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Abstract 

 

CityGML has become an international standard for semantic 3D city models for over 15 years, and plays a central role in various 

applications such as urban planning, environmental analysis, and geospatial infrastructure. The recent release of CityGML 3.0 issued 

by the Open Geospatial Consortium (OGC) introduces significant enhancements to the data model, which offers higher semantic 

richness and improved interoperability with IoT and BIM domains for urban digital twins. However, these advancements also 

necessitate the substantial adaptations of many existing CityGML-compliant software systems. One such system is the 3D City 

Database (3DCityDB), a widely used open-source geodatabase solution for managing 3D city models. This paper presents the new 

major version 5.0 of 3DCityDB released in early 2025 and redesigned to provide extensive support for CityGML 3.0 while also 

preserving compatibility with the earlier CityGML versions. The new 3DCityDB v5 introduces a completely reworked relational 

schema based on a generic mapping principle, which reduces the structural complexity and improves the extensibility significantly. 

In addition, a novel approach for geometry storage using database-native spatial types also enhances performance and enables 

seamless integration with third-party GIS platforms. Moreover, a new command-line interface has been developed to support 

efficient data importing, exporting, querying, and processing workflows. The paper details the underlying system architecture and 

implementation strategies, and also presents application scenarios and benchmark results. Future research and development plans are 

outlined as well. 

 

1. Introduction 

 

CityGML has played an important role in advancing the digital 

representation of urban environments (Kolbe, 2009). It was 

issued by the Open Geospatial Consortium (OGC) and defines a 

conceptual model and exchange format for virtual 3D city 

models. In the past years, its earlier versions 1.0 and 2.0 have 

been widely adopted worldwide and facilitated a broad range of 

applications in urban planning, facility management, 

environmental simulations, and geospatial analysis. With the 

release of the most recent version 3.0, CityGML now offers a 

more structured and semantically rich framework to meet the 

increasing demands of urban digital twins and smart city 

applications (Kutzner et al., 2020). As a result, the global 

interest in CityGML 3.0 is rapidly growing. Several pioneering 

projects and governmental initiatives have already begun 

adopting the new CityGML version. Notable examples include 

Munakata City and Taito City in Japan, which released the 

official CityGML 3.0 datasets under the Japan’s Digital Twin 

Initiative. Other pilot activities and preliminary evaluations 

were reported in Rotterdam (Netherlands), which considered 

adopting CityGML 3.0 as the new data basis for its nationwide 

3D cadastre system. 

 

Supporting this transition to CityGML 3.0 also poses new 

technical and conceptual challenges for the 3D City Database 

(3DCityDB), which is one of the most widely used database 

solution for managing CityGML-based city models. 3DCityDB 

is a free and open-source 3D geodatabase solution that has been 

continuously developed and maintained for nearly 20 years. It is 

designed to store, manage, and analyse CityGML-compliant 

models in a standard spatial relational database (Yao et al., 

2018). It supports hierarchically structured, semantically rich 

representations of urban objects across multiple Levels of Detail 

(LoDs), and is capable of handling very large-scale city models 

efficiently. Over the past decade, 3DCityDB has been 

successfully deployed in production systems across numerous 

major cities around the world such as Berlin, Potsdam, 

Hamburg, Munich, Frankfurt, Dresden, Rotterdam, Vienna, 

Helsinki, Singapore, and Zurich. Furthermore, the state 

mapping agencies of the federal states in Germany store and 

manage the nation-wide collected 3D city models, including 

approximately 56 million building models and bridges in 

CityGML LoD2 using 3DCityDB. However, until the end of 

2024, 3DCityDB only supported the earlier CityGML versions 

1.0 and 2.0 (Gröger et al. 2012) along with their counterpart 

CityJSON 1.0 (Ledoux et al., 2019). Since CityGML 3.0 

introduces significant modifications and improvements to the 

data model, a substantial redesign of the 3DCityDB was 

required to fully support the new CityGML version, as well as 

to ensure backward compatibility with the earlier CityGML 

versions.  

 

This paper presents the new 3DCityDB v5 released in March 

2025, which provides a full implementation of the CityGML 3.0 

Conceptual Model (Kolbe et al., 2021). It introduces several 

novel concepts and technical innovations to support various 

encoding formats including GML and CityJSON. For instance, 

the new 3DCityDB introduces a streamlined and optimized 

relational schema following more generic mapping principles, 

which significantly reduce the number of database tables 
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compared to previous versions. It also introduces a new 

approach for managing CityGML geometries by utilizing 

database-native spatial data types in a more efficient structure. 

