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Abstract 

 

As the urban digital transformation continues to advance, virtual 3D city models have become essential tools for urban planning, 

traffic management, environmental assessment, and virtual reality applications. Current research largely focuses on constructing1 

high-fidelity city models based on the CityGML standard; however, challenges remain regarding data acquisition costs, complexity 

of generation processes, and customization capabilities. To address these issues, this study proposes an automated virtual city model 

generation method that integrates open data (such as OSM, DEM, and open-source LOD2 models) with the concept of digital cousin. 

This method efficiently generates 3D city models with varying levels of detail, from LOD 0 to LOD 2, by integrating and 

parameterizing multisource data, including relief, roads, city furniture, vegetation, and buildings. Moreover, it supports flexible user 

adjustments of key parameters, such as vegetation density, road width, traffic light intervals, building heights, and roof types. 

Compared with traditional methods that rely on expensive surveying data and labor-intensive manual operations, the proposed 

approach offers a low-cost, highly flexible, and scalable solution, thereby providing robust support for a wide range of urban 

simulation and decision-making applications. The code used in this study is as follows: 

https://github.com/CBZhao2021/gen3D_virtualCity.git 

 

 

Figure 1. Example of all features (relief, road, city furniture, vegetation, and building) visualization for virtual 3D city model 

generation. 

 

* Corresponding author 

1. Introduction 

As global urbanization accelerates and digital transformation 

deepens, there is an increasing demand for high-quality real-

time digital city models for urban planning, traffic management, 

environmental assessment, and virtual reality applications 

(Biljecki et al., 2015; Yao et al., 2018). Virtual 3D city models 

serve as vital bridges between real cities and the digital realm, 

providing an intuitive data foundation for decision support and 

simulation analyses (Singh et al., 2013). However, traditional 

high-fidelity city models typically rely on expensive survey data 

and complex manual processing workflows (Früh & Zakhor, 
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2004; Wang et al., 2014), which not only increase data 

acquisition costs but also limit the automation and 

customization of model generation. 

 

With advancements in computational power and deep learning 

algorithms, numerous automated approaches for generating 

high-fidelity 3D models have emerged, such as those based on 

neural radiance fields (NeRF) (Mildenhall et al., 2021), 3D 

Gaussian splatting (Kerbl et al., 2023), and 3D city generation 

methods, such as CityDreamer (Xie et al., 2024a) and 

GaussianCity  (Xie et al., 2024b). However, these methods 

produced outputs in the form of implicit NeRF representations, 

point clouds with Gaussian ellipsoidal distributions, or voxel-

based models. Although their renderings may closely 

approximate real-world scenes, such representations are not 

well-suited for further exploration in urban planning and 

Geographic Information System (GIS) analyses, such as solar, 

wind, and transportation simulations. 

 

By contrast, recent years have witnessed growing attention 

toward constructing city models based on the CityGML 

standard (Arroyo Ohori et al., 2018; Tan et al., 2023) by the 

Open Geospatial Consortium (OGC). CityGML not only 

describes the geometric form, topological relationships, and 

semantic information of urban structures but also supports 

multiple levels of detail (LOD), thereby providing flexible data 

representation for a wide range of applications. Supported by an 

open-source ecosystem and characterized by high-density 

semantic information, CityGML has attracted significant 

research interest and has been employed to build 3D city 

models that underpin further analyses and simulations such as 

interactive operations (Gröger & Plümer, 2012; Kolbe et al., 

2005), energy simulation modelling (Malhotra et al., 2022), and 

smart city deployments (Prandi et al., 2013). 

 

Although CityGML offers a powerful framework, constructing 

such detailed models at the city scale remains challenging, 

especially in terms of data acquisition and processing costs. 

Recently, the increasing availability of open data resources has 

mitigated this challenge. 

