Although the new 3DCityDB is fully based on the

CityGML 3.0 standard, it also intentionally supports backward

compatibility with CityGML 2.0 and 1.0. This compatibility is a

dedicated design of the new 3DCityDB and is achieved by

mapping legacy elements to an extended set of predefined types

beyond those defined in the CityGML 3.0 conceptual models. A

key requirement is that every feature type and attribute must be

associated with a namespace. This helps avoid name collisions

and logically categorizes the content stored in the database, in

order to support multiple versions of CityGML. All namespaces

are recorded in the NAMESPACE table and populated with a list

of 3DCityDB-specific namespaces, which are closely aligned

with the thematic modules from CityGML 3.0. The list of

namespaces in the NAMESPACE table is not exhaustive and can

be extended with user-defined namespaces, for example, when

registering CityGML ADEs. Each ADE is registered in the ADE

table as a record assigned a unique identifier along with its

meta-attributes e.g., name, version, and description. All ADE

classes such as feature and data types are stored in the

OBJECTCLASS and DATATYPE tables respectively, and

additionally linked to the corresponding entry in the ADE table

via the identifier.

Figure 8. Metadata module of the new 3DCityDB schema.

The OBJECTCLASS and DATATYPE tables serve as registries

for all feature and data types supported by the new 3DCityDB.

Each entry is uniquely identified by its name and the associated

namespace. Type inheritance is also supported through foreign

key references to the corresponding supertypes, which enables

reconstruction of the hierarchical structures as defined in the

underlying data model. During the database setup, both tables

are pre-populated based on the standard CityGML 3.0

conceptual model classes. In addition to type information, both

metadata tables contain JSON-based schema mapping that

defines, which properties and sub-features a feature or data type

may have. This schema mapping serves as the conceptual

backbone of the 3DCityDB schema allowing the transition from

a purely open schema into a type-enforced flexible schema.

Furthermore, the schema mapping also includes the metadata on

how to construct joins between database tables for interpreting

and querying the stored data (see Figure 9). For example, a

software tool can automatically parse and interpret this schema

mapping to generate SQL statements from a common query

language for interacting with the database. In addition to simple

types, the schema mapping also supports complex types, which

may include nested properties of simple and complex types. In

principle, the database schema is inherently generic and can be

extended to support other ISO 19109-based models like

IndoorGML, AIXM, ALKIS, or INSPIRE. In such cases, only

the corresponding metadata tables and schema mappings need

to be adapted.

Figure 9. Example snippet of the JSON-based schema mapping.

4. Database Management Tool

As the successor to the “Importer/Exporter” of previous

3DCityDB versions, the new client software called “citydb-

tool” is a command-line utility for managing and interacting

with the database to store, maintain, and query 3D city models.

As with its predecessor, it supports a wide range of operations

designed to streamline database workflows allowing for

importing, exporting, updating, and deleting 3D model objects.

The tool currently supports the latest data formats of CityGML

3.0 and CityJSON 2.0, as well as their earlier versions. In

addition, its flexible command-line interface provides a number

of general options for configuring logging, loading

configuration files, managing plugins, and more. Thanks to its

new modular architecture, additional functionalities such as

support for other encoding formats can be easily implemented

and extended.

4.1 Modular Structure

The new citydb-tool has been completely redesigned based on

the Java Platform Module System (JPMS) introduced in Java 9.

This modular approach offers improved maintainability and

extensibility in terms of its high encapsulation and clear

dependencies between components. As illustrated in Figure 10,

the component architecture of the citydb-tool is organized into

three main categories, namely, Core, User Interface, and

Utilities (see Figure 10).

Figure 10. Architecture of the new citydb-tool.

The Core components consist of modules for database

operations, data model handling, and input/output (IO)

operations. A key concept is the definition of a set of abstract

APIs, that allow for a common logic to read and write data

based on a dedicated intermediate data model, which simplifies

the interactions with the database. Concrete implementations of

these APIs can be developed and integrated dynamically using

pluggable adapters. For instance, an adapter for

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-241-2025 | © Author(s) 2025. CC BY 4.0 License.

245

PostgreSQL/PostGIS database system has already been

implemented. Additional adapters such as one for Oracle or

MySQL can also be developed and integrated in the future. The

Support for other IO formats in addition to CityGML/CityJSON

is also modular. Besides, The User Interface category currently

already includes a CLI component with various import/export

options and also provides a plugin interface allowing developers

to implement additional user interfaces such as graphical tools

or web-based APIs. The Utility category offers a range of

helpful APIs for logging, caching, query, data tiling, and

configuration management using JSON notation. Moreover, the

individual modules are not only intended for internal use within

the citydb-tool, but can also be used as embedded libraries for

developing custom applications to interact with a 3DCityDB

database.