This enhancement simplifies spatial querying, improves 

performance, and facilitates direct integration with GIS tools 

such as QGIS, FME, and ArcGIS. Additionally, a new 

command-line-based database client has been developed to 

support the import and export of CityGML 3.0 datasets, perform 

various data operations, and provide support for the OGC 

Common Query Language (CQL2). Its lightweight and 

extendable interface enables efficient integration into automated 

workflows and complex processing pipelines. The following 

sections of this paper detail the relevant design decisions, 

system architecture, as well as the key implementation 

highlights. We also present real-world use cases and application 

tests, along with an outlook on future developments and 

research directions. 

 

2. Related Work and Design Decision 

With the release of CityGML 3.0, the existing database 

solutions for managing 3D city models face a range of new 

challenges. These typically include the increased semantic 

complexity and the need for compatibility with different 

encoding formats. The solutions like CJDB (Powałka et al., 

2024) and the earlier 3DCityDB v4 (Yao et al., 2018) were 

designed with a tight coupling to specific CityGML encoding 

formats such as JSON and XML/GML, and are therefore not 

well-suited for adaptation to the conceptual model introduced in 

CityGML 3.0. In particular, their rigid database schemas usually 

restrict extensibility and affect performance, especially when 

handling complex geometric structures or CityGML 

Application Domain Extensions (ADE) (Biljecki et al., 2018). A 

notable schema-less alternative is GeoRocket, which was 

designed for high-performance storage and retrieval of large 

geospatial datasets using document-based indexing and 

streaming (Krämer, 2020). While it enables fast data access and 

processing across various encoding formats, it lacks deep 

semantic integration, type enforcement, and native support for 

3D geometry models. Another alternative has been explored 

through a Neo4j-based graph database (Son et al., 2017). This 

solution supports multiple versions of CityGML as well as 

CityJSON. However, Neo4j does not provide native 3D spatial 

indexing or spatial query functions. To overcome these 

limitations, a custom 3D R-tree extension was implemented. 

While this graph-based approach offers a novel perspective, it 

remains limited for productive use in terms of spatial 

performance and native support for complex geometries 

compared to the modern relational spatial databases such as 

PostGIS or Oracle. 

 

Unlike the earlier 3DCityDB v4, which followed the traditional 

GIS data modeling paradigm, where each feature type is 

mapped to a feature-specific table with predefined attributes, we 

chose to completely redesign the relational schema for the new 

3DCityDB v5. The first motivation for this redesign was that 

the legacy 3DCityDB schema was tightly coupled to specific 

CityGML encodings and lacked native support for conceptual 

extensibility. Extending the legacy schema would have 

significantly increased its complexity and compromised long-

term maintainability. In particular, the number of database 

tables would have at least doubled, resulting in more complex 

and slower data queries due to a higher number of performance-

critical table joins (Agugiaro et al., 2024). Moreover, 

integrating the legacy schema with standard GIS tools like FME 

and QGIS would still have required expert knowledge, mainly 

due to its fragmented and complex geometry structure (Powałka 

et al., 2024). 

 

The key research question arising from the redesign is whether a 

relational database schema based on the Entity-Attribute-Value 

(EAV) paradigm can effectively support the CityGML 3.0 

Conceptual Model, while maintaining performance for real-

world 3D city models. The EAV model is known for its open 

schema design, which allows the system to support arbitrarily 

extensible feature and attribute definitions without requiring 

changes to the physical schema. Its generic table structure also 

makes it adaptable to other data formats such as IndoorGML or 

ALKIS, and more accessible to standard GIS tools. However, 

the EAV model has historically been criticized for its potential 

performance issues in large-scale production systems due to the 

large size of the central tables and the high complexity of 

queries. To tackle this challenge, we hypothesized that a hybrid 

approach, which combines a core EAV structure with a minimal 

set of dedicated columns or tables for storing certain complex 

properties such as geometries and appearances, could offer a 

good balance between semantic richness, extensibility, and 

efficient processing. To mitigate concerns about performance 

limitations commonly associated with EAV implementations, 

we conducted an early test using the large-scale LOD2 city 

model of Hamburg. The test data were migrated from a 

3DCityDB v4 instance to the new database schema using a 

dedicated SQL migration script. The results showed that, with 

modern database engines such as PostgreSQL/PostGIS and 

optimized indexing strategies, the hybrid EAV-based approach 

preserved the performance of the previous version even for 

complex queries.  

