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Abstract

Extreme weather events such as heavy rains are an increasing challenge. The potential impact of flooding on residential buildings
can be simulated using digital twins. However, when using geometric-semantic information from diverse data resources, such as 3D
city models, zoning or cadastre, the data must be carefully selected and programmatically prepared for the simulation. In this study,
we present how a use-case driven classification was generated for the residential buildings in the city of Dresden, which is used to
estimate the damage potential. The research focuses on both the supervised building classification with a neural network and the
open source software framework. Data management is done with the 3DCityDB in PostgreSQL. QGIS is used for visualisation and
user interaction. The Python-plugin automatically classifies more than 70,000 residential buildings based on 37 residential building
classes. The hierarchical classification is challenging due to the ground truth sample size of about 21,000 and the heterogeneous
distribution of the samples. The core of the method is the training and validation utilising random forest as machine learning
method. With the developed toolset, classification results can be visually checked in a subsequent step using QGIS. Additionally,
the classification, might be corrected manually for individual buildings using mobile mapping data, if necessary. Eventually, the
assigned classes are fed back into the official CityGML city model as a new attribute, enabling a realistic damage potential analysis,
in a free and publicly available 3D-WebGIS platform. The project is funded under the Smart Cities pilot programme of Germany.

1. Introduction Geospatial attributes and feature-vectors for machine learning
can be adapted for different locations and scenarios.
1.1 Motivation

Due to climate change, extreme weather events, such as heavy Il Dresden. Open data
rainfall, are becoming increasingly frequent. These cause vary-
ing degrees of damage to buildings. The damage can be simu- Data management
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buildings (Fig. 1). This includes open geodata that is merged
in a database. The implementation as a plugin for the QGIS
software allowes the employees of the city of Dresden to carry
out this classification again with new data. It is also possible
to check the results of each step and make manual corrections.
The software will then be made freely available for use and ad-
aption in other areas of Germany and internationally.
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1.2 Scope Statement

Check results

This work is not basic research, but a descriptive case study.
A new classification is developed in relation to the city of
Dresden. The application does not represent a universal solu-
tion for all cities or for any arbitrary city. However, the proced- Figure 1. System architecture of the developed tool to classify
ure can be adapted to other areas if the relevant data is available residential buildings.

and the attributes of the buildings are recorded.
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1.3 Research Questions

Aspects of the classification of residential buildings in Dresden
are analysed in detail. In particular, the following research
questions are considered and answered:

e How can residential buildings in Dresden be classified ac-
cording to their construction type and age?

e Which characteristics can be used for classification?

e How can the classification be implemented automatically
for all residential buildings in Dresden?

e Which reliability of the classification can be achieved?

e How can the tool be adapted to other cities?

2. Related Research

The use of 3D city models based on the CityGML standard of
the Open Geospatial Consortium (OGC) is becoming increas-
ingly important. The 3D City Database makes it easier to de-
velop and expand a city model, as described in (Yao et al.,
2018). It provides a relational database schema for managing
city objects. For example, buildings with their geometry and
semantic attributes can be stored centrally. This can form the
basis for classifications.

In urban areas, there is often many heterogeneous data avail-
able. This data must be combined to be used effectively in vari-
ous applications. The processing of geometric information at a
low level and semantic information at a higher level has been
addressed by (Sideris et al., 2019). Using a semantic model,
the authors merge the data to make it usable for machine learn-
ing. The data is then used in various scenarios to test several
classification approaches. Based on the metrics Accuracy, Spe-
cificity, Precision, Recall, F1 Measure, and G-Mean, the au-
thors recommend the random forest classifiers as decision tools
for urban planning tasks. These are also robust against deviat-
ing observations. However, human intuition is categorised as
the ultimate decisive factor for such problems.