4.2 Main Workflow

The import and export operations supported by the citydb-tool

utilize a multi-threaded architecture (see Figure 11) to

efficiently process large-scale 3D city model datasets. During

data import, the input CityGML or CityJSON files are handled

by their respective modular adapters and dispatched to a

dedicated Java thread pool for data transformation. In this stage,

each top-level feature is concurrently converted as chunks into

an intermediate feature representation. The transformed features

are temporarily buffered in a waiting queue before being

processed by an additional thread pool, which maps and

propagates the feature contents into the corresponding database

tables. For data export, the citydb-tool first retrieves a buffered

ID queue of top-level features either directly from the database

or based on a user-defined query. These IDs are then used by a

thread pool to fetch the corresponding objects from the database

and temporarily store them in a feature queue. In the subsequent

stage, a dedicated thread pool converts each feature into the

target format using the respective modular I/O adapters, which

also handle the serialization of the features into output files in

the desired formats. This modular and parallelized workflow

enables high-performance import and export operations,

facilitating the efficient management of even very large 3D city

models using 3DCityDB. Moreover, Docker support has also

been introduced to simplify deployment of the new citydb-tool

and 3DCityDB to facilitate consistent runtime environments

across platforms.

Figure 11. Workflow within the new import/export tool.

4.3 Support for CQL2 Query Language

The Query module (see Figure 10) of the citydb-tool is

implemented based on CQL2 (Common Query Language 2),

which is an OGC standard offering a generic filter grammar for

query options (Vretanos and Portele, 2024). The citydb-tool

users can leverage CQL2 to construct precise queries for

exporting or deleting features based on attribute values and

spatial relationships. For attribute filtering, CQL2 supports the

common comparison operators such as equals (=), not equals

(!=), less than (<), and greater than (>). Spatial filtering further

enhances querying capabilities through geospatial functions

such as intersects, within, and contains, which determine

whether two geometries are overlapped or contained with each

other. A typical use case is selecting all city objects within a

specified bounding box by evaluating spatial intersections.

CQL2 also provides a highly expressive syntax allowing for the

construction of complex and nested queries, which use logical

operators such as AND, OR, and NOT to combine multiple

attribute and spatial filter conditions for refining query results.

These queries can be expressed in either plain text or JSON

notation, both of which can be interpreted and processed by the

citydb-tool. An example of CQL2 query expressed in JSON is

shown in Figure 12.

Figure 12. Example CQL2 query expression in JSON notation.

This CQL2 query example demonstrates a compound filter

combining both attribute-based and spatial conditions using a

logical operator. While the CQL2 standard is primarily designed

for flat and simple features, 3DCityDB operates on a

hierarchically structured data model with complex and nested

attributes according to the CityGML standard. To support this

complexity, we defined and implemented an extended CQL2

that introduces a custom JSONPath-based property notation. It

allows for navigation through sub-features and nested attributes

based on the schema mapping information stored in the

OBJECTCLASS and DATATYPE tables (see Section 3.4). For

example, the property path "con:height.con:value" refers to a

CityGML construction type and the value of its associated

complex property “height”. The citydb-tool is capable of

interpreting such expression and translating it into an optimized

SQL statement by leveraging the schema mapping definitions

automatically.

5. Evaluation and Testing

The usability of the new 3DCityDB schema has been

intensively evaluated and tested regarding the usability with

other third-party applications and the import/export processing

time.

5.1 Integration with Third-party Software

To conduct the integration test, the open-source software QGIS

and the commercial ETL tool FME were selected. The test

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-241-2025 | © Author(s) 2025. CC BY 4.0 License.

246

dataset is a LoD2 building model in CityGML 3.0 format,

which includes storeys, boundary surfaces, textures, windows,

and doors. It was created by the Institute for Automation and

Applied Computer Science (IAI) at the Karlsruhe Institute of

Technology (KIT) and is freely available for unrestricted use1.

The dataset was first imported into a 3DCityDB instance. Three

database views were then created to represent different layers

for the building’s outer shell, the first floor with walls and

rooms, and the top floor with roof and loft. These views can be

accessed directly in QGIS using its built-in database Manager

and displayed as three separate vector layers. Each layer can be

visualized and explored not only in 2D, but also in 3D within

the QGIS viewer interactively (see Figure 13). QGIS integration

has also been investigated by a third party (Tsai et al., 2025),

who confirmed the usability of the new 3DCityDB database

schema.

Figure 13. Integration of 3DCityDB with FME and QGIS.