 

The widespread availability of open data resources, including 

OpenStreetMap (OSM), digital elevation models (DEM), and 

open-source LOD2 models, makes it feasible to generate 

CityGML-formatted virtual city models using low-cost, high-

coverage data. Inspired by the concept of digital cousins, which 

leverage existing database resources to achieve high-fidelity 3D 

city models at lower cost and with greater flexibility, this study 

proposes an automated method for generating virtual city 

models. Specifically, our approach integrates multisource open 

data and adopts the digital cousin philosophy (Dai et al., 2024) 

to efficiently construct city models with varying levels of detail 

from 0 to 2. Compared with traditional methods (Biljecki et al., 

2016; Goetz, 2013; Isikdag & Zlatanova, 2009; Over et al., 

2010), the proposed scheme offers significant advantages in 

terms of data cost, automation, and parameter customization, 

thereby meeting diverse requirements for model accuracy and 

detail across different scenarios. 

The main contributions of this study are as follows: 

1. We propose an automated framework for generating 

virtual city models based on open data and the concept of 

digital cousin concept. 

2. Implement a multilevel model generation approach 

covering LOD 0 to LOD 2 for roads, city furniture, 

vegetation, and buildings, with support for the flexible 

adjustment of key parameters. 

3. Validation of effectiveness of proposed method for 

rapidly generating virtual city models with different 

random seeds. 

An example of the generation results is shown in Figure 1. 

 

2. Related works 

2.1 Virtual 3D City Model in CityGML 

Previous research on CityGML primarily focused on the 

application of this data standard in areas such as illumination 

and energy simulation, the development and management of 

CityGML databases, and traffic modeling (Malhotra et al., 2022; 

Prandi et al., 2013; Singh et al., 2013; Yao et al., 2018). By 

contrast, relatively little work has been dedicated to generating 

CityGML models. 

 

Among the few studies that have addressed the generation of 

CityGML data, Random3Dcity (Biljecki et al., 2016) can 

produce models ranging from LOD1 to LOD3. However, the 

generated building configurations do not correspond to real 

urban environments, because they are arranged in perfect square 

grids with a fixed number of structures per row and column, and 

the building templates themselves are entirely fictional. 

Similarly, although Goetz et al. (Goetz, 2013) proposed a 

method for generating CityGML LOD4 models from OSM data, 

their approach was limited to a very small number of buildings. 

Murtiyoso et al. (Murtiyoso et al., 2020) employed point-cloud 

reconstruction techniques to generate data conforming to the 

CityGML LOD2 standard; however, this method involves a 

lengthy process with complex operations. 

 

More recently, Peters et al. (Peters et al., 2022) presented a fully 

automated, nationwide workflow that reconstructed LoD 1.2/1.3 

and LoD 2.2 building models for all ~10 million buildings in the 

Netherlands by fusing country-wide LiDAR with cadastral 

footprints – offering an impressive demonstration of large-scale, 

open 3D data delivery. However, the pipeline still stops short of 

LoD 3-4 detail, lacks façade semantics and interiors, and its 

geometric accuracy remains constrained by input-data 

resolution and temporal inconsistencies. Complementing 

reconstruction-oriented studies, Shang et al. (Shang et al., 2024) 

introduced UrbanWorld, a generative “urban world model” that 

combines an urban-specific multimodal LLM with progressive 

3D diffusion to create controllable, interactive city scenes from 

OSM layouts, height maps or text/image prompts. While 

UrbanWorld achieves state-of-the-art visual realism and 

supports embodied agent navigation, it does not yet export 

CityGML-compliant geometry, provides no guarantees of 

geospatial fidelity or topological correctness, and its evaluation 

is confined to perceptual metrics, limiting its applicability for 

analytical GIS workflows. 

 

Considering these limitations, this study presents a high-fidelity 

and user-friendly virtual 3D City Model Generation method in 

CityGML that encompasses five key features: relief, roads, 

urban city furniture, vegetation, and buildings. The proposed 

approach leverages multisource open data to efficiently generate 

detailed and realistic urban models, thereby addressing the need 

for an automated generation process that is cost-effective and 

easily deployable for urban planning, simulations, and further 

analytical applications. 

