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Abstract

Recent advances in Gaussian Splatting (GS) have demonstrated its effectiveness in photo-realistic rendering and 3D reconstruction.
Among these, 2D Gaussian Splatting (2DGS) is particularly suitable for surface reconstruction due to its flattened Gaussian repres-
entation and integrated normal regularization. However, its performance often degrades in large-scale and complex urban scenes
with frequent occlusions, leading to incomplete building reconstructions. We propose GS4Buildings, a novel prior-guided Gaussian
Splatting method leveraging the ubiquity of semantic 3D building models for robust and scalable building surface reconstruction.
Instead of relying on traditional Structure-from-Motion (SfM) pipelines, GS4Buildings initializes Gaussians directly from low-level
Level of Detail (LoD)2 semantic 3D building models. Moreover, we generate prior depth and normal maps from the planar building
geometry and incorporate them into the optimization process, providing strong geometric guidance for surface consistency and
structural accuracy. We also introduce an optional building-focused mode that limits reconstruction to building regions, achiev-
ing a 71.8% reduction in Gaussian primitives and enabling a more efficient and compact representation. Experiments on urban
datasets demonstrate that GS4Buildings improves reconstruction completeness by 20.5% and geometric accuracy by 32.8%. These
results highlight the potential of semantic building model integration to advance GS-based reconstruction toward real-world urban
applications such as smart cities and digital twins. Our project is available: https://github.com/zql1in0521/GS4Buildings.

1. Introduction

Novel view synthesis (NVS) and 3D reconstruction have be-
come fundamental techniques in computer vision and photo-
grammetry, driven by growing demands in virtual reality, urban
planning, and digital twin applications. With advances in com-
puter graphics, Gaussian Splatting (GS) has recently emerged
as a powerful approach, offering state-of-the-art performance
in photo-realistic rendering and high-fidelity scene reconstruc-
tion. 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) repres-
ents scenes using anisotropic 3D Gaussian primitives, whose
positions, orientations, and appearance parameters are jointly
optimized from multi-view image data. Leveraging an ef-
ficient tile-based rasterization technique, 3DGS enables real-
time rendering while maintaining high visual fidelity. To bet-
ter support surface reconstruction tasks, 2D Gaussian Splatting
(2DGS) (Huang et al., 2024) extends this framework by in-
troducing flattened Gaussian representations and incorporating
normal-based regularization.

While recent innovations have improved GS performance, ex-
isting methods still struggle with urban-scale building recon-
struction. As illustrated in Figure 1, 2DGS often fails to recover
complete building surfaces under occlusions or limited view-
point coverage. Traditional Multi-View Stereo (MVS) pipelines
similarly struggle in textureless or repetitive regions, where
reliable feature matching is difficult. These challenges, ob-
served in both GS and MVS approaches, limit their suitabil-
ity for urban reconstruction tasks that demand high geometric
completeness. Concurrently, the development of smart cities
has led to the widespread availability of semantic 3D build-
ing models with more than 215 million open source building
models worldwide (Wysocki et al., 2024). These models are
lightweight, volumetric, and typically represented in boundary
representation (B-Rep) geometry. They encode reliable geo-
metric information such as roof structures, wall orientations,

(a) MVS

(b) 2DGS (c) GS4B (Ours)

Figure 1. Unlike (a) traditional MVS and (b) vanilla 2DGS, both

render incomplete building surfaces, (c) our Gaussian4Buildings
(GS4B) method reconstructs complete building shape.

and building footprints, and are generally constructed under a
planar surface assumption, making them well-suited as geomet-
ric priors for surface reconstruction. Although earlier studies
have explored the integration of Level of Detail (LoD)2 build-
ing models with point clouds (Wysocki et al., 2023; Huang et
al., 2020), the building models’ potential for guiding GS-based
reconstruction remains largely underexplored.

To fill this gap, we propose GS4Buildings, a prior-guided GS
framework that enables robust and complete reconstruction of
buildings under challenging urban conditions, including large
occlusions, complex architectural geometry, and sparse camera
viewpoints. Instead of relying on Structure-from-Motion (SfM)
pipelines for initialization, our method samples 3D points dir-
ectly from the LoD2 building model and filters them based
on multi-view visibility using known camera intrinsics and ex-
trinsics. The resulting point cloud is used to initialize the
Gaussian splats in a geometry-consistent manner. In addition,
depth and normal maps projected from the LoD2 geometry
are integrated into the optimization process, providing surface-
aware constraints that guide the Gaussians toward architectur-
ally consistent reconstructions. We also introduce an optional
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building-focused mode that reduces memory and computation
overhead while preserving reconstruction quality. This makes
GS4Buildings practical for large-scale applications with con-
strained resources.