 

Another key aspect of our research work is that the new 

database design does not fully adopt the open-schema 

characteristics of a pure EAV model. Instead, we employed a 

type-enforced and extensible variation. In this design, all core 

object types, such as features and data types, are explicitly 

defined and registered in dedicated catalog tables. Each feature 

instance and its associated properties reference these type 

definitions, which allow for consistent type enforcement and 

schema validation. In addition, this approach also supports 

flexible extension and reuse of the predefined types, which are 

particularly effective for supporting CityGML ADEs by 

registering additional schema definitions aligning with the core 

schemas. 

 

3. Overview of the New Database Schema 

Based on the new EAV-based approach, the database schema 

has been simplified into 17 tables, which are organized into five 

logical modules. The relationships between these modules are 

shown in Figure 1 and described in more detail in the following 

subsections. 

 
Figure 1. Module Structure of the new 3DCityDB schema. 
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3.1 Core EAV-Structure 

All modules except the Metadata module are mainly responsible 

for storing city objects along with their attributes, geometries, 

appearances, and relationships to other features. The EAV-

based approach employs a minimal structure consisting of two 

main tables, namely, Feature and Property (see Figure 2), 

which store almost all features and their associated property 

information without the need for mapping each feature class to a 

dedicated database table with predefined columns. The 

FEATURE table is the central table serving as the primary 

storage for all objects such as buildings, roads, or vegetation. 

Each feature has a unique id as its primary key, and an objectid 

string identifier for referencing within databases and datasets. 

An optional identifier column accompanied by an 

identifier_codespace allows distinguishing features across 

different systems and feature versions globally. The 

objectclass_id indicates the feature type and references the 

OBJECTCLASS table. The bitemporal lifespan information are 

managed through the creation_date and termination_date, and 

valid_from and valid_to columns. Additional fields like 

last_modification_date, updating_person, reasons_for_update, 

and lineage provide insights into the origin and update history. 

Moreover, the spatial envelope column stores the minimal 3D 

bounding box of every feature and can be used for fast spatial 

querying.  

 
Figure 2. Feature module of the new 3DCityDB schema. 

 

The PROPERTY table serves as the central storage location for 

feature properties. Each property is basically defined by its 

name, namespace, data type, and value based on a key-value 

pair design pattern. Based on a type-forced approach, property 

values are stored in one or more predefined columns that 

correspond to specific data types allowing for efficient storage 

and query performance. The data type is determined by the 

datatype_id column pointing to a dedicated metadata table in 

the metadata module (see Section 3.4). For example, simple 

primitive types are stored in the columns such as val_int, 

val_double, val_string, and val_timestamp. For non-primitive 

attributes, array values are stored as JSON structures in the 

val_array column, while arbitrary binary content is stored in 

val_content with its corresponding MIME type specified in the 

val_content_mime_type column. Complex attributes with nested 

structures are not stored in a single JSON column. Instead, they 

are either stored within a single row or represented in a 

hierarchical manner across multiple rows linked via the 

parent_id column. This design typically enables fine-grained 

semantic referencing of the individual components within the 

nested structure. 

 

In addition to storing attribute values, the PROPERTY table also 

represents the semantic relationships between features and other 

entities. These relationships are maintained in separate rows to 

ensure clear differentiation between properties and associations. 

References to other features are stored in the val_feature_id 

column, while geometric associations are represented via the 

val_geometry_id column, which links to the 

GEOMETRY_DATA table (see Section 3.2) and may optionally 

be qualified by a level of detail via the val_lod column. 

Similarly, implicit geometries are referenced through the 

val_implicitgeom_id column combined with the transformation 

data stored in the val_array and val_implicitgeom_refpoint 

columns. Additional associations include references to 

appearances and addresses through the val_appearance_id and 

val_address_id columns, which link to corresponding entries in 

the APPEARANCE (see Section 3.2) and ADDRESS tables 

respectively. Although address is modelled as a feature type in 

CityGML conceptual model, it is exceptionally stored in a 

dedicated ADDRESS table rather than in the FEATURE table, 

since this design decision allows for more efficient data 

querying, indexing, and updates in support of e.g., location-

based services. 