Machine learning can also be used to predict building charac-
teristics. The study by (Lei et al., 2024b) addresses this prob-
lem using spatial buildings and the streets surrounding them.
According to the authors, graph neural networks cover the spa-
tial relationships of buildings to their environment better than
models such as random forest do. In the paper, a model was
developed that can predict certain building features, such as the
number of storeys, as well as solve classification tasks. The
authors compare their approach with random forest models in
three experiments. The building storeys, building type, period
of construction and material are determined in the cities of Bo-
ston, Melbourne and Helsinki. In comparison, they achieve
slightly better results with their newly created model.

Determining the exact age of residential buildings is another
discipline of classification. Using 3D GIS (Geographic Inform-
ation Systems) models and machine learning, (Biljecki and Sin-
dram, 2017) have developed an approach for estimating the year
of construction of buildings with a Level of Detail 1 (LODI).
Random forest models from the scikit-learn library were trained
using various attributes such as building height, number of
floors, volume and number of neighbouring buildings. The city
model of Rotterdam was chosen for this purpose. Half of the

datasets were used as training datasets, the other half as valida-
tion datasets. The authors note that categorisation into a decade
is very possible if all attributes are available for each building.

The necessity for a consistent survey of building attributes is
also postulated by (Lei et al., 2024a). Morphological charac-
teristics are just as important for classifications in various ap-
plication scenarios. In particular, expanding the data to include
attributes of visual perception opens up new possibilities. The
authors also used the scikit-learn library to train random forest
models using information from building images. They have ex-
tended the existing CityJSON dataset of the city of Amsterdam.
The authors mention that it is important to extend digital urban
twins and 3D city models with social components. They plan
to investigate new use cases in the future.

An automatic classification of building floor plans was investig-
ated by (Hecht, 2014). The author tested various machine learn-
ing algorithms and preferred the use of random forest models
as a non-linear classification method. These models have the
highest generalisation capability and the shortest runtime. The
analyses are made with various open geodata. Hecht emphas-
ises that geometric, semantic, topological and statistical attrib-
utes are necessary for reliable classifications. The author con-
tinues to criticise the studies considered up to this point with
a maximum of five classes, as it is possible to determine more
classes. A differentiation into more classes offers a differenti-
ated view of the settlement structure and is therefore desirable.
With a sufficient amount of training data, an accuracy of over
90 % is achieved for nine out of eleven classes. This shows that
reliable categorisation is not always possible for all building

types.

The categorisation of buildings to determine potential damage
has already been analysed by (Vetter et al., 2024). The authors
have developed an approach that uses open geodata and creates
parametric models. Georeferenced raster data and CityGML
models are used. The models are used to determine the build-
ing age classes and floor plan geometries of the buildings. The
buildings are then categorised using a semi-automatic approach.
The authors describe the limited availability of data on the load-
bearing structure of the buildings as the main challenge. The
models work without the use of machine learning. However,
the potential for expanding the possibilities through the addi-
tional use of machine learning is recognised.

The categorisation into building classes can be used not only for
simulations of heavy rainfall events. It is also possible to carry
out energy analyses, as shown by (Kaden et al., 2012). The
authors have integrated data from solar potential analyses and
the energy supply into the CityGML-compliant Energy Atlas of
Berlin. The 3D city model serves as a link between the differ-
ent ontologies. It is thus enriched with information relevant to
environmental and energy planning. Based on the correlation
between building characteristics and consumption information,
the authors describe the use case of estimating the heating en-
ergy demand. The authors show that existing 3D city models
can serve as a basis for merging open geodata and enable new
use cases.

Further application scenarios are the prediction of hourly heat
consumption in residential buildings and the expected short-
term consumption of the buildings. To investigate this
(Tognoli et al., 2023) trained, tested and applied two models to
500 buildings in Switzerland. In addition to building data in
CityGML format, the authors also used weather data.
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Both models were optimised by combining different regression
models. The models achieve very good results. The first model
can predict the heating requirements for any building. The
second model can predict the heating demand for a group of
buildings based on framework conditions. Overall, the authors
have developed a workflow that can be adapted to other applic-
ation scenarios.