In summary, the main contributions of this work are as follows:

e We present GS4Buildings, a SfM-free GS framework for
building reconstruction, which directly leverages LoD2
building models and camera parameters to initialize
geometry-aware Gaussian splats.

e We enhance the optimization of 2DGS by incorporating
depth and normal priors derived from the LoD2 geometry,
enabling more complete and accurate reconstruction of
building surfaces, particularly under occlusions and lim-
ited viewpoint conditions.

e We introduce an optional building-focused reconstruction
mode that concentrates computation on architecturally rel-
evant regions, offering improved efficiency while main-
taining reconstruction quality.

2. Related Work

This section reviews geometry-aware enhancements for GS and
recent advances in building reconstruction, the main application
focus of this work.

Gaussian Splatting for 3D Reconstruction GS has recently
gained significant attention as a powerful scene representation
technique for novel view synthesis and real-time rendering.
While 3DGS (Kerbl et al., 2023) achieves impressive visual
quality, it faces several challenges when applied to 3D recon-
struction, especially surface reconstruction. The volumetric ra-
diance representation of 3DGS is incompatible with the thin,
structured nature of real-world surfaces, and its rasterization
suffers from multi-view inconsistencies, leading to noisy or in-
complete reconstructions (Huang et al., 2024).

To address the limitations of 3DGS, recent works have proposed
incorporating geometric priors into the GS framework. One
common strategy is to integrate monocular depth estimation
into the optimization process. For instance, DN-Gaussian (Li et
al., 2024) and CDGS (Zhang et al., 2025) use predicted depth
maps to provide supervision for Gaussian placement and re-
finement. These methods apply depth-aware losses, such as
gradient- or edge-sensitive regularization, to improve geometric
consistency. Other works enhance surface modeling by adjust-
ing the Gaussian shape and orientation to better reflect local
geometry. 2DGS (Huang et al., 2024) represents each Gaus-
sian as an elliptical disk embedded in a local tangent plane,
thereby aligning the primitive with the underlying surface. DN-
Splatter (Turkulainen et al., 2024) encourages Gaussians to take
on a disc-like shape during optimization, with their smallest
scaling axis aligned to the surface normal, guided by depth
and normal priors. While these geometry-aware designs im-
prove reconstruction quality under ideal conditions, their reli-
ance on image-based estimations and SfM-based initialization
still limits their effectiveness in complex urban environments.
For urban building reconstruction in particular, directly lever-
aging existing 3D models of buildings as geometric priors holds
strong potential for improving completeness and accuracy.

Building Reconstruction Traditional methods for build-
ing reconstruction primarily rely on SfM combined with
MVS (Schonberger and Frahm, 2016), or on high-precision ter-
restrial or airborne Light Detection and Ranging (LiDAR) scan-
ning (Haala and Kada, 2010). SfM-MVS approaches recon-
struct dense point clouds or surface meshes from multi-view
images and perform well in well-conditioned scenarios, but
often struggle with occlusions, repetitive structures, or insuf-
ficient viewpoint coverage. LiDAR-based techniques provide
accurate geometric measurements and are more robust to such
challenges, yet are limited in texture detail and appearance
quality, reducing their effectiveness in appearance-aware mod-
eling tasks.

In parallel with image- and point-based reconstruction ap-
proaches, structured urban models have become an important
component in large-scale 3D city modeling. Among them, the
CityGML standard defining the LoD framework (Groger et al.,
2012) offers standardized, hierarchical representations of build-
ing geometry, ranging from simple building blocks to highly
detailed architectural elements. Currently, low-level LoD1 rep-
resented by cuboid-like objects and LoD2 with complex roof
shapes and simplified facades can be automatically reconstruc-
ted given footprints and aerial observations. This trend enabled
a wide adoption of such models worldwide, totalling more than
215 million open data building models in countries such as Po-
land, the Netherlands, or Japan (Wysocki et al., 2024). Owing
to their lightweight representation, structured geometry, and in-
herent planarity, LoD2 models can serve as valuable geometric
priors for aligning and refining the reconstruction process.