 

3.2 Management of Geometry and Appearance  

The Geometry module (see Figure 3) includes the tables for 

storing feature geometries, as well as implicit geometries, which 

can be reused as templates for multiple features according to the 

CityGML implicit geometry concept. The GEOMETRY_DATA 

table serves as the central location for storing both explicit and 

implicit geometry data of the features stored in the database. It 

supports various geometry types, including points, lines, 

surfaces, and volume geometries. Explicit feature geometries, 

which are geometries with real-world coordinates, are stored in 

the geometry column. This column uses a predefined spatial 

data type from the database system to represent the geometry 

data. All explicit geometries must be stored using 3D 

coordinates in the coordinate reference system defined for the 

3DCityDB instance.  

 
Figure 3. Geometry module of the new 3DCityDB schema. 

 

The use of predefined spatial database types for storing both 

explicit and implicit geometries present two main challenges. 

First, CityGML features support a wide variety of geometry 

types, including primitives such as points, lines, surfaces, and 

volumes, as well as composite and aggregate geometries, all 

based on the ISO 19107 spatial schema standard. However, the 

predefined spatial database types typically cover only a subset 

of these, and therefore limit the ability to fully represent all 

CityGML geometries. Second, CityGML allows geometries to 

be reused by reference and assigned textures or colors. For this, 

each geometry and its components require unique identifiers. 

However, spatial database types typically store only raw 

coordinates and lack the ability to assign unique identifiers, 

which limits effective referencing and reuse. The previous 

versions of 3DCityDB addressed these challenges by 

decomposing surface geometries into individual polygons, each 

of which is stored in a separate row with a unique identifier. A 

hierarchical table structure was used to group the polygons 

according to their original geometry type. While this approach 

enabled efficient referencing, it required geometries to be 

recomposed on-the-fly during spatial queries, which made such 

queries slower and less efficient. Moreover, it increased storage 

requirements and was limited to surface-based geometries, not 

points and lines. 
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The new design of 3DCityDB utilizes a novel approach, which 

allows using spatial database types to store the entire geometries 

without decomposition, and can therefore improve spatial query 

performance and storage efficiency. To preserve the ability to 

reuse and reference geometries and their parts, and to maintain 

the expressivity of CityGML geometry types, a JSON-based 

metadata is stored alongside the geometry in the 

geometry_properties column. To illustrate the structure and use 

of this JSON metadata, a simple cube solid geometry consisting 

of six surfaces is used as an example (see Figure 4) to 

demonstrate, how the approach works in a PostgreSQL/PostGIS 

database using its specific POLYHEDRALSURFACE spatial 

data type. Unlike the PostGIS polyhedral surface consisting of 

only a simple array of polygons, the CityGML Solid geometry 

has an additional level to represent the outer shell formed by the 

polygons. Besides, the solid, the composite surface, and each 

polygon have an identifier, that allows the reuse of the 

component and the assignment of appearance information like 

textures or colors. The JSON object shown in Figure 4 encodes 

this extra metadata and links it to the POLYHEDRALSURFACE 

representation. 

 
Figure 4. Example of storing a 3D solid in geometry data table. 

 

The Appearance module (see Figure 5) enables the storage and 

assignment of textures and colors to surface geometries. It 

implements the CityGML appearance concept, where 

appearances act as containers for surface data, which is mapped 

to the surface geometries of city objects to define their visual 

and observable properties. The APPEARANCE table is the 

central component of the appearance module. Each record in the 

table represents a distinct appearance. Although Appearance is 

also a feature type in CityGML, appearances are not stored in 

the FEATURE table. This is because appearances define the 

visual and observable properties of surfaces, which are 

conceptually separate from the spatial features stored in the 

FEATURE table. Each appearance is associated with a specific 

theme for its surface data, which are used to define the visual 

appearance of city object geometries, such as textures and 

material properties, and are managed in a dedicated 

SURFACE_DATA table, that supports different types of surface 

representations. These include, for instance, surface materials 

for defining basic properties like color, shininess, and 

transparency. Texture-related representation can be realized 

through the so-called parameterized textures, which use texture 

coordinates or transformations for mapping to the target surface 

geometries. Georeferenced textures are also supported, which 

typically rely on real-world spatial references for the surface 

alignment.  

 
Figure 5. Appearance module of the 3DCityDB schema. 