Flooding is causing more damage to residential buildings due to
climate change and urban development. New flood resistance
technologies may be able to reduce the impact of flood dam-
age. To analyse this (Golz et al., 2014) used such technologies
in a GIS-based flood damage simulation model to support the
evaluation of these strategies. The authors extended their study
by some steps (Schinke et al., 2016). They used the high resol-
ution of GIS and the characteristic properties of the individual
buildings. Their synthetic model enables the spatial damage
and risks to each building to be analysed. To demonstrate and
validate their approach, they present a case study in Valencia,
Spain.

3. [Initial Data

The source data is provided by the City of Dresden and the
Dresden Office for Geodata and Cadastre. Data and concepts
from previous research projects are also accessed. The funda-
mental building data is freely accessible and can also be used
subsequently. In addition, three data sets on monuments and
newly built houses as well as a data set from a property service
provider are used to include the age of buildings.

3.1 Open Data Dresden

The City of Dresden provides different data in the OpenData
Portal Dresden. This includes a dataset of the city’s parcels with
their geometry and parcel numbers and a dataset of the con-
struction types. The construction types are offered in a block
map. It should be noted that the construction attributes are not
managed on a parcel-by-parcel basis. Both data sets are used in
this project in CSV format and geometrically intersected. This
means that all parcels receive a string value for the building con-
struction. This includes, for example, A12 for detached houses
or semi-detached houses or C11 for a perimeter block develop-
ment.

The 3D city model in Level of Detail 2 is also downloaded as
CityGML format from the OpenData portal. Building functions
as the keys for residential, commercial and public buildings are
updated with ALKIS building data, due to the model update in-
tervals. ALKIS is the official cadastral information system in
Germany. It contains parcel data in connection with building
footprints.

3.2 Classification Concept

The classification of residential buildings is based on a classific-
ation concept developed by the Faculty of Civil Engineering of
the University of Applied Sciences Dresden (Golz et al., 2014)
and (Schinke et al., 2016). Table 1 explains the urban structure
types of residential buildings in Dresden.

The concept includes a residential building matrix that shows 42
categories for possible combinations of building age and build-
ing type for residential buildings in Dresden (Fig. 2). The com-
bination of structure type and building age level results in the
residential building type. A building that is classified as EE3,

Building type Description
EE Detached single-family house
HH Backyard house
Lw Agriculturally characterised building
LWS Agriculturally characterised building

with stable use
ME Detached apartment house
ER Single-family house in a row
MRG Apartment block in

closed row development
MRO Apartment block in
open row development

Table 1. Building types of the residential buildings in Dresden.

free standing buildings row standing buildings

(with one main entrance) (each with one main entrance)

Building Type

Urban Structure Type

single unit multi unit single unit multi unit

Building Age Group EE HH w Lws ME ER MRG MRO

before 1870

timber frame construction 1 MEL ER1

before 1870
brickwork
1870-1918
brickwork
1918-1945
mainly brickwork
1945-1990
brickwork
1970-1990
prefab. concrete building
after 1990
mainly brickwork

2 Lws2 ME2 ER2

3 LWS3 ME3 ER3

a LWs4 ME4 ER4

5 LWs5 MES. ERS

Figure 2. Building typology of the residential buildings in
Dresden based on (Golz et al., 2014) and (Schinke et al., 2016).

for example, is therefore a detached single-family house from
the period between 1870 and 1918.

Each category is characterised by its typical design and gener-
ates different damage potentials during heavy rainfalls. Of over
90,000 residential buildings, 21,000 have already been mapped
during on-site mapping in different regions of the city. The pre-
vious mapping campaign has already shown that not all categor-
ies are consistently represented in the mapped data. In addition,
adjustments must be made with regard to class categorisation.
It is not possible to accurately differentiate between agricultural
buildings and those with an additional use as stables on the basis
of the external appearance of the buildings alone. In addition,
not all building ages are available in the recorded data, leaving
a total of 30 categories to be assigned. This means that this
study does not cover all possible types of residential buildings
in Dresden.