Recent advances in urban scene representation have ex-
plored both implicit methods such as Neural Radiance Fields
(NeRF) (Mildenhall et al., 2021) and explicit representations
such as GS (Kerbl et al., 2023). While NeRF excels at
photorealistic view synthesis, GS offers better scalability and
efficiency. To extend its use in geometry-oriented tasks, re-
cent works have focused on extracting more generalizable 3D
models, such as surface meshes, from GS outputs. For ex-
ample, 2DGS (Huang et al., 2024) improves mesh reconstruc-
tion quality, and Gaussian Building Mesh (Gao et al., 2024)
further adapts 2DGS to structured architectural modeling using
semantic masks. To the best of our knowledge, we are the first
to incorporate structured geometric models, such as LoD2, into
GS-based reconstruction pipelines for urban buildings, enabling
both improved initialization and geometry-aware optimization.

3. Methodology

Our GS4B method enhances 2DGS by incorporating geomet-
ric priors derived from semantic LoD2 building models. As
illustrated in Figure 2, the proposed framework begins with
a geometry-consistent Gaussian initialization guided by the
LoD2 mesh and camera poses (Section 3.1). We then generate
dense depth and normal priors for each view using a raycasting-
based approach (Section 3.2). These priors are incorporated
into a prior-guided optimization scheme that extends 2DGS
training process (Section 3.3). Finally, we extract a surface
mesh from the optimized Gaussians using volumetric fusion.

3.1 Prior-Based Gaussian Initialization
With the advancement of sensor technology and lower data ac-

quisition costs, accurate camera parameters are Nnow access-
ible without relying on image-based SfM methods. Leveraging
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Figure 2. Overview of the proposed GS4Buildings framework. Given a LoD2 building model and camera parameters, our method
samples 3D points from the mesh surface and filters them by multi-view visibility to initialize 2D Gaussians. Prior depth and normal
maps projected from the LoD2 geometry are incorporated during optimization to guide the reconstruction.

this, we adopt a prior-based initialization strategy guided by
the LoD2 building mesh and known camera poses. Unlike
conventional GS pipelines such as 2DGS, which rely on StM
to reconstruct sparse geometry, our method directly samples a
structurally reliable point cloud from the LoD2 mesh, enabling
geometry-consistent initialization of 2D Gaussian primitives.
We begin by uniformly sampling 3D points on the mesh surface
using face-area-weighted random sampling (Dawson-Haggerty,
2019). For each sampled point p; € R and camera j with po-
sition c;, we define the expected depth as:

exp

di,j = [|pi — cjl2- (H

Let d‘,“; be the depth of the first ray—mesh intersection along the

viewing direction from c; to p;. The point is considered visible
in view j if:

int _ exp

1, if
Vi = ’ e § 2
7 {O, otherwise @

where ¢ is a distance threshold (e.g., 5 cm). A point is retained
if it is visible in at least k views:

M

> wiy >k 3)

j=1

For each retained point, we store its 3D coordinates along with
its 2D projections 7; (p;) in all observing views where v; ; = 1.
The resulting data is organized in a format compatible with
standard GS pipelines, enabling seamless Gaussian initializa-
tion and consistent association with image projections. Com-
pared to SfM-based initialization, our strategy directly samples
from the structured LoD2 geometry, enabling efficient, density-
controllable point selection that focuses on geometrically mean-
ingful building regions. This design also avoids the potential
limitations of SfM in urban scenarios, such as failure cases or
noisy reconstructions.

3.2 Prior Generation from Building Models

To guide the optimization of Gaussian primitives toward more
accurate and complete surface reconstruction, we generate per-

view depth and normal priors from the LoD2 building geo-
metry. These priors provide reliable geometric supervision, es-
pecially in regions where image-based cues are unreliable due
to occlusion or limited view coverage.

Specifically, we transform the LoD2 mesh M.y into the global
scene coordinate system defined by the camera poses, resulting
in a consistent mesh representation M. Given this aligned mesh
and a set of calibrated cameras with intrinsics K; and extrinsics
T;, we adopt a raycasting-based approach (Zhou et al., 2018)
to synthesize dense, view-aligned geometric priors. For each
camera view j, the raycasting process computes:

D;,N; :R(MaKjaTj)a “4)

where D; € R"*W is the depth map and N; € RF*Wx3
is the corresponding normal map. During raycasting, we also
record a binary visibility mask M; € {0, 1}7*"W that indicates
which pixels result in valid mesh intersections; this mask is later
used to exclude invalid pixels during loss computation.

Unlike image-based estimations affected by occlusions, light-
ing, or network uncertainty, prior-guided supervision offers
consistent, occlusion-free geometric guidance derived from the
building structure, while requiring less computational effort.
These priors are later integrated into the optimization process.