 

Each surface data is assigned to geometries through a dedicated 

mapping mechanism that links visual properties such as 

materials and textures to specific surface elements. These 

mappings rely on the JSON metadata stored within the 

GEOMETRY_DATA table and are managed via the 

SURFACE_DATA_MAPPING table, which connects surface 

data entries to their corresponding geometry records. Depending 

on the type of surface data, a specific mapping is used to for the 

assignment. For example, materials are assigned by listing the 

identifiers of the surfaces to which they apply, while textures 

can be mapped using detailed texture coordinates (see Figure 6) 

or transformation matrices, that convert real-world positions to 

texture space. These mappings offer a very flexible way to 

precisely apply visual properties for complex surface-based 

geometries. 

 
Figure 6. Example of texture mappings for surface geometries. 

 

3.3 Management of Codelists  

The Codelist module (see Figure 7) adds support for storing 

codelists, which are tables of values with the corresponding 

descriptions or definitions. Many CityGML properties are 

designed to take values from codelists according to the 

CityGML 3.0 conceptual model. In practice, codelists may be 

required, recommended, or suggested by an authority within an 

organization or community, or more informally defined and 

used within an application domain. 

 
Figure 7. Codelist module of the 3DCityDB schema. 

 

The CODELIST table is used to register codelists, each of which 

is assigned an URL as a unique identifier in database. The 

CODELIST_ENTRY table stores the values of the registered 

codelists. Each value along with its definition or description is 

stored in a single table row linked to a codelist. This setup 

allows for easy lookup of the definition for a code, which is 

stored as a property value in the PROPERTY table, and vice 

versa. A typical use case is to use the codelist tables to look up 

or validate property values associated with a codelist during 

data import and export. Moreover, they can also be used to 
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build a web service, that provides stored codelists as files or 

serves as a lookup and validation service for individual codelist 

values.  

 

3.4 Management of Metadata 

The Metadata module (see Figure 8) comprises five tables 

designed to store the meta-information about a 3DCityDB 

instance and its city model data. First, the DATABASE_SRS 

table stores information about the coordinate reference system 

defined at setup, which applies to all geometries except implicit 

geometries. Although the new 3DCityDB is fully based on the 

CityGML 3.0 standard, it also intentionally supports backward 

compatibility with CityGML 2.0 and 1.0. This compatibility is a 

dedicated design of the new 3DCityDB and is achieved by 

mapping legacy elements to an extended set of predefined types 

beyond those defined in the CityGML 3.0 conceptual models. A 

key requirement is that every feature type and attribute must be 

associated with a namespace. This helps avoid name collisions 

and logically categorizes the content stored in the database, in 

order to support multiple versions of CityGML. All namespaces 

are recorded in the NAMESPACE table and populated with a list 

of 3DCityDB-specific namespaces, which are closely aligned 

with the thematic modules from CityGML 3.0. The list of 

namespaces in the NAMESPACE table is not exhaustive and can 

be extended with user-defined namespaces, for example, when 

registering CityGML ADEs. Each ADE is registered in the ADE 

table as a record assigned a unique identifier along with its 

meta-attributes e.g., name, version, and description. All ADE 

classes such as feature and data types are stored in the 

OBJECTCLASS and DATATYPE tables respectively, and 

additionally linked to the corresponding entry in the ADE table 

via the identifier. 

 
Figure 8. Metadata module of the new 3DCityDB schema. 

 

The OBJECTCLASS and DATATYPE tables serve as registries 

for all feature and data types supported by the new 3DCityDB. 

Each entry is uniquely identified by its name and the associated 

namespace. Type inheritance is also supported through foreign 

key references to the corresponding supertypes, which enables 

reconstruction of the hierarchical structures as defined in the 

underlying data model. During the database setup, both tables 

are pre-populated based on the standard CityGML 3.0 

conceptual model classes. In addition to type information, both 

metadata tables contain JSON-based schema mapping that 

defines, which properties and sub-features a feature or data type 

may have. This schema mapping serves as the conceptual 

backbone of the 3DCityDB schema allowing the transition from 

a purely open schema into a type-enforced flexible schema. 

Furthermore, the schema mapping also includes the metadata on 

how to construct joins between database tables for interpreting 

and querying the stored data (see Figure 9). For example, a 

software tool can automatically parse and interpret this schema 

mapping to generate SQL statements from a common query 

language for interacting with the database. In addition to simple 

types, the schema mapping also supports complex types, which 

may include nested properties of simple and complex types. In 

principle, the database schema is inherently generic and can be 

extended to support other ISO 19109-based models like 

IndoorGML, AIXM, ALKIS, or INSPIRE. In such cases, only 

the corresponding metadata tables and schema mappings need 

to be adapted. 