4. Data Processing

All residential buildings in Dresden are held in the 3D City
Database'. This free and open-source spatial relational data-
base is used for data storage, data management and visualisa-
tion of 3D city models. The data described in section 3 are
compiled in a newly developed problem-specific schema. The
database is used in the open-source object-relational database
system PostgreSQL?. The free, open-source software QGIS? is
used to visualise and analyse the geodata. The application, de-
veloped in the presented research project, is a plugin for QGIS
and uses the object-oriented programming language Python* to

! https://github.com/3dcitydb (Version 5.0.0)
2 https://www.postgresql.org/ (Version 16)

3 nttps://qgis.org/ (Version 3.34.10 Prizren)

4 https://www.python.org/ (Version 3.12.5)
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perform calculations and load the data from the database into
QGIS.

4.1 Hierarchical Classification

A hierarchical classification allows decisions to be simplified
and specified step by step. The existing categories are integ-
rated into several levels of a hierarchy. The first step is to
decide whether the residential building under consideration is
an apartment block, a detached house or another class. Multi-
family houses and single-family houses are then given the ad-
ditional information as to whether they are single or in a row.
These MR, ME, ER and EE classes are then assigned a build-
ing age category. Numerous tests have shown that the most
reliable classification for row multi-family houses is to differ-
entiate between an open and a closed construction method on
the last level. All other classes in the first level are subdivided
into rear houses and agricultural buildings and are then also as-
signed a building age level (Fig. 3).
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Figure 3. Hierarchy for the classifications of residential
buildings.

4.2 Relevant Features

For classification, meaningful semantic and geometric attrib-
utes must be selected from the existing data to populate the fea-
ture vector for machine learning. In their entirety, they must
clearly differentiate the individual classes or groups in the re-
spective levels. Fifteen attributes were selected for this purpose,
which were either taken directly or calculated.

These include:

e geometric attributes

ridge height [m]

— eaves height [m]

— storey height [m]

— slope of the largest roof surface [degree]

— size of the base area [m?]

— width of the convex envelope of the base area [m]
— length of the convex envelope of the base area [m]

— number of vertices of the base area

e semantic attributes

— building age

— number of storeys

— number of roof surfaces

— roof type [categorical enumeration]

— development type identified on the block map [cat-
egorical enumeration]

Topological characteristics are also determined. For this pur-
pose, neighbourhood relations are used for a radius of 100 m
around the building in question.

These are:

e building density [n buildings / 100 m radius]
e average building footprint [m?]
e minimum distance to neighbouring buildings [m]

e predominant class [categorical enumeration]

4.3 Feature Engineering

A static evaluation was carried out for each class and hierarchy
level to analyse the attribute values. As the classes are not nor-
mally distributed in the given sample data, the significance level
was calculated using the median. The calculated and collected
attributes can also be used to determine ratios using feature en-
gineering. These can provide robust results when individual
attribute values deviate greatly from the median of the respect-
ive class. For example, the volume of the building and the ratio
of building height to building floor area are calculated. If, for
instance, the floor area of a building deviates significantly from
the median of all buildings in the respective category, it is still
possible to reliably determine which category the building be-
longs to. For this purpose, the volume and the ratio of floor area
to height can be used to determine the category. In total eight
ratios are calculated using feature engineering. The filtering of
the city database and the calculation of the neighbourhood re-
lations and the feature engineering attributes are done with an
office notebook (Processor: 13th Gen Intel(R) Core(TM) i7-
13700H with 2.40 GHz, RAM: 32.0 GB). This process lasts
about three hours for the dataset of Dresden.