3.3 2DGS with Prior-Guided Optimization

Building on the prior-guided initialization and dense priors, we
extend the 2DGS optimization pipeline with structured super-
vision from building models.

2DGS Formulation 2DGS (Huang et al., 2024) represents a
scene using elliptical 2D Gaussian splats, each defined by a cen-
ter point px € R3, two tangent vectors t,,t, € R3, and aniso-
tropic scaling factors (s, $») within the tangent plane:

P(u,v) = pr + Sutty + Suvts,. 5)

Each splat is rendered into screen space using an explicit
ray—splat intersection strategy. Its density is modeled as a Gaus-

sian: ) )
G(u,v) = exp (—%) : ©)
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and the final pixel color c(x) is obtained through alpha com-
positing:

o) = 3 aieGi(u6) [[(1 - sy (i) )

To encourage geometric consistency, 2DGS introduces two reg-
ularization losses: a depth distortion loss £ and a normal con-
sistency loss L,:

L, = Zwi (1 — n,TN(Xi)) , )

where n; is the Gaussian’s surface normal and N (x;) is the nor-
mal estimated from the rendered depth gradient. The original
2DGS training objective is:

Lopgs = Le+ Xala + ALl 9)

Prior-Guided Optimization To further enhance building-
oriented reconstruction, we introduce building-aware supervi-
sion derived from LoD2-based priors (D;,IN;) obtained via
raycasting (see Section 3.2). Given a binary mask M indic-
ating valid mesh intersections, we define two additional losses:

1 .
L= O [0 Dj(@,9) = Di(w,y)|,  (10)
7 (z,y)EM
Lon= e (1= N(@) Ny () . (D)
M | =

where D ; and N ; are the rendered depth and normal maps from
the current model, and « is a scale adjustment factor. Figure 3
illustrates how these losses guide 2D Gaussian splats toward
accurate surface reconstruction.

(a) Depth supervision L

(b) Normal supervision L, 1,

Figure 3. Prior-guided supervision: (a) Depth priors align splats
with surface geometry; (b) Normal priors ensure consistent
orientation across views.

We adopt a two-phase training strategy:

e Phase 1: Emphasize L4, and £, to enforce global geo-
metric completeness and correctness using building priors.

e Phase 2: Gradually reduce prior-based loss weights while
activating L4 and £,, to refine surface smoothness and
alignment through local consistency.

The overall training objective becomes:
Lioal = Lo+ AaLa+ AnLn + AabLas + AnpLlab, (12)

where all loss weights A are time-dependent and scheduled to
balance prior guidance and visual fidelity throughout training.

Additionally, we support two training modes. The building-
only mode restricts both view sampling and optimization to
pixels within the building region (as defined by M;), effect-
ively limiting the GS reconstruction to the building area. The
building-enhanced mode retains full-scene training while ap-
plying additional supervision within building areas. To obtain
a structured surface representation, we extract a mesh from the
optimized Gaussians using TSDF fusion and Marching Cubes,
following the 2DGS pipeline (Huang et al., 2024). This yields a
watertight mesh suitable for downstream geometric evaluation.

In summary, our framework combines prior-consistent initial-
ization, occlusion-free geometric supervision, flexible training
modes, and TSDF-based mesh extraction to enable accurate and
complete 3D reconstruction in complex urban environments.

4. Experiments

We evaluated our GS4B method in terms of NVS and 3D recon-
struction quality, with comparisons to the original 2DGS and a
conventional MVS pipeline. This section outlines the experi-
mental setup and presents qualitative and quantitative results.

4.1 Dataset and Evaluation Metrics

We conducted experiments on the publicly available
TUM2TWIN dataset (Wysocki and Schwab, 2025), which
offers a comprehensive multi-modal capture of the central
campus of the Technical University of Munich and its sur-
rounding urban areas. For reconstruction input, we used UAV
photographs and LoD2 building models, the latter serving as
structured geometric priors for initialization and supervision.
The UAV imagery collection (Anders et al., 2025) includes
1,179 high-resolution photographs covering more than 70
buildings. To ensure diversity and coverage, we defined nine
representative subsets, each focusing on a distinct building
cluster and containing approximately 10-30 images. These
subsets span a variety of building forms and urban complexities
under real-world conditions.