 
Figure 9. Example snippet of the JSON-based schema mapping. 

 

4. Database Management Tool 

As the successor to the “Importer/Exporter” of previous 

3DCityDB versions, the new client software called “citydb-

tool” is a command-line utility for managing and interacting 

with the database to store, maintain, and query 3D city models. 

As with its predecessor, it supports a wide range of operations 

designed to streamline database workflows allowing for 

importing, exporting, updating, and deleting 3D model objects. 

The tool currently supports the latest data formats of CityGML 

3.0 and CityJSON 2.0, as well as their earlier versions. In 

addition, its flexible command-line interface provides a number 

of general options for configuring logging, loading 

configuration files, managing plugins, and more. Thanks to its 

new modular architecture, additional functionalities such as 

support for other encoding formats can be easily implemented 

and extended. 

 

4.1 Modular Structure 

The new citydb-tool has been completely redesigned based on 

the Java Platform Module System (JPMS) introduced in Java 9. 

This modular approach offers improved maintainability and 

extensibility in terms of its high encapsulation and clear 

dependencies between components. As illustrated in Figure 10, 

the component architecture of the citydb-tool is organized into 

three main categories, namely, Core, User Interface, and 

Utilities (see Figure 10).  

 
Figure 10. Architecture of the new citydb-tool. 

 

The Core components consist of modules for database 

operations, data model handling, and input/output (IO) 

operations. A key concept is the definition of a set of abstract 

APIs, that allow for a common logic to read and write data 

based on a dedicated intermediate data model, which simplifies 

the interactions with the database. Concrete implementations of 

these APIs can be developed and integrated dynamically using 

pluggable adapters. For instance, an adapter for 
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PostgreSQL/PostGIS database system has already been 

implemented. Additional adapters such as one for Oracle or 

MySQL can also be developed and integrated in the future. The 

Support for other IO formats in addition to CityGML/CityJSON 

is also modular. Besides, The User Interface category currently 

already includes a CLI component with various import/export 

options and also provides a plugin interface allowing developers 

to implement additional user interfaces such as graphical tools 

or web-based APIs. The Utility category offers a range of 

helpful APIs for logging, caching, query, data tiling, and 

configuration management using JSON notation. Moreover, the 

individual modules are not only intended for internal use within 

the citydb-tool, but can also be used as embedded libraries for 

developing custom applications to interact with a 3DCityDB 

database.  

 

4.2 Main Workflow 

The import and export operations supported by the citydb-tool 

utilize a multi-threaded architecture (see Figure 11) to 

efficiently process large-scale 3D city model datasets. During 

data import, the input CityGML or CityJSON files are handled 

by their respective modular adapters and dispatched to a 

dedicated Java thread pool for data transformation. In this stage, 

each top-level feature is concurrently converted as chunks into 

an intermediate feature representation. The transformed features 

are temporarily buffered in a waiting queue before being 

processed by an additional thread pool, which maps and 

propagates the feature contents into the corresponding database 

tables. For data export, the citydb-tool first retrieves a buffered 

ID queue of top-level features either directly from the database 

or based on a user-defined query. These IDs are then used by a 

thread pool to fetch the corresponding objects from the database 

and temporarily store them in a feature queue. In the subsequent 

stage, a dedicated thread pool converts each feature into the 

target format using the respective modular I/O adapters, which 

also handle the serialization of the features into output files in 

the desired formats. This modular and parallelized workflow 

enables high-performance import and export operations, 

facilitating the efficient management of even very large 3D city 

models using 3DCityDB. Moreover, Docker support has also 

been introduced to simplify deployment of the new citydb-tool 

and 3DCityDB to facilitate consistent runtime environments 

across platforms. 

 
Figure 11. Workflow within the new import/export tool. 

 

4.3 Support for CQL2 Query Language  

The Query module (see Figure 10) of the citydb-tool is 

implemented based on CQL2 (Common Query Language 2), 

which is an OGC standard offering a generic filter grammar for 

query options (Vretanos and Portele, 2024). The citydb-tool 

users can leverage CQL2 to construct precise queries for 

exporting or deleting features based on attribute values and 

spatial relationships. For attribute filtering, CQL2 supports the 

common comparison operators such as equals (=), not equals 

(!=), less than (<), and greater than (>). Spatial filtering further 

enhances querying capabilities through geospatial functions 

such as intersects, within, and contains, which determine 

whether two geometries are overlapped or contained with each 

other. A typical use case is selecting all city objects within a 

specified bounding box by evaluating spatial intersections. 