 

2.2 Virtual 3D City Model in Rendering 

Recently, NeRF (Mildenhall et al., 2021) and 3D Gaussian 

Splatting (Kerbl et al., 2023) have emerged as prominent neural 
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rendering methods. NeRF employs a neural network to model a 

continuous volume, map 3D spatial coordinates, and view 

directions for volume density and color values. The output is an 

implicit representation, which typically requires extensive 

training time and significant computational resources for per-

pixel ray sampling and integration. By contrast, 3D Gaussian 

Splatting adopts a point cloud representation based on 3D 

Gaussian distributions, discretizing the scene into a set of 

Gaussian kernels, each encapsulating position, color, and scale 

information. Although these methods can theoretically be used 

to generate urban 3D models, some studies have demonstrated 

the rendering of large-scale urban 3D models (Xie et al., 2024b; 

Xu et al., 2023), the results produced are primarily suited for 

visual presentation and immersive experiences, and are less 

readily applicable to urban planning, GIS analysis, or 

subsequent physical simulations. 

 

Moreover, diffusion model-based (Ho et al., 2020) approaches, 

such as CityCraft (Deng et al., 2024), Infinicity (Lin et al., 

2023), CityDreamer (Xie et al., 2024a), and CityGen (Deng et 

al., 2023), first generate a 2D layout and then derive the visual 

appearance of urban 3D models using asset placement or neural 

rendering techniques. To apply these methods to urban model 

generation, additional steps are required to extract, segment, or 

reconstruct explicit geometric and semantic information, 

thereby satisfying the demands of digital twin applications, 

interactive operations, and detailed analyses. Furthermore, these 

approaches typically require high-performance graphics 

processing units (GPUs) for training and inference, which poses 

challenges to their practical deployment. 

 

3. Datasets 

This study utilized three types of data: LOD2 3D building data, 

DEM data, and OSM data. As all datasets are open source, they 

offer a reliable basis for the reproducibility of the research. 

These datasets are curated and provided in a downloadable 

format on GitHub. 

 

3.1 3D Building Data in LOD2  

The LOD2 3D building data utilized in this study were obtained 

from the PLATEAU project, an open-source 3D urban 

modeling initiative led by Japan’s Ministry of Land, 

Infrastructure, Transport, and Tourism (MLIT). This project 

aims to promote the standardization and open accessibility of 

3D urban model data across the country. PLATEAU provides 

3D building datasets in the CityGML2.0 format2. Examples and 

application scenarios ranging from LOD0 to LOD3 are shown 

in Figure 2. 

 

 

Figure 2. Examples and possible applications of LOD 0 to 3. 

 

 To meet the requirements for generating a virtual 3D city for 

this study, we first collected CityGML building data from 

various regions. The CityGML data were then converted into 

69,551 individual buildings and saved in OBJ format. We 

convert CityGML data into .obj format to enable efficient 

geometric processing and visualization. Compared to the 

structurally complex and semantically rich but computationally 

heavy CityGML format, OBJ offers a lightweight and widely 

compatible representation of geometry, making it more suitable 

for modeling, reconstruction, and graphical analysis workflows. 

Because generating a virtual 3D city requires control over the 

roof types of the generated buildings, we manually labeled each 

building with one of the six roof categories. Table 1 presents the 

category names and their respective distributions. 

 

Roof Type Number 

Flat 17,009 

Stepped 11,903 

Composite 21,703 

Hip 2,979 

Gable 15,920 

Unconventional 37 

Total 69,551 

Table 1. Roof type and corresponding data number. 

Examples of these roof types are shown in Figure 3. 

 
1 https://www.geospatial.jp/ckan/dataset/plateau 

 

Figure 4. Workflow of virtual 3D city model generation in CityGML. 
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Figure 3. Examples of the six different roof types. 

3.2 3D Vegetation and City Furniture Data in LOD2 

Category Number 

Plant cover 192 

Solitary vegetation 279 

Electricity pole 10 

Streetlight 8 

Traffic light 9 

Table 2. 3D vegetation and city furniture data 

Similar to the LOD2 building models, we collected the 

CityGML data for vegetation and city furniture from various 

regions. These CityGML datasets were then converted into OBJ 

files for use in the 3D virtual city generation. The 3D vegetation 

data included plant cover and individual vegetation objects, 

whereas the city furniture data included electricity poles, 

streetlights, and traffic lights. Table 2 presents the category 

names and their respective distributions. 