For 2D photometric evaluation, we adopted three widely used
metrics: Peak Signal-to-Noise Ratio (PSNR) for pixel-wise ac-
curacy, Structural Similarity Index (SSIM) for structural fidel-
ity, and Learned Perceptual Image Patch Similarity (LPIPS)
for perceptual quality. We further assessed 3D reconstruc-
tion quality using two types of reference point clouds from the
TUM2TWIN project. The first was laser-scanned point clouds,
providing fine-grained geometric accuracy and acquired syn-
chronously with the UAV imagery (Anders et al., 2025). The
second was LoD3-derived point clouds, which are structurally
coherent with the LoD2 models and served as a reference for
assessing structural completeness.

To evaluate geometric accuracy, we used two distance-based
metrics: Chamfer Distance (CD), which measures global
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similarity by averaging bidirectional nearest-neighbor dis-
tances, and Multi-Scale Model-to-Model Cloud Comparison
(M3C2) (Lague et al., 2013), which captures orientation-aware
surface deviations. For completeness evaluation, we employed
two complementary strategies: threshold-based completeness,
adapted from the Tanks and Temples benchmark (Knapitsch et
al., 2017), which calculates the fraction of ground-truth points
within predefined distance thresholds (e.g., 0.1 m to 0.5 m); and
voxel occupancy completeness (VOC), inspired by the geomet-
ric completeness (Jager and Jutzi, 2023), which assesses volu-
metric coverage by comparing voxel occupancy between the re-
construction and the reference. A voxel is considered occupied
if it contains at least a predefined number of points.

4.2 Implementation Details

Our implementation was based on 2DGS codebase (Huang et
al., 2024). We trained the model for 30,000 iterations across all
experiments. Camera pose estimation and MVS-based recon-
struction results were generated using Pix4Dmatic (Pix4D SA,
2024) with default parameters. For initialization and prior gen-
eration, we employed trimesh (Dawson-Haggerty, 2019) for
surface sampling and Open3D (Zhou et al., 2018) for raycasting
and mesh operations. We followed the two-stage loss schedul-
ing strategy described in Section 3.3, with all 2DGS hyperpara-
meters kept unchanged for fair comparison.

4.3 Results

We evaluated our method against two baselines: 2DGS (Huang
et al., 2024) and the MVS pipeline from Pix4Dmatic. Evalu-
ation was conducted from two perspectives: (i) 2D NVS qual-
ity, compared with 2DGS using perceptual and pixel-wise met-
rics; and (ii) 3D reconstruction quality, compared with both
baselines in terms of accuracy and completeness. This dual-
perspective analysis demonstrated the effectiveness of integrat-
ing building-aware priors into the GS framework.

Novel View Synthesis We assessed the effectiveness of our
method in NVS through both qualitative and quantitative ana-
lyses. To ensure a fair comparison of scene-level reconstruction
capabilities, we compared the results of our method in building-
enhanced mode against the original 2DGS baseline. Figure 4
shows 2D comparisons of NVS results on two representative
scenes, including outputs from 2DGS and our method (GS4B),
alongside the ground-truth RGB images. While overall image
quality was comparable between the methods, GS4B yielded
more stable reconstructions in structurally challenging areas.

For quantitative evaluation, Table 1 reports the average PSNR,
SSIM, and LPIPS scores across the selected scenes. Our GS4B
method achieved comparable photometric performance to the
2DGS baseline, with slightly higher average PSNR (17.369 vs.
17.190) and SSIM (0.568 vs. 0.552), and a nearly identical
LPIPS score (0.260). These results confirm that the integration
of structural priors does not compromise image fidelity, while
preserving perceptual quality across diverse urban settings.

Training Convergence Figure 5 illustrates the training con-
vergence behavior on a representative scene. We visualized
the composite image loss and the global normal loss over it-
erations. While our method initially exhibited a higher image
loss due to its prior-based initialization, it quickly converged to
a level comparable with the baseline 2DGS method. In terms
of normal loss, our method achieved faster convergence and ul-
timately lower error, indicating improved surface consistency
across the entire scene.

(d) GT (e) 2DGS

(f) GS4B (ours)

Figure 4. 2D visual comparison of NVS results on representative
building scenes. Our method achieves better visual quality than
2DGS in challenging areas, such as textureless rooftops (b, c)
and sparsely observed regions (e, f).

Table 1. 2D quantitative comparison of NVS performance across
building scenes from the TUM2TWIN dataset. 1 indicates
higher is better, | indicates lower is better. Best results per row
are highlighted in | green .