5. From Training to Newly Classified Buildings

Random Forest is an established machine learning-based clas-
sification model. In this project the initial data is available in
tabular form, offering low complexity with numerical and cat-
egorical attributes. Furthermore, the feature space is consistent
across the entire dataset. Due to the clearly defined classifica-
tion problem, Random Forest was chosen over Graph Neural
Networks and Gradient Boosting. The building classes are
determined using the collected attributes for training random
forest models. A model is trained and validated for each hier-
archy level. The functions of the open-source library scikit-
learn® are used. The software package provides algorithms
for the selection of the best random forest model, training and
metrics for validation of all models. All data is predivided
into training data with 17,000 buildings, validation data with
4,000 buildings and classification data with 70,000 buildings
and stored in new relations.

5 https://scikit-learn.org/stable/ (Version 1.6.1)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-25-2025 | © Author(s) 2025. CC BY 4.0 License. 28


https://scikit-learn.org/stable/

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025
20th 3D Geolnfo Conference 2025, 2-5 September 2025, Kashiwa, Japan

5.1 Model Training

The split between training data and validation data is ran-
domised in a 80:20 ratio each time training is started from
scratch and no existing model is used. Thus, 17,000 mapped
residential buildings serve as the training data set and 4,000
buildings serve as the validation data set. Categories with zero
or only one building in the given training dataset are excluded.
The training is performed using GridSearchCV (Grid Search
Cross Validation) to use the optimal model for each hierarchy
level. After multiple tests, the hyperparameters in table 2 res-
ult in the best training of the models with this particular data set.

Hyperparameter Value range
n_estimators [150, 250, 350]
max_depth [15, 25, None]
min_samples_split [5,10]
min_samples_leaf [2, 4]

criterion [’gini’, ’entropy’]

Table 2. Best hyperparameter for all random forest models with
their value ranges.

The parameters define value ranges for the number of trees and
the maximum depth of the trees. A higher number of trees
can lead to better model performance with a longer calcula-
tion time. A greater depth can achieve better results, but also
increases the risk of overfitting. Overfitting is the strong ad-
aptation of the model to the training data. This means that the
model is less sensitive to changes in the input data. Also, it’s
determined by the number of data sets required for a leaf node
and for further division and depth. The determination of the
optimal parameters by the models results in consistently low
values. This means that even those classes with a very small
number of samples are well covered. The respective model
remains flexible, but is also more susceptible to overfitting if
noise occurs in a minority class. The hyperparameter criterion
is set to the values ‘gini’ and ‘entropy’. The parameter evalu-
ates the quality of the distribution in a decision tree, with the
aim of producing a homogeneous distribution of classes. The
value ‘gini’ favours frequently occurring classes to avoid ran-
dom misclassifications. In contrast, the use of ‘entropy’ tends
to favour rare classes. All models use the value ‘gini’ as the
best parameter. The use of other hyperparameters such as boot-
strap, max_features or class_weights did not change the results.
Due to the significantly higher computing time, these are not
considered in the model training.

The training is performed with the numeric and categorical at-
tributes mentioned above. The use of categorical attributes re-
quires a label encoder to make them processable for the ran-
dom forest model. In addition, each model determines the
importance of the attributes used for training and discards
those that fall below a threshold. Highly correlated attributes
as building_footprint and length_footprint or eaves_height and
storeys_above_ground are also identified and removed. The res-
ults of the training are written to a log file for each hierarchy
level. The model files themselves are also saved as *.pkl files.

To improve model performance, weights are also introduced for
individual attributes per level. The weights are adjusted manu-
ally in order to control the importance according to the differen-
tiation based on experience. The results of the changed values
are not significant. In addition, the hyperparameter weights are
already very well estimated by the software library. As manual
adjustment carries the risk of subjective overfitting, we do not

use it. In total, training the models for each hierarchy level takes
about an hour on the mentioned office laptop.