CQL2 also provides a highly expressive syntax allowing for the 

construction of complex and nested queries, which use logical 

operators such as AND, OR, and NOT to combine multiple 

attribute and spatial filter conditions for refining query results. 

These queries can be expressed in either plain text or JSON 

notation, both of which can be interpreted and processed by the 

citydb-tool. An example of CQL2 query expressed in JSON is 

shown in Figure 12. 

 
Figure 12. Example CQL2 query expression in JSON notation. 

 

This CQL2 query example demonstrates a compound filter 

combining both attribute-based and spatial conditions using a 

logical operator. While the CQL2 standard is primarily designed 

for flat and simple features, 3DCityDB operates on a 

hierarchically structured data model with complex and nested 

attributes according to the CityGML standard. To support this 

complexity, we defined and implemented an extended CQL2 

that introduces a custom JSONPath-based property notation.  It 

allows for navigation through sub-features and nested attributes 

based on the schema mapping information stored in the 

OBJECTCLASS and DATATYPE tables (see Section 3.4). For 

example, the property path "con:height.con:value" refers to a 

CityGML construction type and the value of its associated 

complex property “height”. The citydb-tool is capable of 

interpreting such expression and translating it into an optimized 

SQL statement by leveraging the schema mapping definitions 

automatically.  

 

5. Evaluation and Testing 

The usability of the new 3DCityDB schema has been 

intensively evaluated and tested regarding the usability with 

other third-party applications and the import/export processing 

time. 

 

5.1 Integration with Third-party Software 

To conduct the integration test, the open-source software QGIS 

and the commercial ETL tool FME were selected. The test 
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dataset is a LoD2 building model in CityGML 3.0 format, 

which includes storeys, boundary surfaces, textures, windows, 

and doors. It was created by the Institute for Automation and 

Applied Computer Science (IAI) at the Karlsruhe Institute of 

Technology (KIT) and is freely available for unrestricted use1. 

The dataset was first imported into a 3DCityDB instance. Three 

database views were then created to represent different layers 

for the building’s outer shell, the first floor with walls and 

rooms, and the top floor with roof and loft. These views can be 

accessed directly in QGIS using its built-in database Manager 

and displayed as three separate vector layers. Each layer can be 

visualized and explored not only in 2D, but also in 3D within 

the QGIS viewer interactively (see Figure 13). QGIS integration 

has also been investigated by a third party (Tsai et al., 2025), 

who confirmed the usability of the new 3DCityDB database 

schema. 

 
Figure 13. Integration of 3DCityDB with FME and QGIS. 

 

In addition to the QGIS integration, an FME workbench has 

been developed by the company Virtual City Systems, who is 

one of the main development partners of 3DCityDB. This 

workbench was implemented based on the FME’s database 

reader to access data from database tables using a customized 

SQL query. Both geometry and appearance information can be 

retrieved from the database and visualized together in the FME 

Viewer (see Figure 13). This also enables seamless conversion 

into various other formats like 2D/3D Shape, DWG, and OBJ, 

which are compatible with a wide range of third-party 

applications. The FME workbench is also designed to be 

extendable and could serve as an alternative to the 

aforementioned citydb-tool for interacting with 3DCityDB in 

future.  

 

5.2 Performance Test 

To evaluate the import and export performance of the new 

3DCityDB version, a series of tests were conducted using two 

large open datasets from the federal states of Bavaria and the 

city of Berlin. The Bavaria dataset contains nearly 9.7 million 

LoD2 building objects without textures, while the Berlin dataset 

includes approximately 540,000 LoD2 buildings with full 

textures. To obtain reliable benchmark results including 

averages and standard deviations, each test was executed five 

times on the same Linux server equipped with an Intel® Xeon® 

w5-2565X processor (3.2 GHz, 18 cores), 128 GB RAM, and 4 

TB SSD storage. The system runs Docker on Ubuntu Linux 

24.04 LTS. Both the old (v4) and new (v5) versions of 

3DCityDB were deployed locally using Docker images running 

PostgreSQL 17.3 and PostGIS 3.5. As shown in Figure 14, the 

new 3DCityDB demonstrates improved or at least comparable 

performance for both data import and export operations. In 

addition, an export performance test was conducted to evaluate 

 
1  

https://www.citygmlwiki.org/index.php?title=FZK_Haus,_Ci

tyGML_3.0,_LoD2,_Storeys,_Boundary_Surfaces 

the efficiency of filtered queries in the new database schema. A 

simple attribute filter was applied to select all buildings higher 

than 30 meters in the Bavaria dataset. The results showed that 

8,369 buildings matched the filter criteria, and the export 

operation took an average of only 19 seconds. This indicates 

that, based on new EAV-based hybrid approach, the export 

performance also scales well when handling subset data from 

large datasets. 