Scene | 2DGS | GS4B (ours)
|PSNRT SSIM{ LPIPS||PSNR? SSIM{ LPIPS|
1 19.593 0:645 0:222°] 19.224 0.610 0.274
2 15.785 0.434 0.355 ['15:852" 0484 0:342
3 13.520 0.298 0.348 | 14.384 0.346 0.306
4 19.040° 0.700 0.156 | 19.031 | 0.710  0.155
5 12.332  0.271 0.482 [13:557° 0.322 0.425
6 13.449 0402 0:365 | 12.870 0.347 0414
7 19.654 0.731 0.135 | 19.514 0.701 0.146
8 21.596 0.746 0.135 | 21.566 [10:798  0.143
9 19.737 0.742 0.150 [20:319" 0.797 0.138
Avg. | 17.190 0552 0.261 [JES6INN0SGSIN02600

Geometric Accuracy and Completeness We evaluated the
3D geometric quality of the reconstructed scenes from two
perspectives: accuracy and completeness. For geometric ac-
curacy, we compared the reconstructed meshes from MVS,
2DGS, and our method against ground-truth laser-scanned point
clouds. We used two established 3D geometric metrics: Cham-
fer Distance (CD), which measures overall geometric similar-
ity, and M3C2, which captures fine-grained surface deviations
with local orientation awareness. Table 2 reports the results
across the building scenes from the TUM2TWIN dataset, and
shows that our method achieves lower errors than the baselines,
indicating improved reconstruction fidelity. To assess recon-
struction completeness, we used reference point clouds sampled
from the LoD3 building models. Unlike laser scans that may be
incomplete due to occlusion, the LoD3-derived data provides
full building geometry, making it more suitable for evaluating
volumetric coverage. As reported in Table 3, we evaluated
completeness using two complementary metrics: threshold-
based completeness and voxel occupancy completeness (VOC),
as introduced in Section 4.1. Our method outperforms both
baselines across most tested scenes.

In addition to quantitative comparisons, we provided a visual
analysis of reconstruction quality in Figure 6. The figure sum-
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Figure 5. Training convergence of our GS4B compared to 2DGS
on a representative scene. The plot shows the composite image
loss and the scene-wide normal loss over 30k iterations.

Table 2. 3D quantitative comparison of reconstruction accuracy
using laser-scanned point clouds as reference. Chamfer Distance
(CDJ) reflects global geometric similarity, while M3C2
Distance (M3C2)) captures fine-grained surface deviation.

Scene | MVS | 2DGS | GS4B (ours)

| CD| M3C2| | CD/ M3C2|| CD| MB3C2]
1 0.834 [70:244 1] 0.839 0.376 [0:8261 0.384
2 05617 0.012 | 1.145 0.008 | 1.013 [70:002
3 2.828 0.236 | 1.893 0.285 |1.448 0.125
4 0.168 0:032°| 0.204 0.075 | 0.249 0.048
5 4361 2226 |[2.791 1914 2340 1.631
6 1.107 0.153 [10:728 0059 | 0.857 0.161
7 3.567 0.015 2955 0.662 [2:843  0.013
8 03971 0.014 | 0.758 0.107 | 0.527 | 0.009
9 2.866 0.236 |2.656 0.163 [2:570° 0.076
Ave. |1.854 0352 | 1552 0405 [EOSENO272H

marizes both geometric accuracy and completeness for a repres-
entative urban scene, including occluded regions. It highlights
differences between MVS, 2DGS, and our method GS4B in
terms of mesh reconstruction, M3C2 deviation, and complete-
ness distribution.

Ablation Studies We conducted ablation studies to evalu-
ate the contribution of three key components in our approach
GS4B, considering both NVS and 3D reconstruction quality.
The evaluated components included: (i) the proposed prior-
based point cloud initialization, (ii) depth prior supervision via
the loss term Lq4, and (iii) normal prior supervision via L, p.
Table 4 summarizes the quantitative results across five repres-
entative metrics: PSNR, SSIM, LPIPS for 2D synthesis quality,
and Chamfer Distance (CD) and Voxel Occupancy Complete-
ness (VOC) for geometric accuracy and completeness. Repla-
cing prior-based initialization with an SfM-derived point cloud
yielded similar image quality but required more preprocessing.
Omitting either depth or normal priors resulted in noticeable
degradation in 3D reconstruction accuracy and coverage.

4.4 Discussion

This section analyzes the performance of GS4B in both 2D and
3D evaluations and concludes with a discussion of its limita-
tions and future prospects.