5.2 Model Validation

Validation is also performed with the respective random forest
model, depending on the hierarchy level. The scikit-learn lib-
rary offers numerous metrics to check the quality of the mod-
els. Reports are generated for each level, showing the values
determined. In addition, the performance of all models over
the entire process is determined. The validation logs for each
hierarchy level are also saved. A visual check of the individual
buildings is provided by the automatic transfer of the data to
QGIS (Fig. 4). Residential buildings shown in grey serve as
training data, correctly validated buildings are shown in green
and incorrectly validated buildings are shown in red. All other
colours represent the predicted building classes for damage po-
tential.
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Figure 4. Visualisation of training, validation and classification
data sets with QGIS for evaluation of the random forest models.

The results are also summarised in a dashboard (Fig. 5). A
key parameter is the accuracy, which is used to calculate the
proportion of correctly assigned classes out of the total number
of buildings to be validated:

1

Wy =y} (D

Nsamples —

;Z

accuracy(y,9) =
Nsamples i—0
i=

where 1{-} = indicator function

(1 if condition is true, O otherwise)
Nsamples = total number of samples
U; = predicted label for sample ¢

yi = true label for sample ¢

Other important parameters are the F1 score and the weighted
F1 score. Both scores evaluate the overall performance of the
respective model. They represent the ratio of correctly assigned
classes (true positives) to the sum of correct, incorrectly cor-
rect (false positives) and incorrectly incorrect (false negatives)
assignments:

_ 2.-TP
" 2. TP+ FP+FN

ja ()

where TP = true positives
F'P = false positives

F'N = false negatives
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Both parameters represent the harmonic mean of the preci-
sion and recall metrics and are therefore robust to unbalanced
classes. The weighted F1 score also takes into account the re-
lative frequency of the class in the data set and thus provides
realistic values for the multi-class problem used in this project.
The model training aims to obtain values above 70 % for good
results and above 80 % for very good results. Critical values
below 60 % should be avoided in any case. The quality re-
quirements apply to both, the individual levels and the overall
classification.

®_ Wihle ein Level:

[ Modellmetriken

Accuracy: 91.03%
F1 Score: 91.20%
Precision: 91.56%
Recall: 91.03%
Matthews Correlation Coefficient: 82.91%

Figure 5. Dashboard of the validation results for Level 1.

The trained random forest models for the nine hierarchy levels
achieve the following accuracies and F1 scores during the val-
idation process, as shown in table 3:

Level accuracy | FI score
I [M/E/Other] 9T % 91 %
12 [HH/LW] 95 % 95 %
121 [HH] 100 % 100 %
122 [LW] 59 % 60 %
111 [MR] 71 % 71 %
112 [ME] 74 % 73 %
113 [ER] 87 % 86 %
114 [EE] 68 % 68 %
1111 [MRG/MRO] 84 % 84 %

Table 3. Accuracies and F1 scores of each random forest model
for the hierarchy levels.

The dashboard also displays the Confusion Matrix (Fig. 6). The
matrix shows the number of classes predicted and the number
of classes actually identified in a heat map. The diagonal of the
matrix shows all correctly predicted data sets.

Confusion Matrix
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Figure 6. Confusion Matrix of Level 1 with M for apartment
houses, E for single-family houses and Other for backyard
houses and agriculturally characterised buildings.

To evaluate the overall performance of all models across all
hierarchical levels, the correctly and incorrectly assigned
classes are also aggregated. This allowes the accuracy of the
overall classification to be determined. The results of the
analysis of the classified residential buildings in Dresden are
shown in table 4.

Metric Value
True Positives 5884
True Negatives 19750
False Positives 487

False Negatives 493

End-to-End Accuracy | 81 %
Model match 1962
Direct assignments 1407
Correctly classified 3369

Table 4. Metric of the whole process over all levels.

It can be seen that misclassifications are less common than cor-
rect classifications. The entire classification process across all
hierarchy levels achieves an end-to-end accuracy of 81 %. This
result is due to direct assignments and model matches.