 

3.3 DEM and OSM Data for Relief Generation  

To enable the generation of relief, roads, and city furniture in 

the 3D city model, we used existing DEM data and 

corresponding OSM data within Japan as the foundation for the 

generation process. 

 

The DEM data 3  were obtained from the Basic Geospatial 

Information download service provided by the Geospatial 

Information Authority of Japan (GSI), with resolutions varying 

by region (1m, 5m, or 10m). The OSM4 is a community-driven 

project that provides free and editable geographic data 

worldwide. From the OSM, we used road and building footprint 

data corresponding to the same areas as the DEM data. 

 

4. Methodology 

To generate a 3D virtual city, the code repository in this study 

was pre-equipped with the necessary 2D and 3D data resources, 

including the DEM data (in TIFF format) referenced in Figure 4; 

OSM road and building footprint data (in GeoJSON format); 

and individual object data for buildings, vegetation, and city 

furniture (in OBJ format) obtained from PLATEAU. The entire 

workflow for generating the 3D virtual city is illustrated in 

Figure 4 and was implemented using Python 3.9. 

 

For the foundation of an entire 3D virtual city, it is necessary to 

generate relief within a specified area. To facilitate the 

 
2 https://service.gsi.go.jp/kiban/app 
3 https://www.openstreetmap.org/ 

subsequent calculations on a unified scale, this study adopted a 

base coordinate reference system defined by the planar 

rectangular coordinate system used in Tokyo, Japan 

(EPSG:30169). The scale of the virtual city was controlled via 

input parameters with a default setting of 200 m × 200 m, as 

shown in Figure 4①. A starting point was randomly selected in 

the actual planar coordinate system from the DEM TIFF file, 

and the corresponding pixel range to be clipped was computed 

based on the DEM resolution. After clipping, each pixel in the 

result is converted to real-world 3D coordinates. Finally, the 3D 

coordinates are transformed into a Trimesh object using 

Delaunay triangulation with the Trimesh library. We use 

Trimesh for mesh processing due to its lightweight design, 

robust performance, and seamless support for common 3D 

formats. It provides essential functions such as mesh repair, 

normal computation, and geometric analysis, making it well-

suited for automated model generation workflows. Its active 

development and compatibility with Python also ensure 

reproducibility and integration with other tools in our pipeline. 

 

Similarly, as shown in Figure 4② , the road and building 

footprint data are cropped using the starting point and cropping 

range selected during the DEM processing and subsequently 

converted into GeoDataFrame objects to serve as the planar 

basis for generating the 3D virtual city. To generate 3D roads, 

the widths of the roads and pedestrian pathways were controlled 

through the input parameters. Based on these widths, buffers 

were added to the linear road elements, and pedestrian paths 

were created. Finally, an ear-clipping algorithm is used to 

convert the buffered road surfaces into Trimesh objects. 

 

 

Figure 5. Detailed workflow of 3D building generation in 

virtual city. 

 

The core component in generating a virtual 3D city is the 

creation of 3D buildings, as shown in Figure 4③. This part of 

the process employs a matching strategy based on pre-

alignment, scale normalization, and Intersection over Union 

(IoU) to enhance the correspondence between building 

placements and the actual city layout, thereby producing more 

realistic and high-fidelity virtual city models. Building 

footprints were first extracted from the OSM data. To ensure 

consistency with the LOD2 building 3D data, the longest side of 

each building was used as the primary orientation during the 

preprocessing stage. Both the OSM footprints and LOD2 

building data were then rotated so that their primary directions 

were aligned with the x-axis, and they were scaled according to 

their longest side to achieve a unified scale. For each OSM 

footprint, 100 buildings were randomly sampled from the LOD2 

building 3D dataset, and the IoU was calculated sequentially for 

each building against the footprint. During the matching process, 

if the IoU of a building exceeded a preset threshold (default 

0.85), the building was immediately selected and placed in the 

corresponding footprint, after which the process proceeded to 

the next footprint. If none of the sampled buildings met the 
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threshold, the building with the highest IoU was selected. The 

detailed workflow for building generation is illustrated in 

Figure 5. The matched building also considered the roof type 

ratio from the input parameters and selected the PLATEAU 3D 

building data from different roof types (Table 1). 