In addition to the QGIS integration, an FME workbench has

been developed by the company Virtual City Systems, who is

one of the main development partners of 3DCityDB. This

workbench was implemented based on the FME’s database

reader to access data from database tables using a customized

SQL query. Both geometry and appearance information can be

retrieved from the database and visualized together in the FME

Viewer (see Figure 13). This also enables seamless conversion

into various other formats like 2D/3D Shape, DWG, and OBJ,

which are compatible with a wide range of third-party

applications. The FME workbench is also designed to be

extendable and could serve as an alternative to the

aforementioned citydb-tool for interacting with 3DCityDB in

future.

5.2 Performance Test

To evaluate the import and export performance of the new

3DCityDB version, a series of tests were conducted using two

large open datasets from the federal states of Bavaria and the

city of Berlin. The Bavaria dataset contains nearly 9.7 million

LoD2 building objects without textures, while the Berlin dataset

includes approximately 540,000 LoD2 buildings with full

textures. To obtain reliable benchmark results including

averages and standard deviations, each test was executed five

times on the same Linux server equipped with an Intel® Xeon®

w5-2565X processor (3.2 GHz, 18 cores), 128 GB RAM, and 4

TB SSD storage. The system runs Docker on Ubuntu Linux

24.04 LTS. Both the old (v4) and new (v5) versions of

3DCityDB were deployed locally using Docker images running

PostgreSQL 17.3 and PostGIS 3.5. As shown in Figure 14, the

new 3DCityDB demonstrates improved or at least comparable

performance for both data import and export operations. In

addition, an export performance test was conducted to evaluate

1

https://www.citygmlwiki.org/index.php?title=FZK_Haus,_Ci

tyGML_3.0,_LoD2,_Storeys,_Boundary_Surfaces

the efficiency of filtered queries in the new database schema. A

simple attribute filter was applied to select all buildings higher

than 30 meters in the Bavaria dataset. The results showed that

8,369 buildings matched the filter criteria, and the export

operation took an average of only 19 seconds. This indicates

that, based on new EAV-based hybrid approach, the export

performance also scales well when handling subset data from

large datasets.

Figure 14. Benchmark results of 3DCityDB performance tests.

6. Conclusion and Future Work

In this paper, we present the results of the ongoing development

of the new version of 3DCityDB. Compared to its previous

versions, 3DCityDB now offers not only improved

performance, but also enhanced functionality with extensive

support for the latest CityGML 3.0 standard. The redesigned

database schema employs an EAV-based and type-forced

relational architecture to enhance compatibility with other

encoding formats, and also simplifies the implementation of

support for CityGML ADEs. Furthermore, the light-weight

structure of the database schema improves the overall usability

and makes the integration with third-party software such as

FME and QGIS easier. The import/export tool has also been

reworked based on an improved modular structure, which can

be easily extended for additional database systems, data

formats, and functional plugins. While the current results

represent an important milestone in the development of

3DCityDB, several aspects remain open and will be explored in

our future work.

6.1 Full Support for CityGML ADE

Although the new 3DCityDB schema offers a generic and

flexible structure for managing CityGML ADEs, there is

currently no utility for managing ADE schemas. In fact, the

ADE management is simplified compared to earlier versions, as

the static EAV-based table structure eliminates the need to

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-241-2025 | © Author(s) 2025. CC BY 4.0 License.

247

create or drop ADE-specific tables. However, to support ADE

data import and export, the citydb-tool must be extended, since

it lacks a generic implementation for handling arbitrary ADE

schemas. While the tool provides a complete API for custom

extensions, it still requires in-depth knowledge of the ADE

schema. A future research challenge is to investigate whether

large language models (LLMs) could be leveraged to

automatically generate the necessary code to simplify the ADE

integration.

6.2 Support for exporting standardized 3D visualization

model

The “VIS-Exporter” plugin in the old 3DCityDB

Importer/Exporter allowed users to export the objects in the

database as 3D models in KML, COLLADA or gLTF formats.

However, a similar plugin must be redesigned based on the new

database architecture and to support the now established 3D tile

standards such as “i3S” (Belayneh & Reed, 2023) and

“3DTiles” (Cozzi & Lilley, 2023), especially for web-based

applications. The new geometry storage strategy of the

3DCityDB v5 and the simple structure of the PROPERTY table

allows us to use the third-party open-source software pg2b3dm

to generate 3D tiles with built-in semantic information. Since

the main architecture of pg2b3dm is to read and tile geometries

stored in PolyhedralSurface, MultiPolygon, and MultiLinestring

types within PostGIS databases, it is well-compatible with the

new database design. In our experiments so far 3D tiles with

different surface materials (but no textures, yet) were created

using a thematic set of attributes and displayed in CesiumJS

without any additional software. A solution based on an adapted

version of pg2b3dm including the selection of different levels-

of-detail, styling of object types, and extraction of thematic data

will be released soon.