5.3 Building Classification

The classification of the remaining 70,000 residential buildings
in Dresden, which are available in CityGML format, is also
based on the hierarchical classification of the individual levels.
The random forest models generated in the training process are
applied and intermediate results are saved in the 3D city data-
base in the corresponding relation. Buildings for which the ad-
ditional datasets already provide a value for building age are not
classified into the building age group hierarchy levels. These
buildings are assigned a known age with a confidence level of 1
for this step. Classifying the buildings through each hierarchy
level takes about half an hour on the mentioned office laptop.
For each result at each level, the certainty of the classification
is also written to new attributes of the relation. A summary eval-
uation of these provides further information on the performance
of each model (Fig. 7).

Confidence Report

Target value: M

> 0.9: 2757
0.8 — 0.9: 4912
0.7 - 0.8: 2735
0.6 — 0.7: 1944
0.5 0.6: 1621
< 0.5: 1595
Target value: E
> 0.9: 2
0.8 - 0.9: 357
0.7 - 0.8: 665
0.6 — 0.7: 1337
0.5 - 0.6: 1832
< 0.5: 432
Target value: Other
> 0.9: 29
0.8 - 0.9: 537
0.7 - 0.8: 3521
0.6 — 0.7: 11733
0.5 - 0.6: 19212
< 0.5: 13328

Figure 7. Confidence report of Level 1, presenting the total
numbers per confidence interval for the predicted building class.

For example, for Level 1 it can be seen that the certainty of the
classifications varies greatly depending on the class. For the tar-
get values E and Other, only a few residential buildings can be
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classified with a high or very high certainty of more than 0.8. In
addition, almost 27 % of the buildings at this level are classified
with a certainty of less than 0.5, which is equivalent to a random
decision. Overall, only more than 21 % of the buildings are re-
liably classified (above 0.7). This shows that the classifications
still need to be checked by experts and corrected if necessary.
To take this into account in the developed plugin, there is a sec-
tion for manual correction of the classified buildings. In Fig. 8
the procedure for such an adjustment is shown.

Retrain the existing model

Moving the data set
to the training data

A4

Set the correct class Revalidate the model

Opening Google Street
View at the location

v

Reclassify all residential
buildings

Building selection in QGIS 3,

Figure 8. Manual correction of the class of every classified
building.

First select the building in question using the QGIS plugin. This
will automatically open the Google Street View application in
the preferred browser at the location of the building. This re-
quires Google Street View data at the location. The editor can
estimate the class of the building based on the images and enter
the correct class via the plugin if necessary. The data set is
then added to the training data set and the existing models can
be retrained. The patterns learned from the original training
sessions are used to improve them. This semi-automated pro-
cess allows the training data set to be significantly expanded
in a short time. This is especially important for classes with a
very small number of samples. This semi-automatic mapping
of additional buildings is intended to increase the quality of the
random forest models and thus the reliability of the classific-
ation. The results of the application of this process still need
to be evaluated in the future. After checking and improving
the quality of the classification, the assigned classes are written
as a new attribute in the original data set in CityGML format,
which takes about half an hour. This adds an attribute to the 3D
city model of the city of Dresden and makes it usable for the
application of a digital heavy rain twin.

6. Conclusion

This project has used and validated a matrix of residential build-
ings in the city of Dresden. This answers the first research ques-
tion:

e How can residential buildings in Dresden be classified ac-
cording to their construction type and age?

The residential building matrix divides the buildings into 37
classes based on seven construction types and seven construc-
tion ages. This differentiation is adapted to the building types
found in Dresden. The distinctions result in clear separations
for the subsequent damage potential analysis in heavy rain sim-
ulations. The buildings are categorised according to their spe-
cific characteristics:

e Which characteristics can be used for the classification?