2D View Synthesis Performance We analyze the quality of
NVS from both qualitative and quantitative perspectives, com-
plemented by training convergence behavior. Figure 4 presents

visual comparisons across two representative scenes. In the first
example (Figures 4a—c), where rooftops and walls lack texture,
both methods achieve similar overall photometric quality, but
our results appear more coherent in these regions, likely due to
geometric priors guiding the training. In contrast, the second
scene (Figures 4 d—f) involves sparse viewpoints (only 11 in-
put images), resulting in visibly degraded output from 2DGS,
while our method GS4B retains structural consistency. This
highlights the benefit of LoD2-derived priors in supporting syn-
thesis under sparse view coverage. However, we also observe
that in well-textured scenes with dense views, 2DGS may re-
tain finer local details, suggesting that our regularization might
slightly oversmooth certain regions. These trends are further re-
flected in the quantitative results in Table 1. Our method GS4B
achieves slightly better overall performance across all metrics.
Notably, in Scene 5, corresponding to Figures 4 d—f, we observe
an 18.8% increase in SSIM, indicating improved preservation
of structural details under challenging conditions.

Beyond the final rendering quality, training dynamics further
highlight the behavior of our method. Figure 5 shows the con-
vergence on a scene with sufficient viewpoint coverage, where
2DGS achieves slightly better overall photometric metrics. Our
method begins with a higher image loss due to the prior-based
initialization, but quickly converges to a comparable level. The
modestly higher final loss is likely due to reconstruction errors
in non-building areas, which are not explicitly guided by our
priors. In contrast, our global normal loss declines more rap-
idly and reaches a lower final value, reflecting improved con-
sistency in surface learning. These findings are consistent with
the visual and quantitative trends discussed earlier.

3D Reconstruction Analysis We evaluate 3D reconstruction
quality in terms of both geometric accuracy and completeness.
As shown in Table 2, our method GS4B outperforms 2DGS
in most scenes and exceeds traditional MVS in several cases.
While MVS remains competitive under dense views and rich
textures, it degrades in occluded or complex scenarios. Notably,
GS4B reduces M3C2 error by 32.8% over 2DGS and 22.7%
over MVS, indicating stronger local geometric consistency. As
shown in Figure 6 (second column), GS4B achieves lower er-
rors along facades and on the heavily occluded left wall of the
building. Nevertheless, fine-scale structures such as doors and
windows remain less accurately reconstructed, likely due to the
coarse resolution of the LoD2 priors. The completeness results
in Table 3 further highlight the strengths of our GS4B approach.
Across all thresholds and in most scenes, GS4B outperforms
both MVS and 2DGS in both threshold-based completeness and
voxel occupancy completeness (VOC). Since many input views
cover only partial facades, while the LoD3 ground truth models
represent complete buildings, the absolute completeness values
remain relatively low. However, our method still achieves sig-
nificant improvements. For instance, in terms of VOC, GS4B
shows a 63.9% increase compared to MVS.

These improvements arise from two main factors. First, the
2DGS representation, with its planar Gaussian splats, provides
a more continuous approximation of surfaces compared to
point-based MVS, which is more susceptible to fragmentation
in low-texture or occluded regions. This explains why even the
standard 2DGS generally achieves higher completeness than
MVS. Second, our method benefits from integrating geometric
priors derived from semantic LoD2 models. Unlike methods re-
lying solely on images, which are constrained by occlusions and
limited viewpoints, our GS4B framework leverages the volu-
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Completeness: 0.414
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(ours) Extracted Mesh M3C2 Distance: 0.384 Completeness: 0.547
Distance [m] Deviation [m]
| I N —— |
-0.50 -0.25 0.00 0.25 050 0 0.12 0.25 0.38 0.50

Figure 6. Visual comparison of 3D reconstruction accuracy and completeness in a representative urban scene with partial occlusion
(i.e., trees, cars). The top row shows ground-truth (GT) point clouds from laser scanning (for accuracy) and LoD3 building models
(for completeness). Rows 2—4 present results from MVS, 2DGS, and our method, including extracted meshes, M3C2 error maps, and
completeness visualizations. For completeness, distances from ground-truth points to their nearest reconstructed points are visualized
on the GT point cloud using a blue—green—red gradient. Reported values indicate the percentage of points within a 0.5 m threshold.

Table 3. Completeness comparison of 3D reconstruction results using LoD3-derived point clouds as reference. Threshold-based
Completeness reports the percentage of ground truth points recovered within 0.1 m, 0.2 m, and 0.5 m. Voxel Occupancy Completeness
(VOC) reflects volumetric coverage based on shared voxel occupancy. All values are in [0, 1] and higher is better (1).