 

 
Figure 14. Benchmark results of 3DCityDB performance tests. 

 

6. Conclusion and Future Work 

In this paper, we present the results of the ongoing development 

of the new version of 3DCityDB. Compared to its previous 

versions, 3DCityDB now offers not only improved 

performance, but also enhanced functionality with extensive 

support for the latest CityGML 3.0 standard. The redesigned 

database schema employs an EAV-based and type-forced 

relational architecture to enhance compatibility with other 

encoding formats, and also simplifies the implementation of 

support for CityGML ADEs. Furthermore, the light-weight 

structure of the database schema improves the overall usability 

and makes the integration with third-party software such as 

FME and QGIS easier. The import/export tool has also been 

reworked based on an improved modular structure, which can 

be easily extended for additional database systems, data 

formats, and functional plugins. While the current results 

represent an important milestone in the development of 

3DCityDB, several aspects remain open and will be explored in 

our future work. 

 

6.1 Full Support for CityGML ADE 

Although the new 3DCityDB schema offers a generic and 

flexible structure for managing CityGML ADEs, there is 

currently no utility for managing ADE schemas. In fact, the 

ADE management is simplified compared to earlier versions, as 

the static EAV-based table structure eliminates the need to 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025 
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-241-2025 | © Author(s) 2025. CC BY 4.0 License.

 
247



 

create or drop ADE-specific tables. However, to support ADE 

data import and export, the citydb-tool must be extended, since 

it lacks a generic implementation for handling arbitrary ADE 

schemas. While the tool provides a complete API for custom 

extensions, it still requires in-depth knowledge of the ADE 

schema. A future research challenge is to investigate whether 

large language models (LLMs) could be leveraged to 

automatically generate the necessary code to simplify the ADE 

integration. 

  

6.2 Support for exporting standardized 3D visualization 

model  

The “VIS-Exporter” plugin in the old 3DCityDB 

Importer/Exporter allowed users to export the objects in the 

database as 3D models in KML, COLLADA or gLTF formats. 

However, a similar plugin must be redesigned based on the new 

database architecture and to support the now established 3D tile 

standards such as “i3S” (Belayneh & Reed, 2023) and 

“3DTiles” (Cozzi & Lilley, 2023), especially for web-based 

applications. The new geometry storage strategy of the 

3DCityDB v5 and the simple structure of the PROPERTY table 

allows us to use the third-party open-source software pg2b3dm 

to generate 3D tiles with built-in semantic information. Since 

the main architecture of pg2b3dm is to read and tile geometries 

stored in PolyhedralSurface, MultiPolygon, and MultiLinestring 

types within PostGIS databases, it is well-compatible with the 

new database design. In our experiments so far 3D tiles with 

different surface materials (but no textures, yet) were created 

using a thematic set of attributes and displayed in CesiumJS 

without any additional software. A solution based on an adapted 

version of pg2b3dm including the selection of different levels-

of-detail, styling of object types, and extraction of thematic data 

will be released soon. 

 

6.3 Support for OGC API - Features 

The previous versions of 3DCityDB supported the Web Feature 

Service (WFS) for web-based access to 3D city objects. In the 

new 3DCityDB version, WFS is no longer supported and is 

intended to be replaced by the modern “OGC API - Features”, 

which is also an OGC standard for creating, querying, and 

modifying spatial data on the web (Portele et al., 2022). Unlike 

WFS, the new API follows RESTful principles and improves 

the interoperability with web applications. It typically delivers 

data in GeoJSON formats allowing seamless integration with 

GIS tools. In the future, 3DCityDB is expected to support this 

API with additional formats like CityGML and CityJSON. 

Since the API uses CQL2 for data filtering, the existing citydb-

tool already provides a solid foundation for the implementation. 

Moreover, the CQL2 extensions developed in the context of 

3DCityDB v5 could be proposed to OGC for consideration in 

future versions of the CQL2 standard. 
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