6.3 Support for OGC API - Features

The previous versions of 3DCityDB supported the Web Feature

Service (WFS) for web-based access to 3D city objects. In the

new 3DCityDB version, WFS is no longer supported and is

intended to be replaced by the modern “OGC API - Features”,

which is also an OGC standard for creating, querying, and

modifying spatial data on the web (Portele et al., 2022). Unlike

WFS, the new API follows RESTful principles and improves

the interoperability with web applications. It typically delivers

data in GeoJSON formats allowing seamless integration with

GIS tools. In the future, 3DCityDB is expected to support this

API with additional formats like CityGML and CityJSON.

Since the API uses CQL2 for data filtering, the existing citydb-

tool already provides a solid foundation for the implementation.

Moreover, the CQL2 extensions developed in the context of

3DCityDB v5 could be proposed to OGC for consideration in

future versions of the CQL2 standard.

References

Agugiaro, G., Pantelios, K., León-Sánchez, C., Yao, Z., Nagel,

C., 2024. Introducing the 3DCityDB-Tools Plug-In for QGIS.

Recent Advances in 3D Geoinformation Science. Lecture Notes

in Geoinformation and Cartography. Springer Nature

Switzerland, Cham, 797–821.

Biljecki, F., Kumar, K., Nagel, C., 2018. CityGML Application

Domain Extension (ADE): Overview of Developments. Open

Geospatial Data, Software and Standards 3(1), 13.

Belayneh, T., Reed, C., 2023. OGC Indexed 3d Scene Layer

(I3S) and Scene Layer Package (*.slpk) Format Community

Standard Version 1.3, Open Geospatial Consortium.

Cozzi, P., Lilley, S., 2023. 3D Tiles Specification Version 1.1,

Open Geospatial Consortium.

Gröger, G., Kolbe, T. H., Nagel, C., Häfele, K.-H., 2012. OGC

City Geography Markup Language CityGML Encoding

Standard version 2.0, Open Geospatial Consortium.

Krämer, M., 2020. GeoRocket: A scalable and cloud-based data

store for big geospatial files. SoftwareX 11, 100409.

Kolbe, T. H., 2009. Representing and Exchanging 3D City

Models with CityGML. In: Lee, J., Zlatanova, S. (Eds.), 3D

Geo-Information Sciences. Lecture Notes in Geoinformation

and Cartography. Springer Berlin Heidelberg, Berlin,

Heidelberg, 15–31.

Kolbe, T. H., Kutzner, T., Smyth, C. S., Nagel, C., Roensdorf,

C., Heazel, C., 2021. OGC City Geography Markup Language

(CityGML) Part 1: Conceptual Model Standard v3.0, Open

geospatial consortium.

Kutzner, T., Chaturvedi, K., Kolbe, T. H., 2020. CityGML 3.0:

New Functions Open Up New Applications. PFG - Journal of

Photogrammetry, Remote Sensing and Geoinformation Science

88(1), 43–61.

Ledoux, H., Arroyo Ohori, K., Kumar, K., Dukai, B., Labetski,

A., Vitalis, S., 2019. CityJSON: A compact and easy-to-use

encoding of the CityGML data model. Open Geospatial Data,

Software and Standards, 4(1), 1–12.

Nguyen, S. H., Yao, Z., Kolbe, T. H., 2017. Spatio-semantic

comparison of large 3D city models in CityGML using a graph

database. ISPRS Annals of the Photogrammetry, Remote

Sensing and Spatial Information Sciences, IV-4/W5, 99–106.

Powałka, L., Poon, C., Xia, Y., Meines, S., Yan, L., Cai, Y.,

Stavropoulou, G., Dukai, B., Ledoux, H., 2024. CJDB: A

Simple, Fast, and Lean Database Solution for the CityGML

Data Model. Recent Advances in 3D Geoinformation Science.

Lecture Notes in Geoinformation and Cartography. Springer

Nature Switzerland, Cham, pp. 781–796.

Portele, C., Vretanos, P., Heazel, C., 2022. OGC API - Features

- Part 1: Core corrigendum, Open Geospatial Consortium.

Tsai, B., Agugiaro, G., Leon-Sanchez, C., Nagel, C., Yao, Z.,

2025. Introducing server-side support for 3DCityDB 5.0 to the

3DCityDB-Tools plug-in for QGIS. ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial Information

Sciences (same volume as this paper).

Vretanos, P., Portele, C., 2024. Common Query Language

(CQL2), Open Geospatial Consortium.

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P.,

Donaubauer, A., Adolphi, T., Kolbe, T. H., 2018. 3DCityDB -

A 3D Geodatabase Solution for the Management, Analysis, and

Visualization of Semantic 3D City Models Based on CityGML.

Open Geospatial Data, Software and Standards 3(5), 1–26.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-241-2025 | © Author(s) 2025. CC BY 4.0 License.

248