Scene | MVS | 2DGS | GS4B (ours)

| 0.lmt  02mf 05mf? | VOCt | 0.lmt 02mf 0.5mt | VOCt | 0.lm? 02m? 0.5mf | VOCT
1 0024  0.131 0414 | 0.190 | 0.098 0208 0428 | 0.274 [F0:265 0:387  0:547 | 0:408
2 0.065 0.140 0261 | 0.154 | 0.062 0.137 0248 | 0.184 | 0.066 0.141 0.281 | 0.188
3 0012 0.034 0096 | 0051 [H0046%W 0.096 0215 | 0.132 | 0.038 | 0.105 0273 | 0.170
4 0057 0237 0419 | 0242 | 0.142 0223 0519 | 0345 04697 0322 0540 | 0.396
5 0.000 0010 0.015 | 0.002 | 0.001 0.033 0082 | 0004 | 0.006 0.062 0.143 | 0.012
6 0.102 0208 0472 | 0281 [FOA2SIN0253W0055L0 0314 | 0.110 0241 0472 | 0.319
7 0.002 0007 0.021 | 0.013 | 0.008 0016 | 0.045 | 0.025 | 0.004 [0020m 0.042 | 0.028
8 0022 0.146 0371 | 0.107 | 0.042 [OA99% 0.398 | 0.167 [WON052W 0.137 WO6337 0.245
9 0078 0.171 0334 | 0.187 | 0.076 0.163 0374 | 0.221 | 0.079 WOA95%W 0.394 | 0.238

Avg. | 0040 0120 0267 | 0.136 | 0.067 0.148 0318 | 0.185 [ONSSENONTSNNOSEoNN0R223N

Table 4. Ablation study results on NVS and 3D reconstruction areas but also in regions where image cues are unreliable or en-
quality. Metrics include PSNR (dB), SSIM, and LPIPS for novel tirely missing. While images contribute to realistic appearance
view synthesis (NVS); Chamfer Distance (CD) and Voxel reconstruction, especially in non-building surroundings such as
Occupancy Completeness (VOC) for 3D geometry. vegetation and ground surfaces, the inclusion of 3D structural
priors allows the geometry of occluded or unseen areas to be
Method |PSNRT SSIM? LPIPS|| CD] VoC?t reconstructed more faithfully.
With SfM Init 19.062 [0:6137 0.277 |1.096 0.325

Without Depth Prior | 18.756 0.601 0.279 |2.425 0.234 Howgver, the stronger regularizatior{ introduced l?y our.priors
Without Normal Prior| 19.154 0.609 0.276 |2.017 0.395 can, in some cases, attenuate fine-grained geometric details. As
Ours (Full) 19.224 0.610 | 0.274 |0.826 0.408 shown in Figure 6, our method produces smooth and complete
surfaces but tends to miss thin structures, which MVS is able to
capture more accurately when sufficient image observations are
metric nature of LoD2 models to provide a complete 3D struc- available. This trade-off reflects the inherent challenge of bal-
ture of buildings. This enables supervision not only in visible ancing structural completeness with local geometric precision.
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Limitations and Outlook Our method performs well in chal-
lenging urban reconstruction scenarios, especially under occlu-
sion and sparse viewpoints. However, in scenes with dense
observations and rich textures, the strong regularization from
LoD2 priors may oversmooth fine details such as eaves, win-
dows, and doors. This underscores the need for a more adaptive
use of structural priors, such as dynamically weighting their in-
fluence based on local scene characteristics. While LoD2 build-
ing models are becoming increasingly available in many coun-
tries, our method still depends on their availability and qual-
ity. Future work may explore alternative priors, such as more
widely accessible LoD1 models or CAD-based representations,
to improve generalizability across diverse urban environments.

5. Conclusions

We present GS4Buildings, a Gaussian Splatting framework
guided by semantic LoD2 building models. Our method en-
hances both 2D view synthesis and 3D reconstruction, par-
ticularly in challenging scenarios with occlusion and sparse
viewpoints. Experiments on the TUM2TWIN dataset demon-
strate consistent improvements over traditional MVS and stand-
ard 2DGS, including a 32.8% reduction in surface deviation
(M3C2) and a 63.9% increase in voxel occupancy complete-
ness. These results highlight the effectiveness of integrating
semantic priors into GS-based pipelines for scalable and ro-
bust urban reconstruction. Building on these results, future
work could explore dynamic prior weighting and broader prior
sources to enhance reconstruction fidelity across diverse scenes,
including high-rise and geometrically complex buildings. Such
advancements may also benefit digital city applications, includ-
ing urban monitoring and digital twin updates.
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