The developed tool offers the possibility to prepare existing
open geospatial data for classifications using freely available
applications. Using the 3DCityDB schema allows the possibil-
ity to work with several dialects of the CityGML standard. The
current 3D model of the city of Dresden already provides many
semantic features of the buildings. In addition to the given
geospatial data sets, geometric attributes, topological relation-
ships between neighbouring buildings and statistical attributes
are calculated for each feature vector. Digital city models are
filtered by the tool according to the required attributes and saved
together with the building geometry in a relation. Note that
highly correlated attributes must be excluded during training.
In addition, weak attributes can be ignored for the classifica-
tion. The large number of buildings to be classified requires the
automation of the process. This work also answers the follow-
ing question:

e How can the classification be implemented automatically
for all residential buildings in Dresden?

The scikit-learn library provides extensive functions that are
used to classify and validate the data. The classification is
performed hierarchically. For each hierarchy level a random
forest model is trained. Out of 90,000 residential buildings in
Dresden, 17,000 have already been mapped and are used as
training data. The optimal random forest model and the eval-
uation of the used attributes could easily be parameterised. The
results of the training are validated with another 4,000 already
mapped buildings:

e Which reliability of the classification can be achieved?

Various metrics are visualised in a dashboard. The focus is on
the accuracy, the F1 score and the weighted F1 score. The over-
all performance of differently parameterised machine learning
models is also categorised on the basis of correct classifications
(true positives) and correct non-classifications (true negatives).
In addition, the confidence of the classification for each build-
ing is saved in the database. The project shows that different
data must first be harmonised, as the attribute names and the
coordinate reference systems used are different. It is also im-
portant to ensure that sufficient training data is available in each
class to achieve a reliable and correct classification. An exten-
sion of the training data through human intervention is abso-
lutely essential. In addition, the individual classifications must
continue to be checked by an expert employee. Finally, the
classes determined for each building are added to the original
CityGML data. This makes it possible to analyse the damage
potential in the event of heavy rainfall. The workflow is cus-
tomised to the development of the city of Dresden:

e How can the tool be adapted to other cities?

The developed source code can be adapted to other cities if the
matrix of residential buildings and thus the hierarchies of the
classification are adapted to the respective development. In ad-
dition, a 3D city model must be available and the available at-
tributes must be verified. Categorical attributes must be able to
be clustered into unique categories. Furthermore, they must to
be processed with the label encoder in order to be used for ran-
dom forest models. Numerical attributes can be used directly,
but consistent value ranges are required for better training and
classification results. The basic procedure and the applications
used can then be adopted.
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7. Limitations and Outlook

The tool developed for the classification of residential build-
ings can be used for the city of Dresden. The residential build-
ing matrix needs to be adapted for any other type of settle-
ment structure. It should also be noted that the application
depends on open geospatial data, such as the 3D city model
with fully populated attributes. The different building classes
can be found in different frequencies in Dresden. The training
data set includes for example less than 400 backyard houses but
more than 3,000 detached apartment houses. In addition, the
differences between the building types are not always clearly
recognisable on the city model. As a result, some random forest
models produce unsatisfactory classification results. Due to the
poor results for some classes so far, either many manual online
corrections have to be made or the in-place mapping has to be
extended significantly, especially for rare classes. The imple-
mentation as a plugin for the QGIS software offers simple visu-
alisation options, but also restricts the full use of the scikit-learn
library. It is not possible to set all possible hyperparameters
or use additional model variants. This type of implementation
also limits performance. Development as a standalone applica-
tion is recommended. In the following steps, the classification
is improved by manual corrections and the training data set is
extended. Once the classification of all residential buildings
in Dresden has been completed with good results, the building
class attribute is added to the input data in CityGML format.
They will then become part of the heavy rain simulations in
the Smart City model project and the damage potential can be
calculated.
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Open source and research data publication

The following link from our Github repository includes the
QGIS Python plugin, machine learning algorithms and quality
evaluation tools:
https://github.com/dd-bim/Building_classifier

The results of the training, validation and classification are also
published on Zenodo (DOI 10.5281/zenodo . 15799484). The
link provides all the log files and quality reports that form the
quantitative basis of this descriptive case study research paper.
It also contains a shapefile with the initial results of classifying
all residential buildings of the city.
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