 

For vegetation generation in a 3D virtual city, we controlled the 

placement using input parameters for vegetation density and 

high-to-low vegetation ratio. As shown in Figure 4④, within 

the DEM and OSM extent defined on the aforementioned planar 

coordinate system, a set number of points are randomly sampled 

based on the density parameter. Subsequently, high (≥ 6 m) 

and low (< 6 m) PLATEAU 3D vegetation models were placed 

at the sampling points according to the specified ratio. 

 

Subsequently, for city furniture elements such as traffic signals, 

streetlights, and utility poles (as shown in Figure 4), this study 

controls their generation via an input parameter for city 

furniture density. Specifically, a PLATEAU 3D city furniture 

model was placed at regular intervals along the road edges. At 

this point, a high-fidelity virtual 3D city comprising terrain, 

roads, buildings, vegetation, and city furniture elements is fully 

generated. 

 

Finally, all elements except the terrain are vertically translated 

along the Z-axis to align with the terrain's elevation. Overlap 

detection is then conducted following the priority order of roads, 

buildings, vegetation, and city furniture, and any overlapping 

element instances are removed. Lastly, the various element 

components, represented as Trimesh objects, are exported into a 

CityGML file in accordance with the CityGML 3.0 

specifications. 

 

5. Experiments and Results 

In this study, the virtual 3D city model generation operated 

solely on the CPU (AMD Ryzen 7 7745HX), achieving a 

generation speed of five buildings per second, and about 30s for 

a 200m x 200m tile. The generated content was configurable 

using the input parameters, and the controllable items are listed 

in Table 2. 

 

Based on the control of the various input parameters listed in 

Table 2, the virtual 3D city model generation can be tailored to 

meet diverse requirements and ultimately exported to a 

 

Figure 6. Generation examples of virtual 3D city model generation. 
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CityGML file. The generated results are shown in Figure 6, 

which includes cases produced under different visualization 

settings: models in which all building stories are adjusted to 

high-rise (10–30 floors); an extreme scenario in which the entire 

area features buildings with unconventional roof types, LOD1 

models, as well as models with different styles generated under 

three distinct random seed conditions. The absolute positions of 

the generated elements were fixed when the random seed was 

fixed. Additional configurable features not shown in Figure 6 

include the widths of the main roads and sidewalks, vegetation 

density, density and ratio of traffic signals to utility poles, and 

the proportion of high to low vegetation. This study generates 

cities with specified dimensions based on the spatial distribution 

logic of real-world features. As shown in Figure 7, even a 500 

m × 500 m area can be generated with a quality level that 

closely approximates that of the real world. 

 

The final output of this study was a CityGML file. After 

generating the 3D models for relief, roads, buildings, vegetation, 

and city furniture, each Trimesh object was converted into a 

structured XML representation using etree. For every individual 

feature, the process begins by creating a “cityObjectMember” 

node, within which a “MultiSurface” element and its child 

“surfaceMember” are established. Within the “surfaceMember,” 

a “Polygon” is generated and its boundary is described using 

“exterior” and “LinearRing” elements. The coordinates of all 

vertices are then sequentially written into a “posList” element, 

with the first vertex appended at the end to ensure the polygon 

is closed. Finally, these structured XML elements are organized 

according to the feature category and output to the CityGML 

file. 

Table 2. Controllable features of virtual 3D city model 

generation. 

 

Features Range Default 

Random Seed [0, 65535], int 1024 

Building LOD {0, 1, 2}, int 2 

Min Floor Num [1, 50], int 1 

Max Floor Num [1, 50], int 6 

Flat Roof Ratio [0.0, 1.0], float 0.2 

Step. Roof Ratio [0.0, 1.0], float 0.3 

Com. Roof Ratio [0.0, 1.0], float 0.3 

Hip Roof Ratio [0.0, 1.0], float 0.0 

Gable Roof Ratio [0.0, 1.0], float 0.2 

Unc. Roof Ratio [0.0, 1.0], float 0.0 

Road LOD {0, 1, 2}, int 2 

Main Road width [1.0, 10.0], float 2.0 

Sub Road width [1.0, 10.0], float 0.5 

Vegetation LOD {0, 1, 2}, int 2 

Low Tree Ratio [0.0, 1.0], float 0.5 

High Tree Ratio [0.0, 1.0], float 0.5 

City Fur. LOD {0, 1, 2}, int 2 

Tele. Pole Ratio [0.0, 1.0], float 0.5 

Traf. Light Ratio [0.0, 1.0], float 0.5 

Relief LOD {0, 1}, int 1 

Output Path string - 

 

6. Conclusion and Discussion 

 Unlike traditional digital twin approaches that require an exact 

replication of every detail of a real city, this study is inspired by 

the concept of the "digital cousin." This concept embodies the 

idea that in the transformation from physical to digital, it is not 

necessary for digital models to fully reproduce all the details of 

real entities. Instead, the digital cousins approach employs a 

flexible and broad methodology to digitally capture only the key 

 

Figure 7. Generation example of 500 m × 500 m area. 
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features, thereby achieving 3D digital reconstruction of a city at 

a cost far lower than that of traditional methods. Based on open-

source data, this study proposes a virtual 3D city model 

generation method that produces a high-fidelity CityGML 

output with a focus on the judicious sampling and 

reconstruction of real-world elements. 

This study leveraged the spatial distribution information of 

actual physical features, such as DEM data and OSM-based 

terrain, roads, and building locations, while integrating open-

source 3D model assets (e.g., LOD2 building models, 

vegetation, and urban facilities). Consequently, a virtual 3D city 

model covering an area of 40,000 square meters within 1 min. 

The produced model not only faithfully replicates the spatial 

distribution of real-world elements but also allows for flexible 

adjustment of key features, including buildings, roads, 

vegetation, and city furniture (as listed in Table 2), through 

input parameters, thereby meeting the research and application 

requirements in urban planning (Biljecki et al., 2015; Chen, 

2011; Willenborg et al., 2017), environmental (Deininger et al., 

2020) and (Nouvel et al., 2013) , disaster management (Riaz et 

al., 2023) and (Armand et al., 2021), and GIS analysis (Khayyal 

et al., 2022). 

However, this study had certain limitations in achieving a 

digital replica of the real world. First, the generated building 

footprints did not fully correspond to the actual conditions, and 

the building height information was not reflected in the model. 

Second, key elements such as road widths and roadside traffic 

signs are not adequately represented. Additionally, accurately 

representing street trees and residential greenery in 3D models 

remains an unresolved challenge. 

Considering these shortcomings, future research can be 

improved in the following ways. 

For building models, future work could incorporate generative 

AI techniques (S. Chen et al., 2024; Siddiqui et al., 2024) in 

addition to the current generation approach to perform 

autoregressive training on 3D mesh objects, thereby predicting 

and replicating building details more accurately, particularly 

building height information. This can be achieved by integrating 

building morphology (Y. Chen et al., 2024) methods that 

combine the shape of the footprint with neighbourhood 

information. 

For issues related to roads and traffic signage, semantic-

segmentation-based techniques (Wang et al., 2023) can be 

explored to accurately extract road widths and the distribution 

of roadside facilities, thereby enhancing the level of detail and 

practical utility of the model. 

For vegetation, further leveraging high-precision remote sensing 

data or deep learning techniques (Wang et al., 2023) can 

improve the representation of street trees and residential 

greenery in a 3D model, ensuring both realism and accuracy. 

In summary, guided by the concept of digital cousins, this study 

presents a high-fidelity virtual 3D city model generation 

approach based on open-source data. This method achieves a 

low-cost and highly efficient digital reconstruction of urban 

environments while providing robust support for further in-

depth research and practical applications. Future work will 

further expand and refine the capabilities of each submodule to 

satisfy the stringent requirements for digital twins in the fields 

of urban planning and digital governance. 
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